Background	Data	Earnings Dynamics	Higher moments	Persistence	Results	Insurance	References
0000	00	00000	0000	00000	O	000000000	

Earnings Dynamics and Income Insurance in Germany: A Cohort View

Niklas Isaak¹ Robin Jessen^{1,2}

¹RWI, ²IZA

EEA 2024 Rotterdam

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

- Income risk has a negative impact on risk averse agents' welfare
- Macroeconomic models typically include uniform income processes for all households
- Individual earnings growth risk is crucial for household (consumption) decisions
- Do younger cohorts face increased earnings risk?
- Can the households and the welfare state mitigate income risk?
- Are the idiosyncratic income changes persistent?

- Emerging literature on nonlinearities and non-normality of income processes and insurance against income risk
 - France: Aghion et al. (2023)
 - Germany: Bartels and Bönke (2013), Busch et al. (2022), Drechsel-Grau et al. (2022), Pessoa (2021)
 - Italy: Hoffmann and Malacrino (2019), Hoffmann et al. (2022),
 - Netherlands: De Nardi et al. (2021)
 - Norway: Blundell et al. (2015), Halvorsen et al. (2020)
 - UK: De Nardi et al. (2020b)
 - US: Hryshko et al. (2017), De Nardi et al. (2020a), De Nardi et al. (2021), Guvenen et al. (2021)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

- Great Moderation: Variance decreased in US between 80s and 90s, attributable to both permanent and transitory shocks: Sabelhaus and Song (2010)
- Increased earnings inequality for younger cohorts: Hoffmann et al. (2022)

- Document volatility and higher order income risk for different cohorts in Germany
- Investigate earnings dynamics for both women and men
- Illustrate persistence of income shocks
- Identify the role of the household (incl. children) and welfare state
- Decomposition: Hourly wages are the most important driver of earnings risk
- Broad assessment of earnings dynamics, cohort effects, income insurance, and welfare implications

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□◆

• Growth in labor earnings, household earnings and net household incomes: younger cohorts face higher volatility (-) and higher skewness (+) as well as lower kurtosis (+)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

- Men's labor income growth exhibits lower volatility than women's earnings growth
 - This difference disappears when restricting the sample to people without children
- Skewness of labor earnings growth decreased strongly during the Great Recession
- · However, earnings changes of younger female cohorts were unaffected
- Income shocks have a high persistence
- Both the household and the welfare state are quite effective insurance mechanisms

- Taxpayer Panel (TPP)
 - · Administrative data based on the universe of personal income tax returns
 - Years 2001-2016, 5% subsample, well over 50 million observations
 - Only those with positive earnings and no income from self-employment
 - Minimum income threshold equivalent to 2300 EUR in 2018
 - Birthyears 1942-1991 in 10-year cohorts (and possibly more granular)

Data

Higher moments

Persistence 00000 Results O Insurance 000000000

References

Concepts of income risk

- · Focus on residualized income growth, i.e. residualized first difference in log income
 - Outcome variable x_{i,t} for individual i in year t:

$$\Delta_k \ln x_{i,t} = \ln x_{i,t+k} - \ln x_{i,t}$$

- Regression using age and year interactions as baseline income path
- Idiosyncratic growth rate $\Delta_k \ln \tilde{x}_{i,t}$
- A measure of unexpected changes in income
- In practice, this measure also captures expected income changes to some degree
- Percentile based measures of risk:
 - Volatility P90 P10
 - Kelley skewness $\frac{(P90-P50)-(P50-P10)}{P90-P10}$
 - Crow-Siddiqui measure of kurtosis <u>P97.5-P2.5</u> <u>P75-P25</u>

Background 0000	Data 00	Earnings Dynamics	Higher moments 0000	Persistence 00000	Results O	Insurance 000000000	References

Earnings risk over the life cycle

Note: Prime age individuals in the TPP, years 2001-2016

• U-shaped volatility/variance of idiosyncratic earnings changes for men, excess risk for women peaking at age 30

• Similar in levels at the beginning of working life and beyond 50

Background 0000	Data OO	Earnings Dynamics	Higher moments 0000	Persistence 00000	Results O	Insurance 000000000	References

Earnings risk by cohort and age

Note: Prime age individuals in the TPP, years 2001-2016

- Younger cohorts (both women and men) face higher earnings growth risk
- · Few exceptions for the oldest cohorts at higher ages

Background 0000	Data OO	Earnings Dynamics	Higher moments 0000	Persistence 00000	Results O	Insurance 000000000	Refe
--------------------	------------	-------------------	------------------------	----------------------	--------------	------------------------	------

