National

ERIOT I I | Institute of
='.’7&' E E a d
SWATT b Enomeme,

£/ UNIVERSITY

MOMENTUM INFORMED INFLATION-AT-RISK

TIBOR SZENDREI & ARNAB BHATTACHARJEE

Presented by: Tibor Szendrei
August 2024

EEA 2024



GROWTH-AT-RISK

- [Adrian et al, 2019] pioneered @E=ED approach applied to GDP
growth (GaR) to capture vulnerability to the financial sector
- Quantile regression to model parts of distribution directly
- Lagged GDP is a location shifter
- Financial sector induces skewness in the left tail of GDP growth
- Where does this nonlinear macro-financial linkage come from?
- [Kohns and Szendrei, 2023] and [Mitchell et al., 2022b] find
multimodality in forecasted GaR right before crises periods

- Potential explanation: Economic agents’ expectations diverge
when uncertainty is high



INFLATION-AT-RISK (?)

- GaR has been researched extensively in the literature:

- High dimensional GaR:
[Mitchell et al., 2022a, Kohns and Szendrei, 2021]
- Mixed frequency GaR:
[Ferrara et al., 2022, Plagborg-Mgller et al., 2020]
- Non-US applications: [Figueres and Jarocinski, 2020, Xu et al., 2023]

- Where is the IaR research?

- Adistributional view of inflation seems natural

- Inflation expectations matter
- Both left and right tails of inflation distribution are important



INFLATION-AT-RISK (!)

- [Lopez-Salido and Loria, 2022,
Banerjee et al,, 2020] are laR
papers that attempt to
estimate along the lines of
[Adrian et al., 2019] ¥

- Inflation density papers like
[Korobilis, 2017] exist but
the focus is on density
forecasting and not IaR
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Figure 1: 1aR inflation coefficient of
- But there is large time [Lopez-Salido and Loria, 2022]
variation in coefficients for
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TACKLING THE TIME VARIATION



IRRATIONAL ECONOMIC AGENTS

- Economic agents rarely form rational inflation expectations
- Agents use heuristics [Kahneman and Thaler, 2006,
Akerlof and Shiller, 2010, De Grauwe, 2011]
-+ Waves of optimism/pessimism can have a critical role in shaping
macroeconomic variables such as inflation [De Grauwe, 2011].
- Trusting the Central Bank communicated inflation projection is
one (valid) strategy
- The degree of trust in CB is crucial
- CB will want to recover trust when it is under risk
- Inflation dynamics will vary as CB will react differently



MOMENTUM MOTIVATION

- Rapid changes in inflation can undermine the credibility of
central bank targets and prompt agents to adjust their
expectations more dynamically.

- Rapid change in inflation can be measured by momentum of
inflation Am = m — me—1

- When inflation momentum is high:

- Greater uncertainty in CB — variability in inflation expectations
among agents
- CB will act to recover trust

- Tale of two nonlinearities:

- Momentum conditioning: capture trust in Central Bank guidance
- Quantile variation: capture heterogeneity in (non-CB) heuristics



METHODOLOGY




MOMENTUM INFORMED IAR MODEL

Terh =Po(T|Am) + Bi(T|Ame)me + Bo(T|Ame) Ayy

. (1)
+ B3(T|A7Tt)ﬂ'fxc + BA(T‘ATI’I)FII’M + &t

- Bi(t|Am) are the Momentum informed IaR coefficients
- 7 € (0,1) captures that the coefficient is allowed to vary by
quantile
- Ar is some value of the momentum of inflation

- Variable choice follows [Lopez-Salido and Loria, 2022] and
[Banerjee et al., 2020]
- Ay, real GDP growth [Banerjee et al., 2020]
- 7EX relative import prices [Lopez-Salido and Loria, 2022]
- This measure was proposed by [Blanchard et al,, 2015] to capture
pass-through of nominal exchange rates and oil prices into inflation

- Fint is financial conditions index [Adrian et al., 2019]



ESTIMATION APPROACHES

- Bi(7|z) leads to two types of nonlinearity
- B(r]-) is quantile regression
- B(:)z) is conditioning on z
- Two approaches to estimate given a grid of z
- Threshold QR [Galvao et al., 2011]
- Conditionally Parametric QR [McMillen, 2015]
- Which way to go?
- TQR: quantile specific thresholds? quantile specific number of

regimes? Difficult to know ex ante
-+ CPQR: only need a bandwidth (and a kernel)!

