The Market for Sharing Interest Rate Risk: Quantities and Asset Prices

Umang Khetan University of Iowa Jian Li Columbia Business School loana Neamțu Bank of England

Ishita Sen Harvard Business School

EEA-ESEM Rotterdam 2024

Disclaimer: The views expressed in this paper are those of the authors and not necessarily of the Bank of England or its Committees.

Introduction Data Key Facts Model	
-----------------------------------	--

Motivation

Recent events highlight the extent of interest rate risk in the economy

- * Banks run a positive duration gap maturity of assets > liabilities , e.g., SVB crisis
- * Pensions and insurers run a negative duration gap, e.g., UK gilt crisis.
- * Increased attention to the role of shadow banking in derivative markets

Motivation

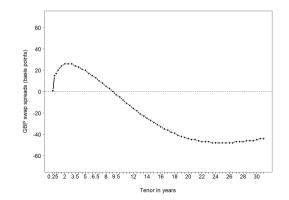
Recent events highlight the extent of interest rate risk in the economy

- * Banks run a positive duration gap maturity of assets > liabilities , e.g., SVB crisis
- * Pensions and insurers run a negative duration gap, e.g., UK gilt crisis.
- * Increased attention to the role of shadow banking in derivative markets
- Derivatives provide opportunity to swap interest rate risk and reduce exposure to rate changes
 - * Interest rate swaps are large and liquid markets with \$500 trillion outstanding
 - * However, little systematic evidence on **cross-sector** risk sharing using these instruments
 - * Need to assess spillover impact of demand shifts to inform policy discussions

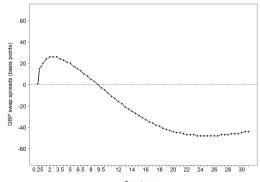
Focus on four main end-user segments — PF&I, banks, corporations and funds and the dealer sector

- Focus on four main end-user segments PF&I, banks, corporations and funds and the dealer sector
- ▶ PF&I are *natural counterparties* to banks and corporations
 - * PF&I receive fixed, while banks and corporations pay fixed

- Focus on four main end-user segments PF&I, banks, corporations and funds and the dealer sector
- ▶ PF&I are *natural counterparties* to banks and corporations
 - * PF&I receive fixed, while banks and corporations pay fixed
 - \Rightarrow Reduce net risk borne by dealers


- Focus on four main end-user segments PF&I, banks, corporations and funds and the dealer sector
- ▶ PF&I are *natural counterparties* to banks and corporations
 - * PF&I receive fixed, while banks and corporations pay fixed
 - \Rightarrow Reduce net risk borne by dealers
 - * As interest rates ↑, PF&I ↓ their net receive positions, while banks ↓ their net pay positions

- Focus on four main end-user segments PF&I, banks, corporations and funds and the dealer sector
- ▶ PF&I are natural counterparties to banks and corporations
 - * PF&I receive fixed, while banks and corporations pay fixed
 - \Rightarrow Reduce net risk borne by dealers
 - * As interest rates ↑, PF&I ↓ their net receive positions, while banks ↓ their net pay positions
 - \Rightarrow Opposite exposure to demand shocks


- Focus on four main end-user segments PF&I, banks, corporations and funds and the dealer sector
- ▶ PF&I are *natural counterparties* to banks and corporations
 - * PF&I receive fixed, while banks and corporations pay fixed
 - \Rightarrow Reduce net risk borne by dealers
 - * As interest rates ↑, PF&I ↓ their net receive positions, while banks ↓ their net pay positions
 - \Rightarrow Opposite exposure to demand shocks
- High segmentation across maturities
 - * PF&I mostly trade swaps \geq 10 years, while banks and corporations trade swaps between 3 months 5 years
 - \Rightarrow Expose dealers to demand fluctuations

- Preferred-habitat investor model to study the asset pricing consequences of demand imbalances
 - * Quantify the contribution of demand imbalances and supply frictions to the <u>shape</u> of the swap spread curve

- Preferred-habitat investor model to study the asset pricing consequences of demand imbalances
 - * Quantify the contribution of demand imbalances and supply frictions to the <u>shape</u> of the swap spread curve

- Preferred-habitat investor model to study the asset pricing consequences of demand imbalances
 - Quantify the contribution of demand imbalances and supply frictions to the <u>shape</u> of the swap spread curve
- Counterfactual analysis
 - Spillover effects of demand changes
 - Market integration
 - Dealer constraints

We contribute to three strands of literature

Individual sector interest rate risk management:

Begenau, Piazzesi, & Schneider (2015), Sen (2019), Kaniel & Wang (2020), McPhail, Schnabl, & Tuckman (2023), Jansen, Klingler, Ranaldo, & Duijm (2023)...

