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This paper

◼ Traditional IV inference is distorted by an implicit prior 

➢ It favors instrument strength

➢ Unintended consequence: Standard errors might be unrealistically tight

◼ A simple agnostic prior on instrument strength solves the problem 

➢ Bayesian inference robust to weak instruments
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Outline

◼ A refresher on IV regressions
➢ The challenging case of weak instruments

◼ A Bayesian perspective to
➢ deepen our understanding of the problem

➢ propose simple and effective solution

◼ Empirics 
➢ The classic problem of estimating the return to education
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IV regression

𝑥 = 𝑧𝜋 + 𝑢

 𝑦 = 𝑥𝛽 + 𝑒𝛿 + 𝜀, c𝑜𝑣 𝑥, 𝑒 ≠ 0
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IV regression

𝑥 = 𝑧𝜋 + 𝑢

 𝑦 = 𝑥𝛽 + 𝑢𝛿 + 𝜀, c𝑜𝑣 𝑥, 𝑒 ≠ 0

◼ 𝑥 is endogenous        መ𝛽𝑂𝐿𝑆 is biased

◼ IV idea: If there is an exogenous 𝑧 that is correlated with 𝑥, 
  can exploit the exogenous variation of 𝑥 to estimate 𝛽 

◼ Standard estimator:  መ𝛽𝑇𝑆𝐿𝑆 =
ො𝑥′𝑦

ො𝑥′ ො𝑥
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A famous example: Estimating the return to education

𝑥 = 𝑧𝜋 + 𝑢

 𝑦 = 𝑥𝛽 + 𝑢𝛿 + 𝜀, c𝑜𝑣 𝑥, 𝑒 ≠ 0

Log-wages

Years of schooling
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A famous example: Estimating the return to education

𝑥 = 𝑧𝜋 + 𝑢

 𝑦 = 𝑥𝛽 + 𝑢𝛿 + 𝜀, c𝑜𝑣 𝑥, 𝑒 ≠ 0

◼ Empirical finding 

Log-wages

Years of schooling

AK

TSLS
.083

(.009)

Quarter of birth
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A puzzling result

◼ Crazy idea: run the AK regression with fake instruments
➢ Randomly assigned quarters of birth
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A puzzling result

◼ Crazy idea: run the AK regression with fake instruments
➢ Randomly assigned quarters of birth

◼ Intuitively, we should get estimates with infinite standard errors
➢ If the instrument is irrelevant, there is nothing we can say

◼ But Bound-Jaeger-Baker (1995) obtained estimates similar to AK

◼ HUGE PROBLEM: SE of TSLS unable to detect if IV is irrelevant

AK Fake Zs

TSLS
.083

(.009)

.060

(.016)
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A puzzling result

◼ Is this a small-sample problem?

      NO. AK used a huge sample of 300k+ observations
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A puzzling result

◼ Is this a small-sample problem?

      NO. AK used a huge sample of 300k+ observations

◼ Does this happen only with a very large number of instruments?

     NO
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A MC simulation with irrelevant instruments

◼ 1000 simulations from 
𝑥 = 𝑧𝜋 + 𝑢

 𝑦 = 𝑥𝛽 + 𝑢𝛿 + 𝜀,

◼ 10 irrelevant instruments, i.e., 𝜋 = 010×1

◼ 𝛽 = 0
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TSLS with irrelevant instruments

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

true 𝛽 

plim OLS

confidence 
level

Frequency of inclusion in the 95-percent CI



G iannone , Lenza  and Primiceri Re-think ing about  instrume ntal variables

TSLS with irrelevant instruments

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

true 𝛽 

plim OLS

confidence 
level

Frequency of inclusion in the 95-percent CI



G iannone , Lenza  and Primiceri Re-think ing about  instrume ntal variables

A MC simulation with irrelevant instruments

◼ 1000 simulations from 
𝑥 = 𝑧𝜋 + 𝑢

 𝑦 = 𝑥𝛽 + 𝑢𝛿 + 𝜀,

◼ 10 irrelevant instruments, i.e., 𝜋 = 010×1

◼ 𝛽 = 0

◼ The TSLS CIs are centered around OLS and WAY too tight

 

incredibly strong opinion 
around a false statement
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What about LH-based methods?

◼ Problems of TSLS with weak instruments are well-known

◼ Not just TSLS: Same issue with LH and flat-prior Bayesian methods
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TSLS and flat-prior BIV with irrelevant instruments
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What about LH-based methods?

◼ Problems of TSLS with weak instruments are well-known

◼ Not just TSLS: Same issue with LH and flat-prior Bayesian methods

◼ This is even more puzzling because
1. LH principle: all the sample evidence relevant to parameters is in the LH 

2. LH is correctly specified in this controlled experiment
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What about LH-based methods?

