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1 Introduction

Finite mixture distributions play an important role in economics and many other disciplines,

where they are often used to model unobserved heterogeneity. For example, they have been

extensively employed for identifying �convergence clubs�of countries based on per capita GDP,

as well as within-country clustering in household income and wealth distributions (see Johnson

and Papageorgiou (2020) and Cowell and Flachaire (2015) for some recent surveys describing

the use of mixtures in each of those areas).

Classical tests (i.e. Likelihood ratio, Wald and score or Lagrange Multiplier (LM)) for the

number of components in a mixture are a devilish problem even if one assumes that the distrib-

ution of the components belongs to a speci�c parametric family because there are multiple paths

converging to the null along which di¤erent parameters become increasingly underidenti�ed (see

Amengual, Bei, Carrasco and Sentana (2024) and the references therein for a detailed discussion

of these unusual features when the null contains a single univariate Gaussian component).

By comparison, testing Gaussianity of the underlying components against a more �exible

family of parametric distributions while maintaining that the number of components is cor-

rect would be relatively straightforward if one relied on the Expectation - Maximisation (EM)

principle to obtain expressions for the scores and information matrix of the model under the

alternative evaluated under the null along the lines of Almuzara, Amengual and Sentana (2019).

In this paper, in contrast, we consider a speci�cation test for �nite Gaussian mixtures which

is not a priori targeted to either the number of components or their normality. Speci�cally, we

follow Boldea and Magnus (2009), who suggested the information matrix (IM) test in their study

of the score vector and Hessian matrix of the log-likelihood function of multivariate Gaussian

mixtures. The IM test introduced by White (1982) directly assesses the IM equality, which

states that the sum of the Hessian matrix and the outer product of the score vector should be

zero in expectation when the estimated model is correctly speci�ed.

Our approach, though, is rather di¤erent from Boldea and Magnus (2009), in that we rely

on the EM principle to show that the moments underlying the IM test are the expectation

given the observed data of the moments that the IM test would focus on if the underlying

components were observed. But given that the in�uence functions underlying those moment

tests e¤ectively coincide with the list of all the distinct third- and fourth-order multivariate

Hermite polynomials, as shown by Amengual, Fiorentini and Sentana (2024), the IM test for

Gaussian mixtures is e¤ectively testing that the expected value of those polynomials weighted

by the posterior probability that each observation belongs to the corresponding component is

simultaneously 0 for each and every underlying component of the mixture. This interpretation
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has two important advantages. First, it allows us to obtain the right number of degrees of

freedom for the IM test, which in turn avoids the numerical calculation of Moore-Penrose inverses

(see Boldea and Magnus (2024)). Second, it may prove particularly useful for the purposes of

indicating in which speci�c directions modelling e¤orts to enrich �nite mixture models should

focus.

In fact, our approach to deriving the IM test and its interpretation applies to any model

in which the observations can be viewed as incomplete data, in the sense of Dempster, Laird

and Rubin (1977), so it has a much wider applicability. Examples include the limited depen-

dent variable models that Gouriéroux, Monfort, Renault and Trognon (1987) and Smith (1987)

tackled with the same approach. The EM principle also leads to interpretable expressions for

the asymptotic covariance matrix of the scaled sample averages of the relevant in�uence func-

tions adjusted for sampling variability in the parameter estimators under the null of correct

speci�cation.

Importantly, we explicitly address the widespread and often justi�ed concern that the as-

ymptotic distribution of the IM test o¤ers a poor guide in �nite samples (see Horowitz (1994)

and the reference therein) by relying on bootstrap procedures. In this respect, our Monte Carlo

simulations indicate that the parametric bootstrap, in combination with theoretical expressions

for the asymptotic covariance matrices of the in�uence functions, provides reliable �nite sample

sizes and good power against various empirically relevant misspeci�cation alternatives.

Finally, we apply our procedures to provide formal support to the empirical evidence in

Pittau, Zelli and Johnson (2010), who argued that a Gaussian mixture with three components

provides a very good �t for the cross-sectional distributions of per capita income in the Penn

World Tables between 1960 and 2000.

The rest of the paper is organised as follows. In Section 2, we formally introduce the IM

test, show its numerical invariance to reparametrisations, and derive its expression in a general

context with incomplete data. Next, in Section 3, we apply our general result to �nite mixtures

of multivariate normals. Then, we present the results of some Monte Carlo exercises looking at

the size and power of the tests in �nite samples in Section 4, and assess the suitability of �nite

mixtures for cross-country distributions of GDP per capita in Section 5. We conclude in Section

6 mentioning some avenues for further research, with proofs and auxiliary results relegated to

appendices.
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2 The information matrix test

2.1 The test statistic

Consider a parametric model that fully characterises y, a random vector of dimensionM , as

a function of �, a p-dimensional vector of parameters, with p �nite, by means of its probability

distribution in the discrete case or its density in the continuous one, both of which we will simply

call f(y;�) henceforth.

Assuming for simplicity that sampling is random, the log-likelihood function of a sample of

size N on y will be given by

LN (�) =
NX
i=1

ln f(yi;�) =
NX
i=1

li(�):

Consequently, the average score and Hessian of this model will be given by

�sN (�) =
1

N

@LN (�)

@�
=
1

N

NX
i=1

@li(�)

@�
=
1

N

NX
i=1

si(�)

and

�hN (�) =
1

N

@2LN (�)

@�@�
=
1

N

NX
i=1

@2li(�)

@�@�0
=
1

N

NX
i=1

hi(�);

respectively. If we call �̂N the unrestricted maximum likelihood estimators of the parameters

of interest, we will have that �sN (�̂N ) = 0 and �hN (�̂N ) negative de�nite.

As Newey (1985) and Tauchen (1985) showed, the information matrix test can be regarded

as a moment test based on the following in�uence functions:

vech[hi(�) + si(�)s
0
i(�)] = D

+vec[hi(�) + si(�)s
0
i(�)]; (1)

where D+ is the Moore-Penrose inverse of the duplication matrix.

In practice, we need to evaluate the in�uence functions in (1) at �̂N , so we need to compute

the asymptotic covariance matrix of

p
N

N

NX
i=1

vech[hi(�̂N ) + si(�̂N )s
0
i(�̂N )]: (2)

To do so, White (1982) relied on a standard �rst-order expansion of (1), which requires the

calculation of third-order derivatives of li(�). However, Chesher (1983) and Lancaster (1984)

realised that in a likelihood context, one can use the generalised information matrix equality to

obtain the expected value of the Jacobian of (1) with respect to � from the covariance matrix

between (1) and si(�) evaluated at the true values of the parameters, �0. In e¤ect, our i:i:d:
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assumption means that we simply need to compute the residual covariance matrix from the least

squares projection of (1) onto the linear span of si(�0), which is given by

R(�0)� U(�0)I�1(�0)U 0(�0); (3)

where �
R(�0) U(�0)
U 0(�0) I(�0)

�
= V

�
vech[hi(�0) + si(�0)s

0
i(�0)]

si(�0)

�
:

Therefore, the infeasible IM test statistic will be given by the following quadratic form

N

(
1

N

NX
i=1

vech0[hi(�̂N ) + si(�̂N )s
0
i(�̂N )]

)
[R(�0)� U(�0)I�1(�0)U(�0)]+

�
(
1

N

NX
i=1

vech[hi(�̂N ) + si(�̂N )s
0
i(�̂N )]

)
; (4)

where we have relied on a Moore-Penrose generalised inverse because some of the in�uence

functions in (1) may be an exact linear combination of si(�0) or appear multiple times.

Chesher (1983) and Lancaster (1984) suggested a feasible version of (4) as N times the R2

in the regression of a vector of N ones onto si(�̂N ) and vech[hi(�̂N ) + si(�̂N )s
0
i(�̂N )] using

an OLS routine robust to multicollinearity. E¤ectively, the inclusion of si(�̂N ) as additional

regressors makes the test statistic robust to the fact that the in�uence functions (1) are evaluated

at �̂N . Nevertheless, as explained by Horowitz (1994) and the references therein, this outer

product regression has very poor �nite sample properties, so in our work below we will rely

on the parametric bootstrap applied to a feasible version of (4) which evaluates the theoretical

expression (3) at the MLE �̂N , as forcefully argued by Orme (1990). The theoretical results

in Beran (1988) imply that if the usual Gaussian asymptotic approximation provides a reliable

guide to the �nite sample distribution of the sample version of the moments being tested, the

bootstrapped critical values should not only be valid, but also their errors should be of a lower

order of magnitude under additional regularity conditions that guarantee the validity of a higher-

order Edgeworth expansion.

2.2 Numerical invariance to reparametrisations

Let us now study the e¤ect on the IM test of reparametrising the model from � to ' by

means of the one-to-one mapping ' = t(�), which we assume is a second-order continuous

di¤eomorphism in a neighbourhood of �0 whose inverse is given by � = r(').

As we show in the proof of the next proposition, the in�uence functions underlying the IM

test of the reparametrised model will be�
@r0(')

@'

 @r0(')

@'

�
vec

�
hi(�) + si(�)s

0
i(�)

�
+ vec

�
si(�)
 Ip

@vec[@r0(')=@']

@'0

�
: (5)
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Then, we can show:

Lemma 1 The infeasible IM test statistic in (4) which uses the in�uence functions (1) written in

terms of � numerically coincides with the analogous IM test statistic that relies on the in�uence

functions (5) written in terms of '.

Intuitively, the sample average of the second summand in (5) is exactly zero when evaluated

at '̂N , so e¤ectively, the in�uence functions (5) are a linear transformation of (1). Besides,

given that si(�) is one of the regressors, adding a linear combination of it to the regressand does

not alter the residual covariance matrix.

Interestingly, the same numerical identity also holds for the feasible outer product of the score

(OPS) version suggested by Chesher (1983) and Lancaster (1984) because they e¤ectively use

the sample second moments in computing the relevant residual covariance matrices. Naturally,

the numerical invariance also applies to the alternative feasible version that replaces �0 by �̂N

in the evaluation of the asymptotic covariance matrices.