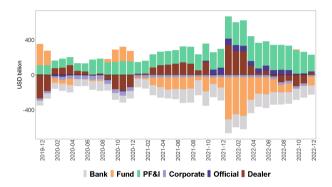
This paper: jointly studies all sectors, their interaction and demand imbalances

Swap spreads:

Klingler & Sundaresan (2019), Jermann (2020), Hanson, Malkhozov, & Venter (2022)... This paper: explains the shape of the swap spread curve with quantities data

Preferred-habitat investors:

Vayanos & Vila (2021), He, Nagel & Song (2022), Bahaj, Czech, Ding & Reis (2023)...


This paper: first study of preferred-habitat investors in interest rate swaps (estimate using quantities data)

Data

- Largest IRS dataset deployed in academic literature: BoE regulatory data in OTC interest rate swaps, with at least one UK entity
 - * Monthly stock: snapshots of stock of outstanding trades quantities
 - * Daily flows: new trades initiated prices
- Sample period: July 2019 Dec 2022
- Coverage: \geq 60% global swaps transaction volume and \geq 84% GBP swaps \bigcirc
 - * Focus on GBP swaps
- Sector classification for over 6,000 legal entities (LEI)
 - * Economically meaningful distinction between end-user banks and intermediary dealers

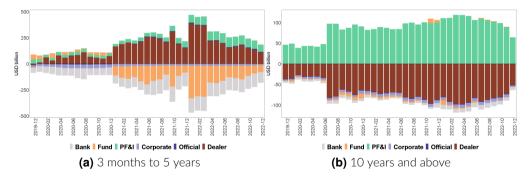
Fact 1: Risk transfers across and within sectors

Net Outstanding Swap Notional

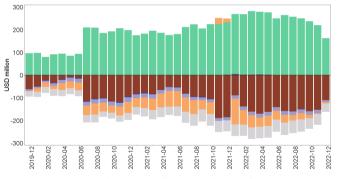
- ▶ PF&I receive fixed, banks & corp. pay fixed \Rightarrow natural counterparties All currencies UK entities
- Most PF&I, Bank, Corporate entities behave similarly Within-sector homogeneity
- ► Funds flip direction; high intra-sector heterogeneity Fund heterogeneity

Fact 2. Sensitivity to interest rates

- Convexity: higher interest rate reduces maturity mismatch and hedging needs
- Interest rate ↑
 - * PF & I ↓ position in receiving fixed rate
 - Banks ↓ position in paying fixed rate
- Opposite exposure to aggregate demand shocks


$$\Delta Q_{i,t} = \alpha_i + \beta \Delta Rate_{t-1} + \epsilon_{i,t}$$

	Δ Quantity (\$ million)			
Panel A: PC1 (3M, 5Y, 10Y, 30Y)	Bank	Fund	PF&I	Corporate
Δ Bond Yield (PC1, t-1)	55.5**	-112.3*	-14.9 ^{***}	4.15
	(25.4)	(58.2)	(5.21)	(2.65)
Panel B: 10Y yield	Bank	Fund	PF&I	Corporate
Δ Bond Yield (10Y, t-1)	96.2**	-221.8 ^{**}	-23.7***	6.11
	(44.3)	(109.9)	(8.66)	(3.97)
N	6,200	9,520	28,400	12,600
Investor FE	Yes	Yes	Yes	Yes


Fact 3. Maturity segmentation

Breakdown of exposures to four maturity groups: below 3 months, 3 months to 5 years, 5 years to 10 years, and 10 years & above

Fact 4. Dealers absorb residual imbalances

- Dealers participate in all maturity segments: receive fixed rate in the short-end, and pay fixed rate in the long-end
- On net, dealers have negative DV01

