Dynamically Consistent Intergenerational Welfare

Lasse Mononen Bielefeld University

Motivation

- > How to evaluate intergenerational policies such as in climate change?
 - Disagreement about evaluation but not about how to measure the utilities.
- > How to evaluate the value of an intergenerational utility stream $(u_0, u_1, u_2, ...)$?
- > Samuelson (1937), Koopman (1960). Discounted utility: $\delta \in (0,1)$

$$(1-\delta)\sum_{t=0}^{\infty}\delta^t u_t.$$

- > Significant disagreement on the discount factor (Weitzman, 2001)
- > Maxmin criterion: A set of discount factors $D \subset (0,1)$

$$\min_{\delta \in D} (1-\delta) \sum_{t=0}^{\infty} \delta^t u_t.$$

Motivation

> Maxmin criterion: A set of discount factors $D \subseteq (0,1)$

$$\min_{\delta \in D} (1 - \delta) \sum_{t=0}^{\infty} \delta^t u_t.$$

- Intergenerational choice lacks commitment.
- > Dynamic consistency crucial for a credible evaluation.
- Maxmin + dynamic consistency = dictatorship
- > How to aggregate intergenerational welfare under dynamic consistency?

Summary

 \blacktriangleright Discounted utility recursively: $\delta \in (0,1)$

 $V(u_0, u_1, \dots) = u_0 + \delta \big(V(u_1, u_2, \dots) - u_0 \big) = (1 - \delta) \sum_{t=0}^{\infty} \delta^t u_t$

- > General solution to aggregating intergenerational welfare under dynamic consistency:
- > Under stationarity, for some $\delta^+, \delta^- \in (0, 1)$, the utility stream evaluated recursively by $V(u_0, u_1, \ldots) = u_0 + \delta^+ \max \{V(u_1, u_2, \ldots) u_0, 0\} + \delta^- \min \{V(u_1, u_2, \ldots) u_0, 0\}.$
- Envy-guilt asymmetry for future generations utility as in Fern-Schmidt's other regarding preferences or loss aversion as in prospect theory. Tractable and simple model suitable for applications.

▶ If $\delta^- \ge \delta^+$, then

$$V(u_0, u_1, \dots) = \min_{\delta \in [\delta^+, \delta^-]} u_0 + \delta (V(u_1, u_2, \dots) - u_0)$$

> Without stationarity, δ_t^+, δ_t^- are time dependent e.g. (quasi-)hyperbolic discounting

Outline

Characterization

Extension: Non-stationary

Outline

Characterization

Extension: Non-stationary

Setting

- > The objects of choice are bounded sequences of real numbers $(u_t)_{t=0}^{\infty} \in \ell^{\infty}$.
 - The indices t = 0, 1, 2, ... are generations and u_t is the utility of generation t from the utility stream $(u_t)_{t=0}^{\infty}$.
- > The primitive is a binary relation \succeq on ℓ^{∞} .
- ightarrow > ightarrow and \sim denote the asymmetric and symmetric parts of \succeq respectively.

Axioms 1 & 2

The first axioms are standard axioms that \succeq is complete, transitive, and continuous. Axiom 1 (Complete & Transitive)

1. For each
$$(u_t)_{t=0}^\infty, (v_t)_{t=0}^\infty \in \ell^\infty$$
 ,

 $(u_0, u_1, \ldots) \succeq (v_0, v_1, \ldots) \quad \text{or} \quad (v_0, v_1, \ldots) \succeq (u_0, u_1, \ldots).$

2. For each
$$(u_t)_{t=0}^{\infty}, (v_t)_{t=0}^{\infty}, (x_t)_{t=0}^{\infty} \in \ell^{\infty}$$
,
if $(u_0, u_1, ...) \succeq (v_0, v_1, ...)$ and $(v_0, v_1, ...) \succeq (x_0, x_1, ...)$,
then $(u_0, u_1, ...) \succeq (x_0, x_1, ...)$.

Axiom 2 (Continuity)

For each $(u_t)_{t=0}^{\infty}, (v_t)_{t=0}^{\infty} \in \ell^{\infty}$ such that $(u_0, u_1, \dots) \succ (v_0, v_1, \dots)$, there exists $\beta > 0$ such that

$$(u_0 - \beta, u_1 - \beta, \dots) \succ (v_0 + \beta, v_1 + \beta, \dots).$$

> Adding little to the utility sequence changes preferences only slightly.