Example: Assume that y is normally distributed with mean � and variance �2 so that, in

terms of the notation above, we would have � = (�; �2)0,

s(�) =

�
(y � �)=�2

(y � �)2=(2�4)� 1=�2
�

and

h(�) = �
�

1=�2 (y � �)=�4
(y � �)=�4 (y � �)2=(2�6)� 1=(2�4)

�
:

Now consider reparametrising the distribution of y in terms of its Sharpe ratio � = �=� and

standard deviation  = �, so that ' = (� ;  )0 and r(') = (� ;  2)0. Then, direct calculations

deliver
@ ln g(y;')

@'
=

�
y= � �

(y2 � � y +  2)= 3
�

and
@ ln g(y;')

@'@'0
= �

�
1 y= 2

y= 2 (3y2 � 2� y �  2)= 4
�
:

Alternatively, starting from the score and Hessian written in terms of ', namely

s[r(')] =

�
(y � � )= 2

(y � � )2=(2 4)� 1= 2
�

and

hi[r(')] = �
�

1= 2 (yi � � )= 4
(yi � � )= 4 (yi � � )2=(2 6)� 1=(2 4)

�
;

and using the fact that

@r0(')

@'
=

�
 �
0 2 

�
and

@vec0[@r0(')=@']

@'
=

�
1 0 0 2
0 1 0 0

�
;

we can easily verify through straightforward calculations that (5) holds.
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2.3 The case of incomplete data

We follow Dempster, Laird and Rubin (1977) in using the term �incomplete data�to denote

situations in which it is convenient to think of the observed data y as the output of a mapping

g(:) from the complete sample space Z to the observed sample space Y , so that the complete

data � is only known to lie in R, the subset of Z implicitly de�ned by the equation y = g(�).

Let f(�;�) denote the joint density of � given a vector of parameters �. We know from

basic probability theory that

f(y;�) =

Z
R
f(�;�)d�: (6)

Throughout, we maintain the following regularity condition:

Assumption 1 The boundary of R does not depend on the model parameters �.

Our next result provides a general approach to computing the information matrix test when

the observations y can be viewed as incomplete data:

Proposition 1 The in�uence functions (1) of the IM test of model (6) are

E

�
vech

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

�����y� ; (7)

with the expectation taken with respect to the conditional distribution of � given y over R.

Proposition 1 implies we can write the in�uence functions underlying the IM test as the

expected value conditional on the observed variables of the in�uence functions underlying the

IM test of the complete log-likelihood. This interpretation is very convenient in those set ups

in which the complete log-likelihood function adopts a particularly simple form, such as in the

limited dependent variable models considered by Gouriéroux et al. (1987), who proved a special

case of this expression when f(�;�) belongs to what they called a �bilinear�exponential family,

and y = g(�). These include univariate probit and Tobit models among others, as well as their

simultaneous equation versions studied by Smith (1987). The Gaussian mixtures in the next

section provide another case in point.

To compute (4), though, we also need expressions for the di¤erent elements that appear in

the theoretical expression (3).

Let n(�;�) denote a vector in�uence functions of the complete data � such that

E� [n(�;�)] = 0

when both the expectation and the in�uence function are evaluated at the same value of the

model parameters, �. In addition, let

m(y;�) = E�jy[n(�;�)]:
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The law of iterated expectations implies that Ey[m(y;�)] = 0, which con�rms the suitability

of (7) to test for the correct speci�cation of the likelihood model for the observed data. In

this context, we can prove the following result, which generalises Lemma 4 in Gouriéroux et al.

(1987), who focused on the case in which the latent in�uence functions n(�;�) coincide with

@ ln f(�;�)=@� when f(�;�) belongs to an exponential family:

Proposition 2

Vy[m(y;�)] = V� [n(�;�)]� EyfV�jy[n(�;�)]g (8)

and

Ey

�
m(y;�)

@ ln f(y;�)

@�0

�
= �Ey

�
@m(y;�)

@�0

�
= E

�

�
n(�;�)

@ ln f(�;�)

@�

�
� Ey

�
cov�jy

�
n(�;�);

@ ln f(�;�)

@�

��
: (9)

Thus, we can compute the di¤erent elements that appear in the theoretical expression (3)

by applying Proposition 2 to the vector�
vech0

�
@2 ln f(y;�)

@�@�0
+
@ ln f(y;�)

@�

@ ln f(y;�)

@�0

�
;
@ ln f(y;�)

@�0

�0
; (10)

whose elements are the conditional expected values of�
vech0

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

�
;
@ ln f(�;�)

@�0

�0
: (11)

Corollary 1 The application of Proposition 2 to (10) yields

I(�) = Vy

�
@ ln f(y;�)

@�

�
= V�

�
@ ln f(�;�)

@�

�
� Ey

�
V�jy

�
@ ln f(�;�)

@�

��
= �E�

�
@2 ln f(�;�)

@�@�0

�
� Ey

�
V�jy

�
@ ln f(�;�)

@�

��
; (12)

U(�) = Ey

�
vech

�
@2 ln f(y;�)

@�@�0
+
@ ln f(y;�)

@�

@ ln f(y;�)

@�0

�
@ ln f(y;�)

@�0

�
= cov�

�
vech

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

�
;
@ ln f(�;�)

@�

�
�Ey

�
cov�jy

�
vech

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

�
;
@ ln f(�;�)

@�

��
; (13)

and

R(�) = Vy

�
vech

�
@2 ln f(y;�)

@�@�0
+
@ ln f(y;�)

@�

@ ln f(y;�)

@�0

��
= V�

�
vech

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

��
�Ey

�
V�jy

�
vech

�
@2 ln f(�;�)

@�@�0
+
@ ln f(�;�)

@�

@ ln f(�;�)

@�0

���
: (14)
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Once again, the advantage of this procedure is that, in many instances, the complete model

is much simpler to work with than the observed one, something that we illustrate in the next

section with normal mixtures.

3 Finite Gaussian mixtures

3.1 De�nition

Let � = (�1; : : : ; �k; : : : ; �K) denote a categorical random variable of dimension K, which

is nothing other than a collection of K mutually exclusive Bernoulli random variables with

Pr(�k = 1) = �k such that
PK
k=1 �k = 1. If "j� � N(0; IM ), �k is an M � 1 vector and �k an

M �M positive de�nite matrix with k = vech(�k), then

y =
KP
k=1

�k(�k + �
1=2
k ") (15)

is an M -variate, K-component mixture of normals, whose �rst two unconditional moments are

� = E(y) =
KP
k=1

�k�k = E�[Eyj�(y)]; and (16)

	=V (y)=
KP
k=1

�k[(�k�
0
k)+�k]�

�
KP
k=1

�k�k

��
KP
k=1

�k�
0
k

�
=E�[Vyj�(y)]+V�[Eyj�(yy

0)]: (17)

The natural model parameters are the mean vectors and covariance matrices of the compo-

nents � = (�1; : : : ;�k; : : : ;�K)0 and  = (1; : : : ;k; : : : ;K)
0, respectively, and their probabil-

ities � = (�1; : : : ; �k; : : : ; �K), which are subject to the unit simplex restrictions �k � 0 8k andPK
k=1 �k = 1. These restrictions can be imposed in di¤erent ways. For example, one could use

the multinomial logit parametrisation

�k =
e�kPK�1

l=1 e�l + 1
(k = 1; : : :K � 1); �K =

1PK�1
l=1 e�l + 1

; (18)

or one could make

�k = �k, k = 1; : : : ;K � 1 and �K = 1�
PK�1
l=1 �l (19)

and impose the inequality restrictions �k � 0 (k = 1; : : : ;K�1) and
PK�1
l=1 �l � 1 in estimation.

Nevertheless, many of the expressions below are considerably simpler if we work with the K

elements of � rather than the K�1 elements of �. As a result, the Jacobian matrix @�=@�0 will

play an important role in the practical implementation of our IM tests, as we explain in section

4. However, the choice of parametrisation is inconsequential because Lemma 1 implies that the

IM test statistics are numerically invariant.1 For that reason, in a slight abuse of notation we

shall use � = (� 0; 0;�0)0 to denote the model parameters.

1Trivially, the IM test that we derive below will also be numerically invariant to a relabelling of the components
of the mixture, as this only involves a reordering of the parameters.
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3.2 In�uence functions

The log-density for y is given by

l(y;�) = ln

�
KP
k=1

�kj�kj�1=2�M ["�(�k)]
�
; (20)

where "�(�k) = �
�1=2
k (y � �k), with �k = (� 0k; 0k)0, and �M (:) the M -variate spherical normal

density. Theorem 1 in Boldea and Magnus (2009) contains detailed expressions for the score and

Hessian of (20) when the mixing probabilities are parametrised as in (19) (see also Appendix

D for details). But a simpler and more intuitive way of obtaining the required expressions for

(1) is by using the EM-based formulas in Proposition 1, with the observed data being yi for

i = 1; : : : ; N and the complete data �i = (y
0
i; �

0
i). Thus, we can show that:

Proposition 3 The sum of the Hessian and the outer product of the scores corresponding to a
single observation y is a block diagonal matrix whose only non-zero elements are

@�k@�
0
k : wk(�)�

0�1=2
k ["�(�k)"

�0(�k)� IM ]��1=2k ; (21)

@�k@
0
k : wk(�)

1

2
�
0�1=2
k "�(�k)vec

0["�(�k)"
�0(�k)� IM ](��1=2k 
 ��1=2k )DM

�wk(�)["�0(�k)��1=2k 
 ��1k ]DM ; (22)

@�k@�k : wk(�)
1

�k
�
0�1=2
k "�(�k); (23)

@k@
0
k : wk(�)

1

4
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

�vec0["�(�k)"�0(�k)� IM ](��1=2k 
 ��1=2k )DM

�wki(�)
1

2
D0
Mf2[(��1k 
 �0�1=2k "�(�k)"

�0(�k)�
�1=2
k ]� (��1k 
 ��1k )gDM ; (24)

@k@�k : wki(�)
1

2�k
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]; (25)

where wk(�) represents the posterior probability that y comes from the kth component given the
parameter values, so that

wk(�) = E(�kjy;�) = Pr(�k = 1jy;�) =
�kj�kj�1=2�M ["�(�k)]PK
l=1 �lj�lj�1=2�M ["�l (�l)]

: (26)

However, not all those elements can be used as in�uence functions of the IM test. First,

(23) will be zero at the ML estimators because this vector is proportional to the score with

respect to �k, whose expression appears in Appendix C. Similarly, (21) and (25) will also be

zero because they are linear combinations of the score vector with respect to k presented in

the same appendix. Therefore, we are left with (22) and (24), which contain 1
2M

2(M + 1)

and 1
8M(M + 1)(M2 +M + 2) distinct in�uence functions, respectively. Unfortunately, those

expressions still include redundant elements, what suggests the use of generalised inverses (see

Boldea and Magnus (2024)). Nevertheless, the calculation of the strictly necessary in�uence
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functions, its asymptotic covariance matrix and the correct number of degrees of freedom can

be further simpli�ed on the basis of the following result, which avoids generalised inverses:

Proposition 4 1. The IM matrix test based on (22) and (24) evaluated at the MLEs of
the model parameters numerically coincides with a moment test based on the in�uence
functions:

wk(�)

�
H3["

�(�k)]
H4["

�(�k)]

�
; k = 1; : : : ;K (27)

evaluated at the same estimators, where

Hj("
�) =

26664
Hj;0;��� ;0("�)
Hj�1;1;��� ;0("�)

...
H0;��� ;0;j("�)

37775 =
26664

Hj("
�
1)

Hj�1("�1)H1("
�
2)

...
Hj("

�
M )

37775
is the

�
M+j�1

j

�
vector containing the distinct multivariate Hermite polynomials of order j

of a standardised random vector "� in Appendix B, which can be expressed as products of
the corresponding univariate Hermite polynomials of its elements.