Sample without parents

Note: Prime age individuals in the TPP, years 2001-2016

- · Women without children exposed to a much lower earnings volatility
- Childless men and women very similar

Excursion: The business cycle & earnings growth risk

Note: Prime age individuals in the TPP, years 2001-2016

- Great recession affected men to larger extent, 2003 recession insignificant
- Note that we plot $t \rightarrow t + 1$, so recession shows up one year ahead

Background Data Earnings Uynamics Frigher moments Persistence Results Insurance Res	Background	Data	Earnings Dynamics	Higher moments	Persistence	Results	Insurance	Reference
0000 00 0000 00000 00000 00000 00000000	0000	00	0000●	0000	00000	O	000000000	

Earnings risk by cohort and year

Note: Prime age individuals in the TPP, years 2001-2016

- Men across all cohorts were faced with increased volatility in 2009
- · Recession effect much lower for women, some cohorts virtually unaffected

Higher order risk

Note: Prime age individuals in the TPP, years 2001-2016

- Negative shift in skewness over the life-cycle
- Distribution of idiosyncratic earnings shocks relatively more right-skewed in younger cohorts

Skewness over the business cycle

Note: Prime age individuals in the TPP, years 2001-2016

- Procyclical skewness as found in Busch et al. (2022)
- · Skewness for women in younger cohorts unaffected during Great Recession

Note: Prime age individuals in the TPP, years 2001-2016

- Less pronounced life-cycle and cohort effects on kurtosis
- Distribution of idiosyncratic earnings shocks mostly less leptokurtic in younger cohorts

Kurtosis over the business cycle

Note: Prime age individuals in the TPP, years 2001-2016

• Lower density at the tails of the distribution during the Great Recession

Persistence of earnings shocks

- Short-term effects or longer-term income loss
- People care about persistent or permanent (negative) shocks
- Do the patterns we found for $t \rightarrow t+1$ hold for $t \rightarrow t+5$?

Background 0000	Data 00	Earnings Dynamics 00000	Higher moments 0000	Persistence O●OOO	Results O	Insurance 000000000	References

1 vs. 5 years ahead: Women

Note: Prime age individuals in the TPP, years 2001-2016

- Longer term volatility larger
- Cohort effects more clear cut

Background E	Data I DO	Earnings Dynamics 00000	Higher moments 0000	Persistence 00000	Results O	Insurance 000000000	References
--------------	--------------	----------------------------	------------------------	----------------------	--------------	------------------------	------------

1 vs. 5 years ahead: Men

Note: Prime age individuals in the TPP, years 2001-2016

- Volatility much larger over 5 years
- · Cohort effects disappear almost completely

1 vs. 5 years ahead: Women

Note: Prime age individuals in the TPP, years 2001-2016

• Business cycle effects are smoothed out

1 vs. 5 years ahead: Men

Note: Prime age individuals in the TPP, years 2001-2016

• No visible persistent shocks during recessions

• Earnings risk is highest at the beginning of working life, decreases and then remains constant from age 40 until close to retirement age

- Women face higher earnings risk, especially around 30
- Having children explains women's higher earnings volatility to a large extent
- Higher risk faced by younger cohorts at given age/year
- Procyclical earnings growth skewness, driven by both tails
- Cohort effects more (less) visible in persistent labor income shocks for women (men)

Background	Data	Earnings Dynamics	Higher moments	Persistence	Results	Insurance	References	
0000	OO	00000	0000	00000	O	•00000000		
Insurance mechanisms								

- Insurance against Income Risk: The Role of the Household and the German Tax-Transfer System
- Main findings
 - Income pooling and the tax-transfer system are important channels of insurance
 - Household and the tax and transfer system mitigate welfare loss caused by increased earnings growth risk

• Variance decomposition: Wages, hours and months are all important drivers of earnings risk

Background	Data	Earnings Dynamics	Higher moments	Persistence	Results	Insurance	References
0000	OO	00000	0000	00000	O	OOOOOOOOO	

Methodology

- What we have learned about individual labor income risk:
 - Earnings risk is highest at the beginning of working life.
 - Women face substantially higher risk from late 20s to 40
 - Large impact of Great Recession on idiosyncratic earnings risk
- To what extent is this risk mitigated via the household and the welfare state?
- Using SOEP for better coverage of household context and detailed information on taxes and transfers
- Socio-Economic Panel (SOEP)
 - Representative, annual survey of households in Germany
 - Years 1991-2018
 - Only those with positive earnings and no income from self-employment
 - 10-year cohorts
 - We look at couples only
- Residualized first differences in individual labor earnings, household income before and after taxes and transfers