- > The next axiom captures that choice alternatives are utility streams.
- > Introduced in d'Aspremont and Gevers (1977) and Sen (1979).
- > Positive affine transformation of the utility streams does not affect the comparisons.

Axiom 3 (Co-Cardinality)

For each $(u_t)_{t=0}^{\infty}, (v_t)_{t=0}^{\infty} \in \ell^{\infty}$, $\alpha > 0$ and $\beta \in \mathbb{R}$, $(u_0, u_1, \ldots) \succeq (v_0, v_1, \ldots) \Longrightarrow (\alpha u_0 + \beta, \alpha u_1 + \beta, \ldots) \succeq (\alpha v_0 + \beta, \alpha v_1 + \beta, \ldots).$

The next axiom assumes that the preferences respect unanimous improvements for every generation.

Axiom 4 (Generation-wise Unanimity)

For all $(u_t)_{t=0}^{\infty}, (v_t)_{t=0}^{\infty} \in \ell^{\infty}$, if for all $t \in \mathbb{N}, u_t \ge v_t$ and for some $t' \in \mathbb{N}, u_{t'} > v_{t'}$, then $(u_0, u_1, \ldots) \succ (v_0, v_1, \ldots)$.

- > The last axiom is Koopman's (1960) Stationarity.
- > The passage of time does not affect the preferences.
- > Every generation has the same time preferences.
- > Especially gives dynamic consistency.

Axiom 5 (Stationarity)

Let $(u_t)_{t=0}^{\infty}, (v_t)_{t=0}^{\infty} \in \ell^{\infty}$ and $\theta \in \mathbb{R}$. Then

 $(u_0, u_1, \ldots) \succeq (v_0, v_1, \ldots) \iff (\theta, u_0, u_1, \ldots) \succeq (\theta, v_0, v_1, \ldots).$

Characterization

 General characterization for intergenerational welfare aggregation under stationarity by the envy-guilt asymmetry.

Theorem 1 (Stationary Intergenerational Welfare)

 \succeq satisfies Axioms 1 to 5 iff. there exist unique $\delta^+, \delta^- \in (0, 1)$ such that there exists a recursive function $V: \ell^{\infty} \to \mathbb{R}$ defined by for each $(u_t)_{t=0}^{\infty} \in \ell^{\infty}$,

$$V(u_0, u_1, ...) = u_0 + \delta^+ \max \left\{ V(u_1, u_2, ...) - u_0, 0 \right\} + \delta^- \min \left\{ V(u_1, u_2, ...) - u_0, 0 \right\}$$

with $\limsup_{t\to\infty} |V(u_t, u_{t+1}, \dots)| < \infty$ and V represents \succeq .

lim sup_{t→∞} |V(u_t, u_{t+1}, ...)| < ∞ gives the convergence of the recursive formula.
 If δ⁻ ≥ δ⁺, then

$$V(u_0, u_1, \dots) = \min_{\delta \in [\delta^+, \delta^-]} u_0 + \delta (V(u_1, u_2, \dots) - u_0)$$

Outline

Characterization

Extension: Non-stationary

- > Relax stationarity for general dynamically consistent preferences.
- History independence is dynamic consistency from Epstein (2003) in the current setting.
- > Guarantees time-consistent choices.

Axiom 6 (History Independence)

For all
$$t \in \mathbb{N}$$
, $(a_t)_{t=0}^{\infty}$, $(b_t)_{t=0}^{\infty}$, $(u_t)_{t=0}^{\infty}$, $(v_t)_{t=0}^{\infty} \in \ell^{\infty}$,
 $(a_0, \dots, a_{t-1}, u_t, u_{t+1}, \dots) \succeq (a_0, \dots, a_{t-1}, v_t, v_{t+1}, \dots)$
 $\iff (b_0, \dots, b_{t-1}, u_t, u_{t+1}, \dots) \succeq (b_0, \dots, b_{t-1}, v_t, v_{t+1}, \dots).$

 Each generation has preferences for consumption streams starting at their generation that are history independent

- > Monotone continuity from Villegas (1964) and Arrow (1966).
- > The limit of the utility stream is not given a positive weight.

Axiom 7 (Monotone Continuity)

For all $(u_t)_{t=0}^{\infty}, (v_t)_{t=0}^{\infty}, (x_t)_{t=0}^{\infty} \in \ell^{\infty}$ such that $(u_0, u_1, \dots) \succ (v_0, v_1, \dots)$, then there exists $t \in \mathbb{N}$ such that

$$(u_0, \dots, u_{t-1}, x_t, x_{t+1}, \dots) \succ (v_0, v_1, \dots)$$
 and
 $(u_0, u_1, \dots) \succ (v_0, \dots, v_{t-1}, x_t, x_{t+1}, \dots).$

Characterization

 Replacing stationarity with history independence and monotone continuity gives time-dependent discount factors.