2. The asymptotic covariance matrix of (27) corrected for the sampling uncertainty in es-
timating the model parameters under the null is the residual covariance matrix in the
multivariate theoretical regression of (27) on

wk(�)

8<:
1

H1["
�(�k)]

H2["
�(�k)]

9=; ; k = 1; : : : ;K: (28)

3. If the e¤ective number of components is K, then the asymptotic distribution of the IM test
will be a �2 random variable with degrees of freedom equal to

KM(M + 1)(M + 2)(M + 7)

24
: (29)

Although the IM test is often regarded as a black box, Proposition 4 provides a simple and

intuitive moment test interpretation in which the in�uence functions are the distinct multivariate

Hermite polynomials of orders 3 and 4 of y standardised using the mean vector and covariance

matrix of the kth component of the mixture and weighted by the posterior probability that it

belongs to that component. Thus, this result provides a direct generalisation of Proposition 1

in Amengual, Fiorentini and Sentana (2024), which corresponds to the special case of K = 1.

To provide additional intuition, let us focus on the univariate case. It is easy to see that the

sum of the Hessian and OPS yields

@�k@
2
k : wk(�)

1

23k
["�3(�k)� 3"�(�k)] =

1

23k
E(�kjy;�)H3["�(�k)]; (30)

(@2k)
2 : wk(�)

1

44k
["�4(�k)� 6"�2(�k) + 3] =

1

44k
E(�kjy;�)H4["�(�k)]; (31)
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so the in�uence functions the IM test checks coincide with the third and fourth Hermite poly-

nomials of the observed variable y standardised as if it belonged to the kth component of the

mixture, as shown by White (1982) for K = 1, but weighted by wk(�), the posterior probability

that it belongs to that component.

The ease of interpretation of the in�uence functions in Proposition 4 allows one to immedi-

ately derive tests that focus on a subset of them, such as those involving the third- or fourth-order

Hermite polynomials of a single component, which may prove particularly useful for the purposes

of indicating in which speci�c directions modelling e¤orts to enrich the estimated model should

focus. By choosing the relevant elements of the residual covariance matrix, the computation of

the corresponding test statistics would be straightforward.

3.3 The asymptotic covariance matrix

Proposition 4 states the asymptotic covariance matrix of the in�uence functions involved,

but it does not explain how we can compute it. Given that we can obtain in closed form the

covariance matrix of multivariate Hermite polynomials using the results in Rahman (2017), we

can use the law of iterated variances implicit in (12), (13) and (14) to obtain expressions for the

three elements of (3). Speci�cally, we can use expression (8) to write

Rkj(�) = covy

�
wk(�)

�
H3["

�(�k)]
H4["

�(�k)]

�
; wj(�)

�
H3["

�(�j)]
H4["

�(�j)]

��
(32)

= cov�

�
�k

�
H3["

�(�k)]
H4["

�(�k)]

�
; �j

�
H3["

�(�j)]
H4["

�(�j)]

��
�Ey

�
cov

�
�k

�
H3["

�(�k)]
H4["

�(�k)]

�
;�j

�
H3["

�(�j)]
H4["

�(�j)]

������y� ;
where

Ey

�
cov

�
�k

�
H3["

�(�k)]
H4["

�(�k)]

�
; �j

�
H3["

�(�j)]
H4["

�(�j)]

�����y��
= Ey

�
cov(�k; �j jy)

�
H3["

�(�k)]H
0
3["

�(�j)] H3["
�(�k)]H

0
4["

�(�j)]
H4["

�(�k)]H
0
3["

�(�j)] H4["
�(�k)]H

0
4["

�(�j)]

��
;

with cov(�k; �j jy) = [I(j = k)wk(�)� wk(�)wj(�)].

In turn, we also know that at the true values

cov�

�
�k

�
H3["

�(�k)]
H4["

�(�k)]

�
; �j

�
H3["

�(�j)]
H4["

�(�j)]

��
= E�

�
�k�j

�
H3["

�(�k)]H
0
3["

�(�j)] H3["
�(�k)]H

0
4["

�(�j)]
H4["

�(�k)]H
0
3["

�(�j)] H4["
�(�k)]H

0
4["

�(�j)]

��
= I(j = k)�k

�
M3 0
0 M4

�
because �k�j = 0 when k 6= j, �2k = �k, "

�
k(�k) = " when �k = 1 from (15), which is independent

of �k, and the third and fourth multivariate Hermite polynomials of a standard normal variable
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have zero means, are uncorrelated, and have covariances matrices M3 and M4, respectively,

which adopt a particularly simple form regardless of the model parameters (see e.g. Lemma 2

in Amengual, Fiorentini and Sentana (2024)). As a result, it must be the case that

Rkj(�) = I(j = k)�k

�
M3 0
0 M4

�
�Ey

�
[I(j=k)wk(�)�wk(�)wj(�)]

�
H3["

�(�k)]H
0
3["

�(�j)] H3["
�(�k)]H

0
4["

�(�j)]
H4["

�(�k)]H
0
3["

�(�j)] H4["
�(�k)]H

0
4["

�(�j)]

��
: (33)

In principle, one might expect the sample version of (33) to be less noisy than the sample

version of (32) in �nite samples. Nevertheless, both expressions involve the same weighted

averages of the sixth, seventh and eighth powers of the elements of "�(�k), the only di¤erence

being whether they are scaled by [I(j = k)wk(�)�wk(�)wj(�)] or wk(�)wj(�). In addition, a

combination of the sample version of (33) with the theoretical values ofM3 andM4 could lead

to inde�nite estimated covariance matrices. For that reason, our suggestion would be either to

compute the above expressions analytically using quadrature, in which case both calculations

yield the same result up to machine precision, or to rely on the centred or uncentred sample

versions of (32), as Chesher (1983) and Lancaster (1984) suggested.

We can use a similar procedure to obtain the covariances of (27) with (28), which we can use

to purge those in�uence functions from the sampling variability arising from the ML estimation

of the mixture model parameters. Speci�cally, we can exploit the fact that

E�

�
�k

�
H3["

�(�k)]
H4["

�(�k)]

�
�j
�
1 H0

1["
�(�j)] H0

2["
�(�j)]

��
= 0

for all k and j to show that

Ukj(�) = covy

24wk(�)� H3["
�(�k)]

H4["
�(�k)]

�
; wj(�)

0@ 1
H1["

�(�j)]
H2["

�(�j)]

1A35
=�Ey

�
cov(�k; �j jy)

�
H3["

�(�k)] H3["
�(�k)]H

0
1["

�(�k)] H3["
�(�k)]H

0
2["

�(�k)]
H4["

�(�k)] H4["
�(�k)]H

0
1["

�(�k)] H4["
�(�k)]H

0
2["

�(�k)]

��
;

but again, it is not clear which expression leads to less noisy estimates in �nite samples.
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Finally, we can use an entirely analogous procedure to compute

Ikj(�) = covy

24wk(�)
0@ 1
H1["

�(�k)]
H2["

�(�k)]

1A ; wj(�)

0@ 1
H1["

�(�j)]
H2["

�(�j)]

1A35
= I(j = k)�k

0@ 1 0 0
0 IM 0
0 0 M2

1A
�Ey

24cov(�k; �j jy)
0@ 1 H0

1["
�(�j)] H0

2["
�(�j)]

H1["
�(�k)] H1["

�(�k)]H
0
1["

�(�j)] H1["
�(�k)]H

0
2["

�(�j)]
H2["

�(�k)] H2["
�(�k)]H

0
1["

�(�j)] H2["
�(�k)]H

0
2["

�(�j)]

1A35 ;
where M2 = D0

M (IM2 + KMM )DM and Kmn is the commutation matrix of orders m and

n (see e.g. Magnus and Neudecker (2019)). In this respect, one important thing to note is

that the expected value of wk(�) is not 0 but �k, which explains why we should compute the

expected value of the second moments of (28) rather than their covariance matrix. However,

this is inconsequential because working with the second moment matrix of those K vectors

is e¤ectively adding a constant to the theoretical regression mentioned in Proposition 4, which

makes no di¤erence to the theoretical calculations because both (27) and the remaining elements

of (28) have all 0 mean under the null. In fact, the same argument implies that in the list of

regressors we can replace without loss of generality the K components corresponding to the zero-

order Hermite polynomials times the posterior probabilities by the K�1 scores of the underlying

parameters � that characterise the prior probabilities in (18) or (19). Intuitively, given that both

regressands and regressors have 0 means under the null of correct speci�cation, the regression

residuals with and without constant are identical, and therefore so is their covariance matrix.