◼ Problems of TSLS with weak instruments are well-known

◼ Not just TSLS: Same issue with LH and flat-prior Bayesian methods

◼ This is even more puzzling because
1. LH principle: all the sample evidence relevant to parameters is in the LH

2. LH is correctly specified in this controlled experiment 

◼ Understanding the “Bayesian IV puzzle” will 
➢ deepen our understanding of the problem

➢ help us suggest viable solutions
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The root of the problem

  𝑥 = 𝑧𝜋 + 𝑢

   𝑦 = 𝑥𝛽 + 𝑢𝛿 + 𝜀,

◼ Suppose that we know with certainty that 𝜋 = 0
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The root of the problem

  𝑥 = 𝑧𝜋 + 𝑢

   𝑦 = 𝑥𝛽 + 𝑢𝛿 + 𝜀,

◼ Suppose that we know with certainty that 𝜋 = 0

◼ 𝑥 and 𝑢 are perfectly collinear                    CI of 𝛽 have infinite length

☞With irrelevant instruments, SE are too small because of overfitting
➢ 𝜋 = 0, but ො𝜋  ≠ 0

◼ More formally:  𝑣𝑎𝑟 𝛽|𝜋, 𝑑𝑎𝑡𝑎 ≈
𝜎𝜀

2

𝜋′𝑧′𝑧𝜋

◼ Therefore,  𝜋′𝑧′𝑧𝜋  must be estimated to be too large

∝ 𝐜oncentration parameter
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The root of the problem: Implicit priors

◼ LH principle   +  

◼ LH correctly specified

                                                𝑥 = 𝑧𝜋 + 𝑢

         𝑦 = 𝑥𝛽 + 𝑢𝛿 + 𝜀,

◼ Gaussian prior on 𝜋

𝜋 ∼ 𝑁 0 , 𝛾2∙ 𝜎𝑢
2 𝑧′𝑧/𝑇 −1

The pathology must be
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The root of the problem: Implicit priors

◼ LH principle   +  

◼ LH correctly specified

◼ Gaussian prior on 𝜋 in the first stage

𝜋 ∼ 𝑁 0 , 𝛾2∙ 𝜎𝑢
2 𝑧′𝑧/𝑇 −1

◼ implies a scaled 𝜒2  prior on the strength of the instruments

1

𝑇

𝜋′𝑧′𝑧𝜋

𝜎𝑢
2 ~ 𝛾2 ⋅ 𝜒𝑘

2 𝐸
1

𝑇

𝜋′𝑧′𝑧𝜋

𝜎𝑢
2 = 𝑘 ∙ 𝛾

The pathology must be

due to the prior



G iannone , Lenza  and Primiceri Re-think ing about  instrume ntal variables

The root of the problem: Implicit priors

◼ LH principle   +  

◼ LH correctly specified

◼ Gaussian prior on 𝜋 in the first stage

𝜋 ∼ 𝑁 0 , 𝛾2∙ 𝜎𝑢
2 𝑧′𝑧/𝑇 −1

◼ implies a scaled 𝜒2  prior on the strength of the instruments

1

𝑇

𝜋′𝑧′𝑧𝜋
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2 ~ 𝛾2 ⋅ 𝜒𝑘

2 𝐸
1

𝑇

𝜋′𝑧′𝑧𝜋

𝜎𝑢
2 = 𝑘 ∙ 𝛾2

The pathology must be

due to the prior
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The root of the problem: Implicit priors

◼ LH principle   +  

◼ LH correctly specified

◼ Gaussian prior on 𝜋 in the first stage

𝜋 ∼ 𝑁 0 , 𝛾2∙ 𝜎𝑢
2 𝑧′𝑧/𝑇 −1
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𝑇
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2 = 𝑘 ∙ 𝛾2

◼ As 𝛾2 → ∞

The pathology must be

due to the prior
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The root of the problem: Implicit priors

◼ LH principle   +  

◼ LH correctly specified

◼ Gaussian prior on 𝜋 in the first stage

𝜋 ∼ 𝑁 0 , 𝛾2∙ 𝜎𝑢
2 𝑧′𝑧/𝑇 −1
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𝑣𝑎𝑟 𝛽|𝜋, 𝑑𝑎𝑡𝑎 ≈
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due to the prior
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The root of the problem: Implicit priors

◼ LH principle   +  

◼ LH correctly specified

◼ Gaussian prior on 𝜋 in the first stage

𝜋 ∼ 𝑁 0 , 𝛾2∙ 𝜎𝑢
2 𝑧′𝑧/𝑇 −1

◼ implies a scaled 𝜒2  prior on the strength of the instruments

1

𝑇

𝜋′𝑧′𝑧𝜋

𝜎𝑢
2 ~ 𝛾2 ⋅ 𝜒𝑘

2 𝐸
1

𝑇

𝜋′𝑧′𝑧𝜋

𝜎𝑢
2 = 𝑘 ∙ 𝛾2

◼ As 𝛾2 → ∞, inference on 𝛽 is distorted towards high precision

𝑣𝑎𝑟 𝛽|𝜋, 𝑑𝑎𝑡𝑎 ≈
𝜎𝜀

2

𝜋′𝑧′𝑧𝜋
0

◼ Solution: Flat prior on concentration parameter

The pathology must be

due to the prior
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Next few slides