Theorem 2 (Dynamically Consistent Intergenerational Welfare)

 \succeq satisfies Axioms 1 to 4, 6 and 7 iff. there exist for each $t \in \mathbb{N}$, unique $\delta_t^+, \delta_t^- \in (0, 1)$ such that for each $t \in \mathbb{N}$ and $(u_l)_{l=0}^{\infty} \in \ell^{\infty}$, we have a recursive function

$$\begin{split} &V_t(u_t, u_{t+1}, ...) \\ &= u_t + \delta_t^+ \max\left\{V_{t+1}(u_{t+1}, u_{t+2}, ...) - u_t, 0\right\} + \delta_t^- \min\left\{V_{t+1}(u_{t+1}, u_{t+2}, ...) - u_t, 0\right\} \\ &\text{with } \prod_{t=0}^\infty \max\{\delta_t^+, \delta_t^-\} = 0, \ \limsup_{t \to \infty} |V_t(u_t, u_{t+1}, ...)| < \infty, \ \text{and the recursive solution } V_0 \ \text{represents} \succeq. \end{split}$$

- ▶ $\prod_{t=1}^{\infty} \max\{\delta_t^+, \delta_t^-\} = 0$ and $\limsup_{t\to\infty} |V_t(f_t, f_{t+1}, \dots)| < \infty$ give the convergence of the recursive solution.
- Allows for (quasi-)hyperbolic discounting.

Outline

Characterization

Extension: Non-stationary

Open Questions

- > How to estimate δ^+ and δ^- ?
 - How are they related to individual's discount factors
- > Does this model give the same predictions as exponential discounting.
 - Does the differences matter for applications.
- > Is the model computationally tractable and how to solve for the optimal policy.
- > The role of co-cardinality.

- > Dynamic consistency crucial for credible intergenerational choice plans.
- Offered a general characterization for intergenerational welfare aggregation under stationarity or dynamic consistency.
- > A simple and tractable model that is suitable for applications.

Extension

Conclusion

Appendix

- > The next axiom captures that choice alternatives are utility streams.
- ► Introduced in d'Aspremont and Gevers (1977) and Sen (1979).
- > Positive affine transformation of the utility streams does not affect the comparisons.

Axiom 3 (Co-Cardinality)

For each
$$(u_t)_{t=0}^{\infty}, (v_t)_{t=0}^{\infty} \in \ell^{\infty}$$
, $\alpha > 0$ and $\beta \in \mathbb{R}$,
 $(u_0, u_1, \ldots) \succeq (v_0, v_1, \ldots) \Longrightarrow (\alpha u_0 + \beta, \alpha u_1 + \beta, \ldots) \succeq (\alpha v_0 + \beta, \alpha v_1 + \beta, \ldots).$

- ► Discounted utility assumes for all $(u_t)_{t=0}^{\infty}, (v_t)_{t=0}^{\infty}, (x_t)_{t=0}^{\infty} \in \ell^{\infty}$ $(u_0, u_1, \ldots) \succeq (v_0, v_1, \ldots) \Longrightarrow (u_0 + x_0, u_1 + x_1, \ldots) \succeq (v_0 + x_0, v_1 + x_1, \ldots).$
- Assumes that utility levels are not comparable across generations

The next axiom assumes that the preferences respect unanimous improvements for every generation.

Axiom 4 (Generation-wise Unanimity)

For all $(u_t)_{t=0}^{\infty}, (v_t)_{t=0}^{\infty} \in \ell^{\infty}$, if for all $t \in \mathbb{N}, u_t \ge v_t$ and for some $t' \in \mathbb{N}, u_{t'} > v_{t'}$, then $(u_0, u_1, \ldots) \succ (v_0, v_1, \ldots)$.

- > The previous literature assumed unanimity for exponential discounters:
 - There exists a finite set $D \subset (0,1)$ such that
 - if for all $\delta \in D$, $\sum_{t=0}^{\infty} \delta^t u_t > \sum_{t=0}^{\infty} \delta^t v_t$, then $(u_0, u_1, \dots) \succ (v_0, v_1, \dots)$.
 - Incompatible with dynamic consistency unless there is a dictator (Zuber, 2011; Jackson & Yariv, 2015)