3.4 Computational considerations

3.4.1 Initial values

To maximise (20) numerically, it is usually convenient to start the recursions from sensibly

chosen values. In this respect, the EM algorithm discussed by Dempster, Laird and Rubin (1977)

allows us to obtain initial values as close to the MLEs as desired. The recursions are as follows:

�̂
(h)
k =

1

�̂
(h)

k

1

N

NX
i=1

wki(�
(h�1);(h�1);�(h�1))yi; (34a)

�̂
(h)
k =

1

�̂
(h)

k

1

N

NX
i=1

wki(�
(h�1);(h�1);�(h�1))yiy

0
i � �̂

(h)
k �̂

(h)0
k ; and (34b)

�̂
(h)

k =
1

N

XN

i=1
wki(�

(h�1);(h�1);�(h�1)); (34c)
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Given that (26) is homogeneous of degree zero in �, in principle these posterior probabilities are

compatible with values of � outside the unit simplex. Nevertheless, a useful property of the EM

algorithm is that it automatically imposes the relevant inequality restrictions on the estimators

of � because PK
k=1wk(�) = 1 for all y and for all �:

Still, the EM algorithm might get stuck in at least two situations. First, when one starts

the recursions up with � = �� 
 �K and  = � 
 �K , where �� is M � 1, � M(M + 1)=2, and �K

a vector of K ones, in which case wk(�� 
 �K ; � 
 �K ;�) = �k for all k, so the parameter values

will not get updated because priors and posteriors coincide. One way of avoiding this problem

is to use a fast numerical clustering algorithm to choose the initial values of the � 0ks with which

to start the EM recursions. The second undesirable situation arises when a linear combination

of the mean vector of one component coincides with the same linear combination of yi for some

i. Given that the corresponding linear combination of yi � �k will be zero in that case, if we

choose it as the eigenvector associated to the smallest eigenvalue of �k, and take this to zero

while �k goes to 1=N , the log-likelihood function will become unbounded. To avoid those poles,

we systematically impose that �k � 2=N for all k.

Unfortunately, the EM algorithm slows down considerably in the neighbourhood of the op-

timum, so it makes sense to switch to a quadratically convergent algorithm based on �rst and

possibly second derivatives or the expected values of the latter, whose analytical expressions we

provide in Appendix C. In this context, it is convenient to work with the Cholesky decomposition

of the �k matrices to ensure that they remain positive de�nite.

3.4.2 Invariance to a¢ ne transformations

Consider the following full-rank a¢ ne transformation x = c+Dy with jDj 6= 0. It is clear

that the transformed random vector continues to be a �nite mixture of K multivariate normals

with mean vectors c +D�k and covariance matrices D�kD0 (k = 1; : : : ;K). Our next result

shows that the IM statistic is numerically invariant to the values of c and D:

Lemma 2 The IM test statistics of model (15) and the analogous one for x numerically coin-
cide.

This numerical invariance is not only a desirable property in itself, but it also implies that the

sample mean vector and covariance matrix of the observations do not a¤ect the null distribution

of our proposed test in �nite samples. In fact, we can exploit Lemma 2 to simplify the calculation

of the IM statistic as follows. First, as we explain in Appendix E, we can always reparametrise

the model in terms of the unconditional mean vector and covariance matrix on the one hand,
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and the shape parameters of a standardised version of the mixture distribution on the other.

One computational advantage of this procedure is that we reduce the number of parameters

to be estimated by M(M + 3)=2 because the results in Day (1969) imply that the joint ML

estimators of � and 	 numerically coincide with the sample mean and covariance matrix (with

denominator N) of the observations. As a result, the criterion function maximized with respect

to the shape parameters � , @ and � keeping � and 	 �xed at those restricted ML estimators

coincides with the criterion function maximized over all �ve groups of parameters.

4 Monte Carlo simulations

As stated in Proposition 4, the asymptotic distribution of our proposed IM test is �2 with

degrees of freedom equal to (29). However, this asymptotic approximation might not be very

reliable in �nite samples. For that reason, we conduct some Monte Carlo experiments to study

the �nite sample sizes for N = 100, N = 400 and N = 1600. For each of the data generating

processes (DGPs) we describe below, we generate 10; 000 samples under the null. When assessing

size, we compare the OPS version of the statistic proposed by Chesher (1983) and Lancaster

(1984) and employed by Boldea and Magnus (2009) with the feasible version of the theoretical

expression (33) that replaces the true parameter values �0 with their MLEs �̂T . In all cases, we

consider not only asymptotic critical values but also a parametric bootstrap procedure in which

we simulate B = 99 samples from the mixture model estimated under the null.

We also investigate the power properties of our test by considering three types of alternatives:

1. mixtures with the same number of non-Gaussian components,

2. mixtures with a larger number of Gaussian components, and

3. non-mixture distributions.

We do so by looking at the rejection rates from 2; 500 samples of size N = 100 and N = 400 that

use the aforementioned bootstrap critical values to correct the �nite sample size distortions, as

forcefully argued by Horowitz and Savin (2000).

Given that the true model parameters are unknown, it is important to estimate them ac-

curately. For that reason, we �rst run the EM algorithm up to a pre-speci�ed convergence

level starting with � = K�1�K , �k = dg[V̂T (y)], and initial values for �k which maximise the

log-likelihood function among those obtained from multiple runs of the k-means++ algorithm

of Arthur and Vassilvitskii (2007) with random initial draws for the cluster centres. Next, we

switch to a quadratically convergent quasi-Newton routine written in terms of the �0s in (19)

and the Cholesky factors of the �0ks with a tighter convergence level, ensuring that we avoid the

log-likelihood poles we mentioned in section 3.4.1 by imposing 2=N � �k � 1�2=N for all k. We
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can then use Propositions 3 and 4 to compute the feasible version of the IM test statistic in (4)

that takes into account the sampling uncertainty in estimating the mixture model parameters

under the null of correct speci�cation. In this respect, Proposition 2 and Corollary 1 allow us to

obtain �closed-form�expressions for the covariance matrix of the in�uence functions involved,

as well as their covariances with the log-likelihood scores, and the information matrix, where by

�closed-form�we mean �up to a de�nite integral�.

In the univariate case, we consider Gaussian mixtures of two and three components as null

hypotheses. For the 2-component case, we follow Robertson and Fryer (1969) in generating the

mixture with the �bitangential�probability density function (pdf) in Figure 1a, which coincides

with the borderline case between unimodal and bimodal densities. Speci�cally, we set the means

and variances of the components to 1=4 and 1=2, and 1=256 and 3=64, respectively, with a mixing

probability for the �rst component of 0:646. The rejection rates we obtain using asymptotic

critical values (see Panel A of Table 1) con�rm the need for �nite sample size adjustments,

especially for the OPS version of the IM test. As Orme (1990) indicated, the quality of the

asymptotic approximation is much better when one uses the theoretical expressions for the

weighting matrix instead, as can be seen for samples of size N = 1; 600. In contrast, Panel B of

Table 1, which contains the bootstrap-based rejection rates, gives a completely di¤erent picture:

sizes are very accurate and almost all Monte Carlo rejection rates fall within the relevant 95%

con�dence set.2 For these reasons, to assess power we focus on the bootstrap version of the

IM test statistic that relies on the theoretical expression for the asymptotic covariance matrix

evaluated at the MLEs:

As the �rst alternative hypothesis to the 2-component Gaussian mixture in Figure 1a, we

consider a mixture of two asymmetric Student t�s with the same means, variances and mixing

probability as under the null, but with shape parameters �1 = �2 = 1=12, �1 = 5 and �2 = �5

(see Mencía and Sentana (2012) for details). In addition, we consider a symmetric mixture

of three normals which represents a borderline case between unimodal and trimodal density.

Speci�cally, we set the means of the underlying components to �0:47, 0:47 and 0, their variances

to 0:047, 0:047 and 0:018, and the mixing probabilities for the �rst two components to 0:18.

Finally, the empirical application to �convergence clubs� in cross-country GDP per capita in

section 5 suggests a lognormal distribution with parameters � = �1=4 and �2 = 1 as our third

alternative. Figures 1b-d show the corresponding densities (solid lines), as well as the pdf of the

closest (in the usual Kullback - Leibler sense) mixture of two normals (dashed lines). As can be

2Given the number of replications, the 95% asymptotic con�dence intervals for the Monte Carlo rejection
probabilities under the null are (.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1%, 5% and 10% levels, respectively.
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seen from Panel C of Table 1, the IM test is able to detect with reasonable power these three

deviations from the null, especially for the larger sample size.

As our second null hypothesis, we consider a mixture of three normals whose parameter values

are in line with the estimates we obtain in the empirical application in the next section (see Figure

1e). Speci�cally, we set the means of the underlying components to 3, 1 and 1/4, their variances

to 2/5, 1/5 and 1/100, and the mixing probabilities for the �rst and second components to 0.25

and 0.45, respectively. As Panels A and B of Table 2 indicate, the same qualitative comments

apply regarding the size of the di¤erent versions of the IM test in �nite samples, with the only

exception that the asymptotic critical values continue to lead to signi�cant size distortions even

for samples of size 1; 600. Intuitively, the quality of the asymptotic approximation to the �nite

sample distribution of the parameter estimators is lower for the 3-component mixture than for

the 2-component one for any given sample size.

The �rst alternative hypothesis we consider in this 3-component Gaussian case is a mixture

of two asymmetric Student t�s and a symmetric one with the same degrees of freedom and

skewness parameters as in Figure 1b for the �rst two components, and with the same mixing

probabilities we use for the null. In addition, we consider a mixture of four normals with means

4, 2, 1, and 1/3, variances 2, 1/2, 1/10 and 0.015, and mixing probabilities 0.075, 0.25 and 0.325

for the �rst three components. Finally, we retain the same lognormal as in the 2-component

mixture as an example of a non-Gaussian distribution which does not correspond to some �nite

mixture. Figures 1f-h show the corresponding densities (solid lines) as well as the pdf of the

closest mixture of three normals (dashed lines). The rejection rates reported in Panel C of Table

2 show that the IM test continues to have good power, although there is a clear decrease when

the true distribution is lognormal relative to the 2-component case, which simply re�ects that

fact that a 3-component Gaussian mixture does a much better job in approximating the same

log-normal distribution than a 2-component one.