Insurance effects

Note: Prime age individuals in the SOEP, years 2001-2016

- Life cycle risk profile much flatter as a household
- · Post-government income volatility often significantly lower than individual labor earnings volatility

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Insurance 000000000 References

Percentage change

Note: Prime age individuals in the SOEP, years 2001-2016

- Female partner experiences a steady and equally large reduction in earnings growth risk across all ages through household and welfare state
- Volatile income of the spouse even increases men's household income volatility vis-a-vis labor earnings

Insurance effects

Note: Prime age individuals in the SOEP, years 2001-2016

• Women see clear insurance effects via both channels in every year

◆□ > ◆□ > ◆ = > ◆ = > 三日 のへで

Percentage change

Note: Prime age individuals in the SOEP, years 2001-2016

- Significant volatility reduction through taxes and transfers throughout the years
- Risk reduction via household close to zero for men

Decomposition of earnings growth variance

- What are the drivers of the increase in earnings risk?
- Decompose earnings (y) risk into months worked (m), hours of work per month (h), and hourly wages (w), all of which can be observed in the SOEP:

$$\ln y = \ln m + \ln h + \ln w \tag{1}$$

$$Var(\ln y) = Var(\ln m) + Var(\ln h) + Var(\ln w)$$
(2)
+2Cov(ln m, ln h) + 2Cov(ln m, lnw) + 2Cov(ln h, lnw)

Decomposition of earnings growth variance

Residualized earnings growth. Prime age individuals in the SOEP, years 1991-2018

(日) (日) (日) (日) (日) (日) (日) (日) (日)

- Earnings risk is highest at the beginning of working life.
- Women face substantially higher risk from late 20s to 40
- Slight increase for younger cohorts.
- For men, wages are the most important driver.
- For women, months are more important at young ages.
- Negative covariance of hours and wages due to denominator bias and possibly a negative Marshallian labor supply elasticity.

Higher moments 0000 Persistence 00000 Results O Insurance 000000000 References

References I

- Aghion, P., Ciornohuz, V., Gravoueille, M., and Stantcheva, S. (2023). Anatomy of inequality and income dynamics in france.
- Bartels, C. and Bönke, T. (2013). Can Households And Welfare States Mitigate Rising Earnings Instability? *Review of Income and Wealth*, 59(2):250–282.
- Blundell, R., Graber, M., and Mogstad, M. (2015). Labor income dynamics and the insurance from taxes, transfers, and the family. *Journal of Public Economics*, 127:58–73.
- Busch, C., Domeij, D., Guvenen, F., and Madera, R. (2022). Skewed idiosyncratic income risk over the business cycle: Sources and insurance. *American Economic Journal: Macroeconomics*, 14(2):207–42.
- De Nardi, M., Fella, G., Knoef, M., Paz-Pardo, G., and Van Ooijen, R. (2021). Family and government insurance: Wage, earnings, and income risks in the Netherlands and the U.S. *Journal of Public Economics*, 193:104327.
- De Nardi, M., Fella, G., and Paz-Pardo, G. (2020a). Nonlinear Household Earnings Dynamics, Self-Insurance, and Welfare. *Journal of the European Economic Association*, 18(2):890–926.
- De Nardi, M., Fella, G., and Paz-Pardo, G. (2020b). Wage Risk and Government and Spousal Insurance. NBER Working Papers 28294, National Bureau of Economic Research, Inc.
- Drechsel-Grau, M., Peichl, A., Schmid, K. D., Schmieder, J. F., Walz, H., and Wolter, S. (2022). Inequality and income dynamics in germany. *Quantitative Economics*, 13(4):1593–1635.
- Feldstein, M. S. (1969). The effects of taxation on risk taking. Journal of Political Economy, 77(5):755-764.
- Guvenen, F., Karahan, F., Ozkan, S., and Song, J. (2021). What Do Data on Millions of U.S. Workers Reveal about Life-Cycle Earnings Risk? *Econometrica*, 89:2303–39.