◼ Simulation evidence

➢ Instruments:

◼ strong

◼ fairly weak

◼ very weak

◼ irrelevant
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F-stats of simulations

F-statistic
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Next few slides

◼ Simulation evidence

➢ Instruments:

◼ strong
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◼ very weak

◼ irrelevant

➢ Compare methods:

◼ TSLS

◼ BIV—Gaussian prior

◼ pre-testing
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Next few slides

◼ Simulation evidence

➢ Instruments:

◼ strong

◼ fairly weak

◼ very weak

◼ irrelevant

◼ Back to empirics

➢ Compare methods:

◼ TSLS

◼ BIV—Gaussian prior

◼ pre-testing, CLR
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TSLS, BIV and pre-testing with strong instruments
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TSLS, BIV and pre-testing with fairly weak instruments
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TSLS, BIV and pre-testing with very weak instruments
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TSLS, BIV and pre-testing with irrelevant instruments
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Next few slides

◼ Simulation evidence

➢ Instruments:

◼ strong

◼ fairly weak

◼ very weak

◼ irrelevant

➢ Compare methods:

◼ TSLS

◼ BIV—Gaussian prior

Working as intended!
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TSLS, BIV and CLR with strong instruments
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TSLS, BIV and CLR with fairly weak instruments
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TSLS, BIV and CLR with very weak instruments

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TSLS

BIV - Gaussian prior

CLR

true 𝛽 

plim OLS

confidence 
level

Frequency of inclusion in the 95-percent CI



G iannone , Lenza  and Primiceri Re-think ing about  instrume ntal variables

TSLS, BIV and CLR with irrelevant instruments
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Back to empirics: Estimating the return to education

AK

TSLS
.083
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Back to empirics: Estimating the return to education

◼ BIV estimate
➢ with true instruments  Similar to AK estimates
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Back to empirics: Estimating the return to education

◼ BIV estimate
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AK

TSLS
.083

(.009)

BIV
Gaussian prior

0.097

(0.017)

CLR [0.065–0.128]



G iannone , Lenza  and Primiceri Re-think ing about  instrume ntal variables

Back to empirics: Estimating the return to education

◼ BIV estimate
➢ with true instruments  Similar to AK estimates

➢ with fake instruments  Detects the irrelevance of IV 
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“significant” 

estimates 

across 

simulations
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Back to empirics: Estimating the return to education

◼ BIV estimate
➢ with true instruments  Similar to AK estimates

➢ with fake instruments  Detects the irrelevance of IV 

AK Fake Zs

TSLS
.083

(.009)
44.8%

BIV
Gaussian prior

0.097

(0.017)
0.4%

CLR [0.065–0.128] 6.2%

“significant” 

estimates 

across 

simulations
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Summing up

◼ Traditional IV inference is distorted by an implicit prior 

➢ It favors instrument strength

➢ Unintended consequence: Standard errors might be unrealistically tight

◼ A simple agnostic prior on instrument strength solves the problem 

➢ Bayesian inference robust to weak instruments
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Additional slides
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Relation with the literature

◼ Weak instruments
➢ Large frequentist literature 

◼ Staiger and Stock (1997), Stock and Wright (2000), Moreira (2003), Andrews, 
Moreira and Stock (2006), Mikusheva (2012), Andrews, Stock and Sun (2019),…

✓ We study the problem of weak instruments from Bayesian perspective

◼ Bayesian inference
➢ Focus on deriving implicit priors that justify standard frequentist results

◼ Zellner (1971), Drèze (1976), Maddala (1976), Bawens and Van Djik (1986), 
Kleibergen (1997),  Kleibergen and Van Dijk (1998), Chao and Phillips (1998), 
Kleibergen and Zivot (2003), Lopez and Polson (2014),…

✓ We study the pathology of the posterior that emerges when instruments are 
weak, connect it to overfitting in the first stage, and suggest informative priors 
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Relation with the literature

◼ Shrinkage approaches to the many instruments problem
➢ Chamberlain and Imbens (2003): Random effects (Gaussian prior)

➢ Carrasco (2012): Tikhonov, PCA, Landweber–Fridman (Gaussian prior)

➢ Bai and Ng (2010), Kapetanios and Marcellino (2010), Hahn, Le, and Lopez 
(2018): PCA (Gaussian prior)

➢ Belloni et al. (2012): Lasso (Double exponential prior)

➢ Koop, Leon-Gonzalez, and Strachan (2012): BMA (Spike and Slab prior)

✓ We show that these approaches robustly improve inference also when the 
number of instruments is small

◼ Robustness
➢ Large frequentist literature on inference robust to weak instruments

◼ CLR, AR, Wald, LM, …

✓ We find that shrinkage priors give very similar results
(We are working to establish a theoretical link with CLR, not there yet)
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F-stats of simulations with very weak instruments
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F-stats of simulations with fairly weak instruments
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F-stats of simulations with strong instruments
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