Given that the bootstrap takes considerable more CPU time in the bivariate case, we only

consider as null hypothesis the two-component Gaussian mixture in Boldea and Magnus (2009),

which is fully characterised by

�1 = 0; �2 = 5�2; �1 = I2; �2 = I2 + �2�
0
2;

and a mixing probability of 1=2. The pdf and contours of this density are depicted in Figures 2a

and 2e, respectively. In Panels A and B of Table 3 we report the rejection rates under the null

based on asymptotic critical values and bootstrapped ones, respectively. The same comments as

in the univariate examples apply, but with the OPS version performing noticeably worse in this
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case. Interestingly, the size distortions of the other versions of the IM test are of the same order

of magnitude as in the univariate examples despite the higher number of estimated parameters

and much higher number of in�uence functions involved. Presumably, the reason is that the two

components are much more clearly separated in the Boldea and Magnus (2009) design than in

the univariate design in Figure 1a, which makes both the asymptotic covariance matrix of the

in�uence functions and the information matrix closer to being block diagonal.

As for the alternatives, we �rst consider a mixture of two asymmetric bivariate Student

t�s with the same means, variances and mixing probability as under the null, but with shape

parameters �1 = �2 = 1=16, and �1 = �2 = �(1; 1)0 (see again Mencía and Sentana (2012) for

details).3 In addition, we consider a discrete mixture of three normals with

�1 = 3�2; �2 = �2; �3 =
1

4
�2; �1 =

2

5
I2; �2 =

1

5
I2; �3 =

1

10
I2;

and mixing probabilities 0:25 and 0:45 for the �rst two components. Finally, as an example of a

bivariate non-Gaussian distribution which cannot be expressed as a �nite mixture we simulate

two independent (standardised) univariate skew normals with a skewness parameter such that

its skewness and kurtosis coe¢ cients are �0:85 and 3:71, respectively (see Azzalini (1985) for

details). Figures 2b-d show the corresponding pdfs while in Figures 2f-h we report their contours

(solid lines) as well as those of the Gaussian mixtures of two components that best match those

densities in the usual Kullback-Leibler sense (dashed lines). The rejections rates displayed in

Panel C of Table 3 indicate that the IM test is also able to detect deviations from the null in all

these bivariate experiments. As can be seen, the highest power is obtained when the alternative

is a mixture of three normals and the lowest under the bivariate skew normal alternative. In

addition, power is always quite close to one for the larger sample size.

5 Empirical application

As mentioned in the introduction, Gaussian mixtures feature pre-eminently in the empirical

literature on �convergence clubs�in cross-country GDP per capita comparisons. In this section,

we revisit the empirical application in Pittau et al. (2010), who found that a Gaussian mixture

with three components provides a very good �t for the distributions of per capita income in

version 6.1 of the Penn World Tables for 1960, 65, 70, etc. all the way to the year 2000. This

covers 102 countries, of which 90 have data over the entire sample span.

In addition, they found that the within-group variances of both the rich and poor groups

3 If we chose the same shape parameters as in the univariate alternative in Figure 1b, then we would system-
atically obtain rejection rates close to 100% even for N = 100.
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of countries decreased over time, while the distance between their means increased, especially

between the middle-income and high-income groups.

Finally, they found that the sizes of the di¤erent groups �uctuated somewhat, but with little

movements across components, as judged by the posterior probabilities. These features can be

seen in Panel A of Table 4 in which we report the parameter estimates, and also in Figure 3,

which displays the temporal evolution of those cross-sectional distributions.

However, the validity of the results in Pittau et al. (2010) and their interpretation crucially

depend on �nite Gaussian mixtures with three components providing an accurate description

of those distributions. For that reason, we apply the IM test that we have studied in previous

sections to their data set, whose p-values, both based on asymptotic critical values and 9,999

bootstrapped samples, we report in Panel B of Table 4. As can be seem, the null hypothesis of

correct speci�cation is never rejected, which provides formal empirical support to their claim.4

6 Conclusions and directions for further research

We explain how the EM principle applied to incomplete data can also be used to obtain

the moments underlying the IM test as the expectation given the observed data of the moments

tested if the complete data were observed. This principle also leads to interpretable expressions

for the asymptotic covariance matrix of those in�uence functions adjusted for the sampling

uncertainty in the parameter estimators under the null of correct model speci�cation.

We then apply these results to �nite mixtures of Gaussian random vectors, showing that

the IM test statistic can be easily computed as a quadratic form in the sample means of the K

vectors that contain the distinct third- and fourth-order multivariate Hermite polynomials of the

observations standardised with respect to the vector of means and covariance matrix of each of

the underlying components multiplied by the posterior probability of those components, with a

weighting matrix which is the inverse of the residual covariance matrix in the regression of those

in�uence functions on the K vectors that contains the distinct zero-, �rst-, and second-order

multivariate Hermite polynomials of the same standardised variables multiplied again by the

posterior probability of the components.

Our procedures could be trivially extended to deal with restricted Gaussian mixture models.

For example, the delta method would immediately give us the score, Hessian and relevant

in�uence functions and their asymptotic covariance matrix in a model in which the covariance

matrices of the components were assumed to be the same.

4 In contrast, the IM test applied to 2-component mixtures estimated with the same data systematically rejects
at the 5% level.
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Our Monte Carlo exercises clearly indicate that one can substantially reduce size distortions

in �nite samples by using the theoretical expressions for the aforementioned weighting matrix

evaluated at the MLEs rather than the OPS version of the IM test statistic put forward by

Chesher (1983) and Lancaster (1984), and that a parametric bootstrap procedure practically

eliminates them. Our results also con�rm the non-trivial power of the IM tests against many

empirically plausible alternatives.

Nevertheless, the IM test is not consistent because it will show trivial power against admit-

tedly contrived alternatives with the right number of components in which the distribution of

some of the components is not Gaussian but the expected value of all their third- and fourth-

order Hermite polynomials are 0.

Finally, we employ the IM test to con�rm that a Gaussian mixture with three components

provides a very good �t for the cross-sectional distributions of per capita income in the Penn

World Tables between 1960 and 2000, as argued by Pittau et al. (2010).

From a theoretical point of view, it would interesting to extend the Bartlett identities tests

proposed by Chesher, Dhaene, Gouriéroux and Scaillet (1999) to incomplete data situations. In

the context of �nite Gaussian mixtures, in particular, we would expect the in�uence functions to

coincide with the �fth- and higher-order multivariate Hermite polynomials of the observations

standardised with respect to the vector of means and covariance matrix of each of the underlying

components multiplied by the posterior probability of those components.

The IM tests that we present in this paper can also be extended in at least three empirically

relevant directions. First, we could deal with switching regression models in which the linear

regression coe¢ cients depend of a set of predetermined variables x. The main di¤erence is that

for each component of the mixture, we would have in�uence functions related to the conditional

heteroskedasticity of the (multivariate) regression, the conditional skewness of its residuals, as

well as their unconditional asymmetry and kurtosis. Numerical quadrature, though, would

no longer be feasible unless we make an assumption about the marginal distribution of the

predetermined regressors, something which is plausible in autoregressive processes. Second,

we could allow the probabilities of the di¤erent regimes to be a function of some exogenous

indicators using a multinomial logit model. And third, we could allow the regimes to have a

Markovian structure, as in Hamilton (1989), which would force us to rely on a smoother rather

than a �lter, as in Almuzara et al. (2019). We are currently pursuing these interesting research

avenues.
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Appendices

A Proofs

A.1 Proof or Lemma 1

The following relationships will prove useful:

g(yi;') = f [yi; r(')];

@ ln g(yi;')

@'
=

@r0(')

@'

@li(�)

@�
=
@r0(')

@'
si(�) (A1)

and

@2 ln g(yi;')

@'@'0
=

@r0(')

@'

@2li(�)

@�@�0
@r(')

@'0
+

�
@li(�)

@�0

 Ip

�
@vec[@r0(')=@']

@'0

=
@r0(')

@'
hi(�)

@r(')

@'0
+
�
s0i(�)
 Ip

� @vec[@r0(')=@']
@'0

:

As a result, the in�uence functions underlying the IM test of the reparametrised model will

be

@2 ln g(yi;')

@'@'0
+
@ ln g(yi;')

@'

@ ln g(yi;')

@'0

=
@r0(')

@'

�
hi(�) + si(�)s

0
i(�)

� @r(')
@'0

+
�
s0i(�)
 Ip

� @vec[@r0(')=@']
@'0

;

which after vectorisation become (5).

But

vec

��
s0i(�)
 Ip

� @vec[@r0(')=@']
@'0

�
=

�
@vec0[@r0(')=@']

@'

 Ip

�
vec

�
s0i(�)
 Ip

�
=

�
@vec0[@r0(')=@']

@'

 Ip

�
(Ip 
Kp1 
 Ip)

�
vec

�
s0i(�)

�

 vec(Ip)

	
=

�
@vec0[@r0(')=@']

@'

 Ip

�
fsi(�)
 vec(Ip)g

=

�
@vec0[@r0(')=@']

@'

 Ip

�
[Ip 
 vec(Ip)]si(�) (A2)

by virtue of theorem 3.10 in Magnus and Neudecker (2019) and the fact that si(�) is already a

vector, Kp1 = Ip, and

fsi(�)
 vec(Ip)g = vec
�
vec(Ip)s

0
i(�)

	
= [Ip 
 vec(Ip)]si(�):

Therefore, (5) can be written as an (admittedly complex) linear combination of (5) and

si(�0).

In fact, if we ignored the additional term (A2), the residual covariance matrix in the least
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squares projection of �
@r0('0)

@'

 @r0('0)

@'

�
vec

�
hi(�0) + si(�0)s

0
i(�0)

�
onto the linear span of (A1) evaluated at '0 will be given by�

@r0('0)

@'

 @r0('0)

@'

�
[R(�0)� U(�0)I�1(�0)U(�0)]

�
@r('0)

@'0

 @r('0)

@'0

�
:

The inclusion of the additional term (A2), though, does not a¤ect this residual covariance

matrix because it is a linear combination of si(�0), and consequently, of (A1) evaluated at '0

too. �
Lemma 1 is perhaps not entirely surprising given Chesher�s (1984) re-interpretation of the

IM test as an LM test against neglected parameter heterogeneity, because LM tests computed

with either the information matrix or the OPS are numerically invariant to reparametrisation,

as explained in section 17.4 of Ruud (2000).