Net DV01 by Sector

Bank Fund PF&I Corporate Official Dealer

A preferred-habitat investors model (Vayanos and Vila, 2021)

Goal:

- 1. Decompose and quantify the drivers of the shape of the swap spreads curve
- 2. Spillover effects from demand changes across sectors

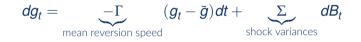
The economy:

- Preferred habitat investors: PF&I, banks, corporations...
 - Predominantly trade in one maturity bucket key source of market segmentation (fact 3)
- Arbitrageurs: dealers and certain funds
 - Profit from price deviations through carry trade (subject to risk aversion and funding cost)

Model: habitat investors in maturity group au

* Price of swap - value of fixed payments *relative to* a government bond of same maturity $P_t(\tau) \equiv exp(-\tau s_t(\tau))$

Model: arbitrageurs

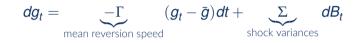

 Arbitrageurs: Risk-averse mean-variance dealers who can trade across all maturity groups

$$\max_{\{X_t(\tau)\}_{\tau=0}^{\infty}} \left[\mathbb{E}_t(dW_t) - \frac{a}{2} \operatorname{Var}(dW_t) \right]$$

where $dW_t = \int_0^\infty X_t(\tau) \left(\frac{dP_t(\tau)}{P_t(\tau)} - c_t \right) d\tau$

- * *a* risk aversion coefficient
- * *c*_t time-varying funding cost

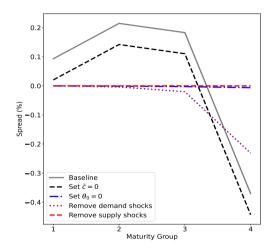
Equilibrium and calibration


State variables $g_t \equiv (c_t, \beta_{1,t})^{\top}$: AR(1) with potentially correlated shocks

- Markets clear for all $\tau > 0$
- Moments targeted: average swap spreads, average quantity, price and quantity dynamics Details Moments match

Equilibrium and calibration

State variables $g_t \equiv (c_t, \beta_{1,t})^{\top}$: AR(1) with potentially correlated shocks

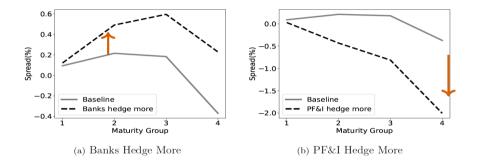

- Markets clear for all $\tau > 0$
- Moments targeted: average swap spreads, average quantity, price and quantity dynamics Details Moments match
- Cross-sector ranking of demand elasticity: $\alpha([\epsilon, 3m)) > \alpha([3m, 5y)) > \alpha([3m, 5y))$

 $\underbrace{\alpha([10y,\infty))}_{\text{PF&I}}$

banks + funde

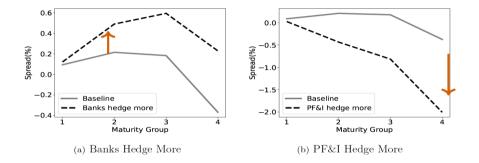
funds

Decomposition of the swap spread curve



Demand imbalance, interacted with dealer risk aversion, is quantitatively more important for explaining the shape of swap spread curve

Data	Model	# 15


Counterfactual: spillover impact of sector-specific demand shifts

Regulations on risk-management of banks and PF&I increase the level of demand, $|\theta_0(\tau)|$

Counterfactual: spillover impact of sector-specific demand shifts

Regulations on risk-management of banks and PF&I increase the level of demand, $|\theta_0(\tau)|$

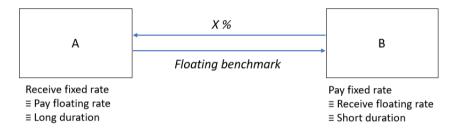
Back-of-the-envelope: one unit increase in demand for

- * banks would save PF&I approx. \$1.2 bn. a year (0.60% × 200 bn)
- * PF&I would save banks approx. \$3.8 bn. a year (0.75% × 500 bn)

#16

Conclusion

- ► First large-scale and cross-sector empirical study of interest rate swaps market
- Banks/Corporations and PF&I exchange risks but across different maturities
- Demand imbalances in different maturity buckets play a quantitatively important role in shaping the swap spread curve
- Quantify the spillover effects of demand shifts across sectors
 Other counterfactuals