- We opt to go with CPQR



CPQR

T—h
8. = ar%min Z wi(2)pr (Verh — X Br)
T t=1
B 2
wi(z) = K(ztbh Z) ()

pr(u) = u(r —I(u < 0))

- The method is just a locally weighted quantile regression
approach!
- K(z) is some kernel with bj, as bandwidth
- Follow [McMillen, 2012, McMillen, 2015]: use tri-cube kernel
- by selected using LFO CV.

- pr(u) is tick-loss function from [Koenker and Bassett, 1978]



EXTREME MOMENT TAILS

- Extreme quantiles in extreme momentum is data sparse
- Can lead to ‘jagged’ coefficient profiles
- Is it true variation or only on account of data sparsity?

- Estimate quantiles jointly for each conditioning value

- Impose non-crossing constraints:

- Non-crossing constraints ensure monotonically increasing
in-sample quantiles

- Special typed of fused shrinkage that shrinks away quantile
variation if it leads to crossing

- How to impose non-crossing constraints in the CPQR setup?



NON-CROSSING CPQR

Q T—h

Br = ar%m/’n Z Z We(2) prg (Verh — X{ Br) 3)

T g=1 t=1
S.t. ch(it(Z) > O)Tﬁ-rq > ch(/t(Z) > O)Tﬁ-,—qiw.

- Follow [Bondell et al,, 2010], and impose a single constraint
across time which represents the worst case scenario possible in
the data, denoted as Xy

- It(z) specifies observation used to ensure non-crossing: local
non-crossing constraints

- Constraints on the observations that would be used when

calculating the fitted quantiles
- Theorem 1 of [Bondell et al., 2010] applies only if we impose local

non-crossing constraints!
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RESULTS




COEFFICIENTS
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Figure 2: CPQR coefficients for h=4

Significance of nonlinearities €9




OOS EVALUATION

- Use qwCRPS of [Gneiting and Ranjan, 2011]:

1
qWCRPSt+h = / WqQSt+h,Qan (4)
0

- Wq places more weight at different parts of the density
1. Equal weight
2. Weight on central quantiles
3. Weight on left tail
4. Weight on right tail



h=4
CPQR  QAR(2) NCQAR(2) CQR

W; 0.326* 0.363 0.362 0.330**

Wé 0.063*  0.069 0.069 0.064**

Wg 0.097*  0.105 0.104 0.098**
Wé 0.104  0.119 0.119 0.105**

Table 1: qwCRPS for the different weight profiles. Stars represent significance
at the 10% (*), 5% (**), and 1% (***) level respectively.

In-sample results can be seen
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CONCLUSION




CONCLUDING THOUGHTS

- Momentum conditioning is an important source of variation in
inflation
- We find that different sectors impact inflation very differently:
- Quantile variation is driven by the real sector in periods of falling
inflation
- Financial sector has more influence on the distribution during
increasing inflation periods.
- Global factors are less important in driving the shape of inflation:
they act as location shifters

- Central Bank is not a silent observer: empirical strategy needs to
account for dynamic nature of monetary policy
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VAR

VaR is a measure of how much value an asset can lose within a
given time period, for a given probability level.

Prob. Density Function (PDF)
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Figure 3: Value-at-Risk (VaR'~®) at 1 — « level represents the a quantile of
the distribution
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LARGE TIME VARIATION IN COEFFICIENTS FOR IAR
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Figure 4: 1aR coefficients of [Lopez-Salido and Loria, 2022]
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HAUSMAN TEST

Notice that CQR (and QAR(2)) are efficient versions of CPQR.

- Can use the Hausman test to check which type of nonlinearity is
important for the variables

Nonlinearities in Covariates for h=4

Drivers of Quantile Variation for h=4
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Figure 5: Hausman test results for h=4
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IS EVALUATION

Pseudo R? of Estimators IS fits Relative Pseudo R2
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Quantile Quantile
-—-CQR ~--QAR(2) - QAR(1) - - -NCQAR(2) - - - NCQAR(1) — CPQR!

- Due to the conditionally parametric nature of the CPQR,
calculating pseudo R? of [Koenker and Machado, 1999] directly is
not possible

- Use the method proposed in [Kohns and Szendrei, 2023]:

- (1) calculate the fitted quantiles; (2) use these as covariates in a
separate quantile regression; (3) pseudo R? of this second
regression to measure fit.

- Related to VaR test of [Gaglianone et al., 2011].
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