A.2 Proof of Proposition 1

Given that Assumption 1 allows us to interchange integration and di¤erentiation, we can

follow Louis (1982) in exploiting (6) to obtain the score of the observed log-likelihood ln f(y;�)

as:

@ ln f(y;�)

@�
=

1R
R f(�;�)d�

Z
R

@f(�;�)

@�
d� =

1R
R f(�;�)d�

Z
R

@f(�;�)

@�

f(�;�)

f(�;�)
d�

=

Z
R

@ ln f(�;�)

@�

f(�;�)R
R f(�;�)d�

d� = E�jy

�
@ ln f(�;�)

@�

�
: (A3)

Louis (1982) also shows that di¤erentiating again the second term of the above chain of

equalities we end up with

@2 ln f(y;�)

@�@�0
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1R
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@�0
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R
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Z
R
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(A4)

because

@2 ln f(�;�)

@�@�0
=

@

@�0

�
1

f(�;�)

@f(�;�)

@�

�
=

1

f(�;�)

@2f(�;�)

@�@�0
� 1

f2(�;�)

@f(�;�)

@�

@f(�;�)

@�0

=
1

f(�;�)

@2f(�;�)

@�@�0
� @ ln f(�;�)

@�

@ ln f(�;�)

@�0
:

Therefore, expressions (A3) and (A4) imply (7). �

A.3 Proof or Proposition 2

First of all, note that E� [n(�;�)] = 0 combined with the law of iterated expectations

applied to second moments implies that

V� [n(�;�)] = E� [n(�;�)n
0(�;�)]

= EyfE�jy[n(�;�)n0(�;�)]g = EyfV�jy[n(�;�)]g+ EyfE�jy[n(�;�)]E�jy[n0(�;�)]g

= EyfV�jy[n(�;�)]g+ Vy[m(y;�)];

whence (8) follows.

In turn,
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�
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�
E�jy
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���
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�
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�
cov�jy

�
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�
@ ln f(�;�)

@�

��
= Ey

�
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�
n(�;�);

@ ln f(�;�)

@�

��
+ covy

�
m(y;�);

@ ln f(y;�)

@�

�
:

But given that both Ey [m(y;�)] and Ey [@ ln f(y;�)=@�] are zero, we can write this last
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expression as

E�

�
n(�;�)

@ ln f(�;�)

@�0
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�
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@ ln f(y;�)

@�0

�
:

We also know from the generalised information matrix equality applied to the log-likelihood

functions of the complete and observed data that

E�

�
@n(�;�)

@�0

�
+ E�

�
n(�;�)

@ ln f(�;�)

@�0

�
= 0

and

Ey

�
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@�0

�
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�
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@ ln f(y;�)

@�0

�
= 0;

respectively, where, once gain, Assumption 1 has allowed us to interchange integration and

di¤erentiation. Therefore, we can �nally write

Ey

�
m(y;�)

@ ln f(y;�)

@�0

�
= �Ey

�
@m(y;�;�)

@�0

�
= E�

�
n(�;�)

@ ln f(�;�)

@�0

�
� Ey

�
cov�jy

�
n(�;�);

@ ln f(�;�)

@�

��
;

which coincides with (9). �

A.4 Proof or Proposition 3

The proof is trivial in view of the expressions for the scores and Hessian in Appendix C.�

A.5 Proof or Proposition 4

Given that joint log-likelihood function of the complete data can be written as the sum of the

marginal log-likelihood function of the multinomial random vector � and a linear combination

with weights �k of multivariate Gaussian log-likelihood functions with parameters �k and k, we

can exploit Proposition 1 in Amengual, Fiorentini and Sentana (2024) to express the scores of the

complete log-likelihood with respect to �k, �k and k as linear combinations of 1,H1["
�(�k)] and

H2["
�(�k)] scaled by �k and the sum of the outer product of those scores and the corresponding

Hessian as �k times linear combinations of H2["
�(�k)] for the �k�k term, H3["

�(�k)] for the

�kk term, and H4["
�(�k)] for the kk one. Therefore, we can avoid generalised inverses by

using as in�uence functions the terms Ef�kjygH3["
�(�k)] and Ef�kjygH4["

�(�k)], which we

can purge from sampling uncertainty resulting from the estimation of the model parameters by

regressing on E(�kjy), Ef�kjygH1["
�(�k)] and Ef�kjygH2["

�(�k)], k = 1; : : : ;K.

As for the number of degrees of freedom, in principle they correspond to the dimensions of
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H3["
�(�k) and H4["

�(�k)] times the number of components, namely

K

�
M(M + 1)(M + 2)

6
+
M(M + 1)(M + 2)(M + 3)

24

�
=
KM(M + 1)(M + 2)(M + 7)

24
:

However, if the true value of one or more of the �0ks is zero, then Ef�kjyg = 0 for the corre-

sponding elements. Similarly, if two or more underlying components are such that �k = �l at

the true values, then H3["
�(�k)] = H3["

�(�l)] and H4["
�(�k)] = H4["

�(�l)]. Nevertheless, in

both cases the number of degrees of freedom will continue to be given by (29) as long as we

interpret K as the e¤ective number of components of the mixture. �

A.6 Proof or Lemma 2

The proof is entirely analogous to the proof of Lemma 2 in Amengual, Fiorentini and

Sentana (2024), but on a component by component basis.

More formally, we have seen that the IM test statistic can be easily computed as a quadratic

form in the sample means of the K vectors that contain the distinct third- and fourth-order

multivariate Hermite polynomials of the observations standardised with respect to the vector of

means and covariance matrix of each of the underlying components multiplied by the posterior

probability of those components, with a weighting matrix which is the inverse of the residual

covariance matrix in the regression of those in�uence functions on theK vectors that contains the

distinct zero-, �rst-, and second-order multivariate Hermite polynomials of the same standardised

variables multiplied again by the posterior probability of the components.

But the EM recursions (34a), (34b) and (34c) imply that the MLEs of the mean vectors and

covariance matrices of the di¤erent components will satisfy c +D�̂j and D�̂jD0, respectively,

while the ML estimators of the mixing probabilities will not be a¤ected. This implies in turn

that the observations on x standardised with respect to the vector of means and covariance

matrix of each of the underlying components multiplied by the posterior probability of those

components will be numerically identical than the corresponding standardised values of y, and

the same will be true of their Hermite polynomials of arbitrary order, whence the result follows.

�

B Multivariate Hermite polynomials

Let us follow Barndor¤-Nielsen and Petersen (1979) in de�ning the (centred) multivariate

Hermite polynomials of order j = j1 + : : : + jM � 0 associated to the M -dimensional random
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vector y as

Hj1:::jM ["(�);�] � e�
1
2
(y��)0�(y��) = (�1)j @j

(@y1)j1 : : : (@yM )jM

h
e�

1
2
(y��)0�(y��)

i
; (B5)

where "(�) = (y��). As is well known, the mean of any Hermite polynomial of positive degree

is zero when y � N(�;�), with � = ��1, so they constitute a basis for testing multivariate

normality (see e.g. Amengual, Fiorentini and Sentana (2024) and the references therein).

The symmetry of the higher-order partial derivatives in (B5), however, implies that some of

theM j multivariate Hermite polynomials of order k will be replicated several times. Speci�cally,

there are only
�
M+j�1

k

�
di¤erent polynomials for a given order, so we can avoid generalised inverse

matrices by eliminating the redundant ones. For that reason, we de�ne

Hj(";�) =

26664
Hk;0;��� ;0(";�)
Hk�1;1;��� ;0(";�)

...
H0;��� ;0;k(";�)

37775 ; (B6)

as the
�
M+j�1

k

�
�1 vector that contains all the non-redundant multivariate Hermite polynomials

of order j, which we will simply denote by Hj("
�) for the special case of � = IM , so that

H1("
�) = "� with V [H1("

�)] = IM .

The usefulness of multivariate Hermite polynomials in our context results from Proposition

1 in Amengual, Fiorentini and Sentana (2024), which implies that:

1. The scores with respect to � and  = vech(�) of the log-likelihood function associated

to the multivariate random vector x can be written as linear combinations of H1("
�) and

H2("
�), where "� = ��1=2"(�) = ��1=2(y � �).

2. The sum of the outer product of those scores and the corresponding Hessian matrix can

be written as linear combinations of H2("
�) for the �� term, H3("

�) for the � term, and

H4("
�) for the  one.

C EM expressions for the score vector and Hessian matrix

The complete log-likelihood function of a random sample of size N on � = (y0; �0)0 is given

by
NX
i=1

lnf(�i;�) =
NX
i=1

KX
k=1

�ki lnf(yij�ki=1;�k) +
NX
i=1

lnf(�i;�); (C7)
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where

lnf(yj�k=1;�k)=�
1

2

KX
k=1

�
M ln�+ln j�kj+ "�0(�k)"�(�k)

�
; (C8)

lnf(�;�)=
KX
k=1

�k ln�k: (C9)

As we shall see, the sequential cut in (C7), (C8) and (C9) considerably simpli�es the required

expressions. Speci�cally,

@ ln f(y; �;�)

@�k
= �k

@ ln f(yj�k=1;�k)
@�k

= �k�
0�1=2
k "�(�k);
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D0
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k 
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�0(�k)� IM ];

@ ln f(y; �;�)

@�k
=

@ ln f(�;�)

@�k
= �k

1

�k
:

Hence, the second derivatives will be
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@�k@�
0
k
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@�k@�
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and
@2 ln f(y; �;�)

(@�k)2
=
@2 ln f(�;�)

(@�k)2
= ��k

1

�2k
;

with all other cross-derivatives being zero.