Appendix

Estimated volume coverage by currency

	Average daily turnover in April 2022		
	Our data (\$ billion)	BIS benchmark (\$ billion)	Coverage
All currencies	3,425	4,987	69%
Pound sterling (GBP)	287	341	84%
Euro (EUR)	1,328	1,688	79%
US dollar (USD)	1,460	2,209	66%
Australian dollar (AUD)	141	279	51%
Other currencies	209	470	44%

Back

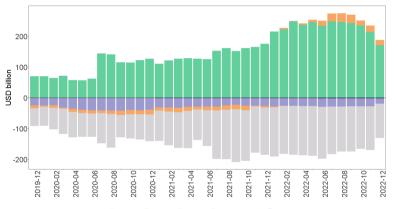
Focus on plain vanilla fixed-to-floating swaps

- Measures of exposure and risk:
 - 1. Net receive fix rate notional
 - 2. DV01 the dollar value of a change in the value of a swap position for a 1 bp parallel shift in interest rates

▶ Price of a swap: Swap spread = Swap rate $_{c,m,t}$ - Treasury/bond rate $_{c,m,t}$.

Net exposure across all currencies

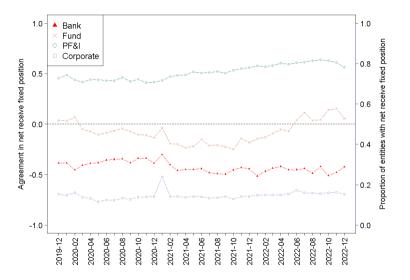
1,000 500 USD billion -500 -1,000 2019-12 2020-02 2020-04 2020-06 2020-08 2020-10 2020-12 2021-02 2021-04 2021-06 2021-08 2021-10 2021-12 2022-02 2022-04 2022-06 2022-08 2022-10 2022-12


Net Outstanding Positions (All currencies)

Bank Fund PF&I Corporate Official Dealer

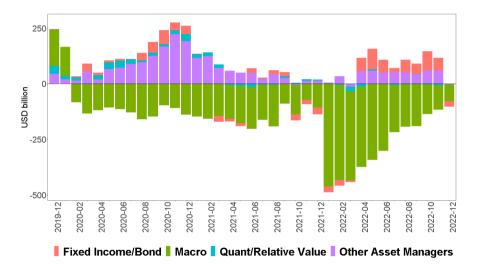
Data

Net exposure for UK entities



Net Outstanding Positions (UK entities)

Bank Fund PF&I Corporate Official



Fact 2: Risk transfers within sectors

Buck

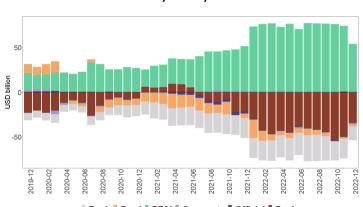
Hedge fund heterogeneity

Interest rates and quantities demanded II

	Δ Quantity (\$ million)			
Panel C: 5Y yield	Bank	Fund	PF&I	Corporate
Δ Bond Yield (5Y, t-1)	87.3** (39.1)	-210.7** (98.2)	-25.4*** (8.70)	6.10 (4.04)
Adj. R ²	0.02	0.00	0.01	0.01
Panel D: 3M yield	Bank	Fund	PF&I	Corporate
Δ Bond Yield (3M, t-1)	97.8** (46.6)	-101.0 (121.2)	-32.7*** (10.6)	12.1 (8.24)
Adj. R ²	0.02	0.00	0.01	0.01
Observations Dominant maturity group Investor FE	6,200 3M-5Y Yes	9,520 Below 3M Yes	28,400 10Y & above Yes	12,600 3M-5Y Yes

Back]

Maturity segmentation


200 100 USD billion -100 -200 2019-12 2020-02 2020-04 2022-10 2020-06 2020-08 2020-10 2020-12 2021-02 2021-04 2021-06 2021-08 2021-10 2021-12 2022-02 2022-04 2022-06 2022-08 2022-12