- Halvorsen, E., Holter, H., Ozkan, S., and Storesletten, K. (2020). Dissecting idiosyncratic earnings risk. CEPR Working Papers DP15395, CEPR.
- Heathcote, J., Storesletten, K., and Violante, G. L. (2017). Optimal tax progressivity: An analytical framework. *Quarterly Journal of Economics*, 132:1693–1754.
- Hoffmann, E. B. and Malacrino, D. (2019). Employment time and the cyclicality of earnings growth. *Journal of Public Economics*, 169(C):160–171.
- Hoffmann, E. B., Malacrino, D., and Pistaferri, L. (2022). Earnings dynamics and labor market reforms: The italian case. *Quantitative Economics*, 13(4):1637–1667.
- Hryshko, D., Juhn, C., and McCue, K. (2017). Trends in earnings inequality and earnings instability among U.S. couples: How important is assortative matching? *Labour Economics*, 48(C):168–182.
- Pessoa, A. S. (2021). Earnings Dynamics in Germany. CESifo Working Paper Series 9117, CESifo.
- Sabelhaus, J. and Song, J. (2010). The great moderation in micro labor earnings. *Journal of Monetary Economics*, 57(4):391–403.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□◆

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Insurance against higher order risk

Note: Prime age individuals in the SOEP, years 2001-2016

- Little effect of the tax system on higher moments
- In line with theory (Feldstein, 1969; Heathcote et al., 2017)

Insurance against higher order risk

Note: Prime age individuals in the SOEP, years 2001-2016

Insurance against higher order risk

Note: Prime age individuals in the SOEP, years 2001-2016

Insurance against higher order risk

Note: Prime age individuals in the SOEP, years 2001-2016

- Compare an older cohort (1962-71) to a younger cohort (1972-81)
- No savings, income = consumption
- CRRA utility function with risk aversion parameter γ
- By how much would the older cohorts income have to increase for them to indifferent to be the counterfactual of them being born in the younger cohort?

Table: Welfare effects of changes in income distributions: SOEP cohorts 1962 and 1972

	$\gamma = 0$	$\gamma = 1$	$\gamma = 1.5$	$\gamma = 2$
Women				
Labor earnings	.154	.126	.100	.015
HH pre-gov income	.202	.174	.143	.087
HH post-gov income	.231	.219	.209	.197
Men				
Labor earnings	.078	.054	.034	012
HH pre-gov income	.129	.100	.076	.023
HH post-gov income	.164	.148	.139	.131

Note: Proportional income increase needed to make average individual in earlier cohort as well off as average individual in the later cohort for different values of CRRA parameter γ . Sample with positive labor income. Ages 31-44.

Table: Welfare effects of changes in income distributions: SOEP cohorts 1962 and 1972

	$\gamma = 0$	$\gamma = 1$	$\gamma = 1.5$	$\gamma=$ 2
Women	_			
Labor earnings	.154	.126	.100	.015
HH pre-gov income	.202	.174	.143	.087
HH post-gov income	.231	.219	.209	.197
Men				
Labor earnings	.078	.054	.034	012
HH pre-gov income	.129	.100	.076	.023
HH post-gov income	.164	.148	.139	.131

Note: Proportional income increase needed to make average individual in earlier cohort as well off as average individual in the later cohort for different values of CRRA parameter γ . Sample with positive labor income. Ages 31-44.

 No risk aversion: Necessary increase = average real income growth

Table: Welfare effects of changes in income distributions: SOEP cohorts 1962 and 1972

	$\gamma = 0$	$\gamma = 1$	$\gamma = 1.5$	$\gamma = 2$
Women				
Labor earnings	.154	.126	.100	.015
HH pre-gov income	.202	.174	.143	.087
HH post-gov income <i>Men</i>	.231	.219	.209	.197
Labor earnings	.078	.054	.034	012
HH pre-gov income	.129	.100	.076	.023
HH post-gov income	.164	.148	.139	.131

Note: Proportional income increase needed to make average individual in earlier cohort as well off as average individual in the later cohort for different values of CRRA parameter γ . Sample with positive labor income. Ages 31-44.

- No risk aversion: Necessary increase = average real income growth
- Necessary increase drops dramatically with increasing risk aversion

Table: Welfare effects of changes in income distributions: SOEP cohorts 1962 and 1972

	$\gamma = 0$	$\gamma = 1$	$\gamma = 1.5$	$\gamma=2$
Women				
Labor earnings	.154	.126	.100	.015
HH pre-gov income	.202	.174	.143	.087
HH post-gov income <i>Men</i>	.231	.219	.209	.197
Labor earnings	.078	.054	.034	012
HH pre-gov income	.129	.100	.076	.023
HH post-gov income	.164	.148	.139	.131

Note: Proportional income increase needed to make average individual in earlier cohort as well off as average individual in the later cohort for different values of CRRA parameter γ . Sample with positive labor income. Ages 31-44.

- No risk aversion: Necessary increase = average real income growth
- Necessary increase drops dramatically with increasing risk aversion
- Household and welfare state offset large parts of the higher moments

・ロト・4回ト・4回ト・4回ト・4回ト