The assumption of random sampling implies that the joint distribution of �1; : : : ; �i; : : : ; �N

given y1; : : : ; yi; : : : ; yN is the product of the N distributions of �i given yi, which are also

categorical but with probabilities wki(�) given by (26). On this basis, we can use expression

(A3) to write

@ ln f(y;�)

@�k
= E

�
�k
@ ln f(yj�k=1;�k)

@�k

����y� = wk(�)�
0�1=2
k "�(�k);

@ ln f(y;�)

@k
= E

�
�k
@ ln f(yij�k=1;�k)

@k

����y� = �wk(�)12D0
M (�

0�1=2
k 
 �0�1=2k )

�vec["�(�k)"�0(�k)� IM ];
@ ln f(y;�)

@�k
= E

�
@ ln f(�;�)

@�k

����y� = wk(�)
1

�k
:
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Similarly, the only non-zero elements of the �rst term in (A4) will be

E

�
�k
@2 ln f(yj�k=1;�k)

@�k@�
0
k

����y� = �wk(�)��1k ;

E

�
�k
@2 ln f(yj�k=1;�k)

@�k@
0
k

����y� = �wk(�)["�0(�k)��1=2k 
 ��1k ]DM ;

E

�
�k
@2 ln f(yj�k=1;�k)

@k@
0
k

����y�
= �wk(�)

1

2
D0
Mf2[(��1k 
 �0�1=2k "�(�k)"

�0(�k)�
�1=2
k ]� (��1k 
 ��1k )gDM ;

E

�
@2 ln f(�;�)

(@�k)2

����y� = � 1

�2k
wk(�):

In contrast, the second term of (A4) is slightly more complex. Speci�cally, we get

V

�
�k
@ ln f(yj�k=1;�k)

@�k

����y� = wk(�)[1� wk(�)]�0�1=2k "�(�k)"
�0(�k)�

�1=2
k
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�0(�k)�
�1=2
k � w2k(�)�

0�1=2
k "�(�k)"

�0(�k)�
�1=2
k ;

where we have used the fact that �k is a Bernoulli random variable whose variance conditional

on y is wk(�)[1� wk(�)]. In turn,

Cov

�
�k
@ ln f(yj�k=1;�k)

@�k
; �k

@ ln f(yj�k=1;�k)
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2
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0�1=2
k "�(�k)vec
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Cov
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V
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4
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

�vec0["�(�k)"�0(�k)� IM ](��1=2k 
 ��1=2k )DM

= wk(�)
1

4
D0
N (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

�vec0["�(�k)"�0(�k)� IM ](��1=2k 
 ��1=2k )DM

�w2k(�)
1

4
D0
M (�

0�1=2
k 
 �0�1=2k )vec["�(�k)"

�0(�k)� IM ]

�vec0["�(�k)"�0(�k)� IM ](��1=2k 
 ��1=2k )DM ;
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Cov
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�
@ ln f(�;�)
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����y� = wk(�)[1� wk(�)]
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�2k

= wk(�)
1

�2k
� w2k(�)

1

�2k
:

Interestingly, the second terms in the previous expressions are nothing other than the minus

products of the corresponding scores.

In addition, we must also compute all the other conditional covariances between the di¤erent

components of the score. Speci�cally,

Cov

�
�k
@ ln f(yj�k=1;�k)

@�k
; �l

@ ln f(yj�l=1;�k)
@�l

����y�
= �wk(�)wl(�)

1
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�
0�1=2
k "�(�k)"

�0(�l)�
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l ;

where we have used the fact that �k and �l are elements of a multinomial random vector whose

covariance conditional on y is �wk(�)wl(�). Similarly,

Cov
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and

cov�jy

�
@ ln f(�;�)

@�k
;
@ ln f(�;�)

@�l

�
= �wk(�)wl(�)

1

�k�l
;

which also coincide with the outer products of the scores involved. Thus, to compute the Hessian

we simply need to add to the minus OPS the terms that appear in Proposition 3.

D Scores and Hessian expressions in Boldea and Magnus (2009)

Theorem 1 in Boldea and Magnus (2009) provides analytical expressions for the contribu-

tion of a single observation on y to score and Hessian matrix. As we mentioned before, they

reparametrise � so that �k = �k for k = 1; : : : ;K � 1, and �K = 1 �
PK�1
k=1 �k. Then, they

introduce some additional notation. First,

ak = ��1k ek k = 1; : : : ;K � 1; aK = �(1�
PK�1
k=1 �k)

�1�K�1;

where ek is the kth column of IK�1 and �K�1 a vector of K � 1 ones. Next, they de�ne
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k "�(�k);
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)

for k = 1; : : : ;K.

In this notation, Theorem 1 in Boldea and Magnus (2009) states that the contribution to

the scores of a single observation are given by

@ ln f(y;�)

@�
=
K�1P
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wk(�)

�k
ek �

wK(�)

1�
PK�1
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and
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In addition, the same theorem also says that its contribution to the Hessian will be given by
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the following blocks:
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and
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for k 6= l.

These expressions di¤er from the ones we have obtained in the previous sections because

Boldea and Magnus (2009) work with � rather than �.

Nevertheless, given that

� =

0BBB@
�1
...

�K�1
�K

1CCCA =

0BBB@
0
...
0
1

1CCCA+
0BBB@

1 : : : 0
...
. . .

...
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�1 : : : �1
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�
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�
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so that
@�

@�0
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;

it is easy to see that
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coincides with (D10).
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Similarly, given that (D12) is a¢ ne, so that its second Jacobian is 0, it follows that

@2 ln f(y;�)

@�@�0
= ( IK�1 ��0K�1 )

@2 ln f(y;�)

@�@�0

�
IK�1

��0K�1

�
:

It is tedious but straightforward to show that analogous calculations applied to the other

terms we have derived in Appendix C yield the results in Theorem 1 in Boldea and Magnus

(2009).

Nevertheless, the advantage of deriving the scores and Hessian matrices in terms of � is that

they are also useful for alternative reparametrisations of those probabilities. For example, in the

multivariate logit case in (18), the Jacobian would be instead

@�k
@�k

=
e�kPK�1

l=1 e�l + 1

 
1� e�kPK�1

k=1 e
�k + 1

!
= �k(1� �k) for k = 1; : : : ;K � 1;

@�K
@�k

= � e�kPK�1
l=1 e�l + 1

1PK�1
k=1 e

�k + 1
= ��k�K for k = 1; : : : ;K � 1;

@�k
@�l

= � e�kPK�1
l=1 e�l + 1

e�lPK�1
k=1 e

�k + 1
= ��k�l for l 6= k; k = 1; : : : ;K � 1:

E Standardised multivariate discrete mixtures of normals

Consider the following mixture of two multivariate normals

y �
�
N(�1;�1) with probability �;
N(�2;�2) with probability 1� �: (E13)

Given (16) and (17), this random vector will be standardised if and only if

��1 + (1� �)�2 = 0

and

�(1� �)(�1 � �2)(�1 � �2)0 + ��1 + (1� �)�2 = IM ;

in which case we will denote it by "�.

Let us initially assume that �1 = �2 = 0, so that a fortiori � = �1 � �2 = 0. Let �1L�01L
and �2L�02L denote the lower triangular Cholesky decompositions of the covariance matrices of

the two components. Then, we can write

��1 + (1� �)�2 = �1L[�IM + (1� �)��11L�2L�
0
2L�

�10
1L ]�

0
1L = �1L[�IM + (1� �)@L@0L]�01L:

Thus, it is not di¢ cult to see that by choosing

�1L = [�IM + (1� �)@L@0L]�1
0

U and �2L = �1L@L; (E14)
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where @L is a lower triangular matrix and [�IM + (1 � �)@L@0L]U [�IM + (1 � �)@L@0L]
0
U is

the upper triangular Cholesky decomposition of [�IM + (1 � �)@L@0L], we can indeed obtain a

standardised vector "� because of the relationship between the upper Cholesky decomposition

of a matrix and the lower Cholesky decomposition of its inverse.

Now consider the case � 6= 0, and let

� = �(1� �)��0 + IM :

Then, it is easy to see that if we call �U�
0
U the upper triangular Cholesky decomposition of �,

then

��1 = �
�10
U (1� �)�, ��2 = ���10

U ��, ��1 = �
�10
U �1�

�1
U , and ��2 = �

�10
U �2�

�1
U ;

with �1 and �2 as in (E14), continue to generate another standardised vector.

In summary, we can generate a standardised, multivariate, two-component Gaussian mixture

as

"� = ��10
U f(� � �)� + [�2L + �(�1L � �2L)]"g ;

where � denotes a Bernoulli variable which takes the value 1 with probability � and 0 with

probability 1 � �, and "j� � N(0; I2). The intuition is as follows. First, note that (� � �)�

is a vector version of a shifted and scaled Bernoulli random variable with 0 mean and rank 1

covariance matrix �(1� �)��0. But since

[�2L + �(�1L � �2L)]";

with �1L and �2L given by (E14), is a multivariate discrete scale mixture of normals with 0

unconditional mean and unit unconditional covariance matrix that is orthogonal to (� � �)�

because of the independence between � and ", the sum of the two random variables will have

variance IM + �(1� �)��0, which explains the �� 1
2 in front of the curly brackets.

Consequently, we can think of an alternative parametrisation with two sets of parameters:

the ones that capture the �rst two unconditional moments of the distribution, namely � and

vech(	), and the ones that characterise the shape of the standardised distribution, which are

given by � = (�0; vech0(@L); �)0.

Therefore, two equivalent ways of de�ning and simulating y with mean � and variance 	

are as follows. First, we can consider

y = � +	L"
�, where "� =

�
N [��1(�);�

�
1(�)] with probability �

N [��2(�);�
�
2(�)] with probability 1� �

; (E15)
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where 	L	
0
L denotes the lower triangular Cholesky decomposition of 	,

��1(�) = [�(1� �)��0 + IM ]�10U �(1� �)

��2(�) = �[�(1� �)��0 + IM ]�10U ��

and

��1L(�) = [�(1� �)��0 + IM ]�10U [�IM + (1� �)@L@0L]�10U

��2L(�) = [�(1� �)��0 + IM ]�10U [�IM + (1� �)@L@0L]�10U @L

Alternatively, we can use

y =

�
N(�1;�1L�

0
1L) with probability �

N(�2;�2L�
0
2L) with probability 1� �

where

�k = � +	L�
�
k(�)

and

�kL = 	L�
�
kL(�)

for k = 1; 2.

To illustrate the procedure in the bivariate case, let

� =

�
�1
�2

�
; and @L =

�
{11 0
{21 {22

�
;

so that the vector of shape parameters of "� becomes � = (�1; �2;{11;{21;{22; �)0.