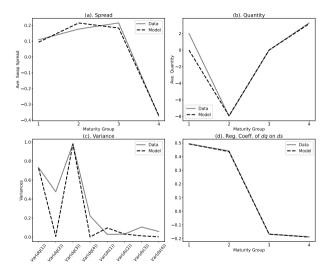
Below 3 months

Bank Fund PF&I Corporate Official Dealer

Maturity segmentation

5y to 10y

Bank Fund PF&I Corporate Official Dealer



Empirical moments - targeted

Moments	Data
Ave. swap spreads in group 1-4 (spread quoted in %)	[0.108, 0.176, 0.215, -0.375]
Ave. quantity in group 1-4 (100 Billion \$)	[2, -7.959, -0.009, 3.278]
Variances of swap spread changes in group 1-4	[0.028, 0.03, 0.105 , 0.058]
Variances of scaled quantity changes in group 1-4	[0.73, 0.476, 0.980, 0.222]
Regression coefficients of scaled quantity changes on the corresponding swap spread changes for group 1-4	[0.493, 0.441, -0.168, -0.188]

Back

Simulated moments closely match empirical moments

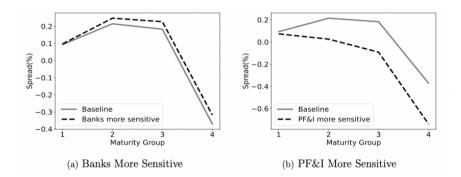
Targeted empirical moments - details

- Average swap spread: volume-weighted average swap spreads by end-users in each maturity group during our sample period
- Average quantity: average net notional held by end-users in each maturity group during our sample period
- Variance of change in swap spread $Var(\Delta s_t(\tau))$
 - * $\Delta s_t(\tau)$ change in volume-weighted average swap spreads from activity files
- ► Variance of change in quantity $Var(\Delta q_t(\tau))$, where $\Delta q_t = \frac{Q_t Q_{t-1}}{(|Q_t| + |Q_{t-1}|)/2}$
- Correlation of price change and quantity change: $\frac{Cov(\Delta q_t, \Delta s_t)}{Var(\Delta s_t)}$

Calibrated parameters

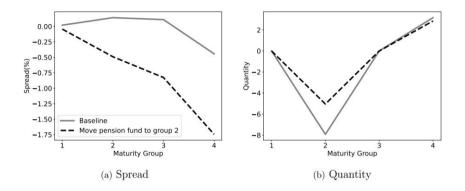
Parameters	Values
Arbitrageur risk aversion coeff. a	123.05
Arbitrageur ave. cost č	7.26×10^{-4}
Demand elasticities $lpha$	$\left \ [1.51 \times 10^{-2}, 4.55 \times 10^{-5}, 1.14 \times 10^{-8}, 2.73 \times 10^{-7}] \right $
Demand intercepts θ_0	$[1.23 \times 10^{-6}, 7.925, 0, -3.17]$
Demand sensitivities to aggregate demand factor $ heta_1$	$[1.93 \times 10^{-5}, -1.741, 0, 1.12 \times 10^{-1}]$
Speed of mean reversion Γ	$\left \begin{array}{ccc} \left(7.16\times10^{-4} & 0\\ 0 & 7.96\times10^{-3}\right)\right.$
Variances of supply and demand shocks Σ	$\left(\begin{array}{ccc} 3.03\times10^{-3} & 1.19\times10^{-3} \\ 3.196\times10^{-1} & 1.585\times10^{-1} \end{array}\right)$

Back

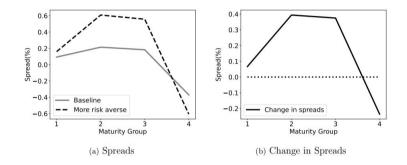

Other counterfactuals

• Demand sensitivity to aggregate demand factor - $\theta_1(\tau)$

- * Effects similar to level of demand shifts Details
- Market integration: moving part of PF&I demand to the same group as bank demand
 - * Reduce outstanding positions and risks borne by dealers Details
- Arbitrageur's risk aversion a
 - * Higher *a* tilts the swap spread curve to reflect more "local" demand Details


Back

Counterfactual - demand sensitivity


▶ Back

Counterfactual - increased market integration

▶ Back

Counterfactual - arbitrageur's risk aversion - a

Stronger reflection of preferred habitat demand: arbitrageurs more concerned about demand shocks => less carry trade Back