In this set up, the means of the components will be given by �1 = (�
(1
1 ; �

(1
2 )

0 with

�
(1
1 = �1 +

(1� �) 11�1q
1 + �(1� �)�21

and

�
(1
2 = �2 +

(1� �) 21�1q
1 + �(1� �)�21

+
(1� �) 22�2
1 + �(1� �)�21

s
1 + �(1� �)�21

1 + �(1� �)(�21 + �22)
;

and �2 = (�
(2
1 ; �

(2
2 )

0 with

�
(2
1 = �1 �

� 11�1q
1 + �(1� �)�21

and

�
(2
2 = �2 �

� 11�1q
1 + �(1� �)�21

� � 22�2

1 + �(1� �)�21

s
1 + �(1� �)�21

1 + �(1� �)(�21 + �22)
:

As for the the lower triangular decompositions of the covariance matrices of the two components,
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namely

�1L =

"

(1
11 0


(1
21 

(1
22

#
and �2L =

"

(2
11 0


(2
21 

(2
22

#
;

we will have


(1
11 =

1q
[1 + �(1� �)�21][� + (1� �){211]

 11;


(1
22 =

s
[1 + �(1� �)�21][� + (1� �){211]

[1 + �(1� �)(�21 + �22)]f�[({211 + {221)(1� �)� �] + (1� �)�{222 + (1� �)2{211{222g
 22;


(1
21 = 

(1
11

 21
 11

� (122
(1� �){11{21
� + (1� �){211

�(122(1� �)��1�2
p
�[({211 + {221)(1� �)� �] + (1� �)�{222 + (1� �)2{211{222

[1 + �(1� �)�21][� + (1� �){211]
;


(2
11 = {11

(1
11;


(2
22 = {22

(1
22;

and


(2
21 = 

(2
11

 21
 11

� (122
�{21

[� + (1� �){211]{22

�(122(1� �)��1�2{11
p
{211{222 + (1� �)[{222 + {221 + {211(1� {222)]� �{211({222 � �) + �2

[1 + �(1� �)�21][� + (1� �){211]{22
:

Similar calculations can be applied for general M , although the number of free parameters

of 	L and @L increase with the square of the cross-sectional dimension. Extensions to mixtures

with K > 2 components are also feasible by recursively applying the above procedures to the

mixture of a spherical Gaussian random vector and a standardised Gaussian mixture with K�1

components.

It is of some interest to obtain the scores with respect to � , vech(	) and � from the scores

with respect to �1, �2, vech(�1), vech(�2) and �. The delta method immediately implies that

the former can be written as a linear combination of the latter, whose expressions we have

derived in Appendix C.

First of all, note that the fact that w2 = 1 � w1 for any parameter con�guration and data

implies that

�1
w1
�1
+ �2

w2
�2
= 1;

so there is a linear combination of the scores with respect to the ��s which is identically equal to

1. Note also that the sample average of wk=�k evaluated at the MLE of the model parameters
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will be identically equal to 1 rather than 0 for all k.

Let us know try to �nd the score with respect to � : We know from (16) that

@�

@� 0k
= �kIM ,

@�

@ 0k
= 0 and

@�

@�k
= �k.

We also know that

�1 = � +	L[�(1� �)��
0
+ IM ]

�10
U �(1� �)

�2 = � �	L[�(1� �)��
0
+ IM ]

�10
U ��

which means that
@�k
@�

= IM

Hence, given that no other parameter of the natural parametrisation depends on � , the delta

method immediately implies that the score with respect to � will be given by

@l(y;�)

@�
=

KX
k=1

@� 0k
@�

@l(y;�)

@�k

KX
k=1

�kwki(�)�
0�1=2
k "�(�k) = �

@l(y;�)

@y
.

Similarly, we would expect

@l(y;�)

@vech(	)
= vech

�
IM � @l(y;�)

@y
(y � � )0	�1=2

L

�
.

But we know that the score with respect to � evaluated at the sample mean is 0.
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Table 1: Finite sample properties of the IM test. Null hypothesis: Mixture of two univariate
normals

Panel A: Size properties (asymptotic)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%
100 80.59 76.37 68.60 5.21 2.86 0.95
400 47.35 40.84 30.16 8.55 4.99 1.86
1,600 24.33 17.89 9.86 9.40 5.13 1.60

Panel B: Size properties (bootstrap)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%
100 10.41 4.92 0.92 11.46 6.15 1.31
400 7.20 3.08 0.56 10.65 5.51 1.17
1,600 9.69 4.89 1.01 9.72 4.89 1.04

Panel C: Power properties of the IM test (bootstrap)

Sample size
100 400

DGP 10% 5% 1% 10% 5% 1%
Non-Gaussian mixture 46.00 36.84 19.24 94.60 90.52 71.08
Mixture of three normals 12.96 5.88 0.80 42.28 23.68 3.88
Lognormal 99.40 97.72 79.88 100.00 100.00 99.84

Notes: Monte Carlo empirical rejection rates based on 10,000 (2,500) replications in Panels A and B
(Panel C). OPS refers to the version of the statistic proposed by Chesher (1983) and Lancaster (1984)
and employed by Boldea and Magnus (2009), while IM to the feasible version that makes use of the
theoretical expression (33) replacing the true parameter values �0 by their MLEs �̂T . Panel A contains
rejection rates based on the asymptotic critical values (see Proposition 4.3) while those in Panels B and
C are based on a parametric bootstrap procedure in which we simulate B = 99 samples from the mixture
model estimated under the null. See section 4 for details about the DGPs.
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Table 2: Finite sample properties of the IM test. Null hypothesis: Mixture of three univariate
normals

Panel A: Size properties (asymptotic)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%
100 80.81 76.34 68.32 2.66 1.23 0.38
400 53.15 46.82 36.72 6.79 3.79 1.37
1,600 27.12 19.64 10.49 9.74 5.46 2.04

Panel B: Size properties (bootstrap)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%
100 10.74 4.74 0.58 9.21 4.23 0.76
400 9.01 4.34 0.97 10.02 4.89 0.97
1,600 8.51 3.59 0.55 10.35 5.17 1.15

Panel C: Power properties of the IM test (bootstrap)

Sample size
100 400

DGP 10% 5% 1% 10% 5% 1%
Non-Gaussian mixture 49.52 37.64 16.40 96.48 93.12 70.72
Mixture of four normals 36.72 25.20 8.88 97.64 93.28 60.52
Lognormal 69.20 54.00 22.76 99.76 99.52 94.68

Notes: Monte Carlo empirical rejection rates based on 10,000 (2,500) replications in Panels A and B
(Panel C). OPS refers to the version of the statistic proposed by Chesher (1983) and Lancaster (1984)
and employed by Boldea and Magnus (2009), while IM to the feasible version that makes use of the
theoretical expression (33) replacing the true parameter values �0 by their MLEs �̂T . Panel A contains
rejection rates based on the asymptotic critical values (see Proposition 4.3) while those in Panels B and
C are based on a parametric bootstrap procedure in which we simulate B = 99 samples from the mixture
model estimated under the null. See section 4 for details about the DGPs.
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Table 3: Finite sample properties of the IM test. Null hypothesis: Mixture of two bivariate
normals

Panel A: Size properties (asymptotic)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%
100 99.66 99.46 98.26 8.03 5.53 3.06
400 80.56 74.50 60.67 10.41 6.76 3.01
1,600 42.72 33.70 18.83 9.96 5.64 1.73

Panel B: Size properties (bootstrap)

Test version
OPS IM

Sample size 10% 5% 1% 10% 5% 1%
100 8.44 4.11 0.67 10.39 5.04 0.91
400 9.71 4.66 0.87 9.69 4.96 1.10
1,600 9.84 5.09 1.11 9.52 4.70 0.77

Panel C: Power properties of the IM test (bootstrap)

Sample size
100 400

DGP 10% 5% 1% 10% 5% 1%
Non-Gaussian mixture 57.96 47.32 24.92 94.12 88.92 62.72
Mixture of three normals 85.00 68.12 23.16 96.84 96.28 83.40
Skew normal 42.16 27.48 8.76 97.12 91.36 63.32

Notes: Monte Carlo empirical rejection rates based on 10,000 (2,500) replications in Panels A and B
(Panel C). OPS refers to the version of the statistic proposed by Chesher (1983) and Lancaster (1984)
and employed by Boldea and Magnus (2009), while IM to the feasible version that makes use of the
theoretical expression (33) replacing the true parameter values �0 by their MLEs �̂T . Panel A contains
rejection rates based on the asymptotic critical values (see Proposition 4.3) while those in Panels B and
C are based on a parametric bootstrap procedure in which we simulate B = 99 samples from the mixture
model estimated under the null. See section 4 for details about the DGPs.
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Figure 1: Univariate distributions under null hypotheses and di¤erent alternatives

Fig. 1a: Mixture of two normals Fig. 1e: Mixture of three normals
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Fig. 1b: Mixture of two asymmetric t�s Fig. 1f: Mixture of three asymmetric t�s
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Fig. 1c: Symmetric mixture of three normals Fig. 1g: Mixture of four normals
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Fig. 1d: Lognormal Fig. 1h: Lognormal
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Notes: In �gures 1b-d (1f-h) the dashed line represents the pdf of the closest mixture of two (three)
normals. See section 4 for details about the DGPs.
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Figure 2: Bivariate distributions under the null hypothesis and di¤erent alternatives

Fig. 2a: Density of a bivariate Fig. 2e: Contours of a bivariate
mixture of two normals mixture of two normals
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Fig. 2b: Density of a bivariate Fig. 2f: Contours of a bivariate
mixture of two asymmetric t�s mixture of two asymmetric t�s

0.001

0.001

0.001

0.
00

1

0.0
01

0.001
0.0

1

0.01

0.01

0.01

0.01

0.1

0.1

0.
00

1

0.
00

1

0.001

0.001

0.001

0.0
1

0.01

0.01

0.01

0.01

0.1

0.1

4 2 0 2 4 6
4

2

0

2

4

6

Fig. 2c: Density of a bivariate Fig. 2g: Contours of a bivariate
mixture of three normals mixture of three normals
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Fig. 2d: Density of a bivariate Fig. 2h: Contours of a bivariate
skew normal skew normal
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Notes: In �gures 2f-h the dashed lines represent the contour of the closest mixture of two normals.
See section 4 for details about the DGPs.
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Figure 3: �Convergence clubs�in cross-country GDP per capita comparisons

Fig. 3a: All waves

Fig. 3b: 1960, 1965, 1970

Fig. 3c: 1975, 1980, 1985

Fig. 3d: 1990, 1995, 2000

Notes: Data: Per capita income from version 6.1 of the Penn World Tables.
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