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This paper considers inference in first-price and second-price sealed-bid auctions in empirical

settings where we observe auctions with a large number of bidders. Relevant applications include

online auctions, treasury auctions, spectrum auctions, art auctions, and IPO auctions, among

others. Given the abundance of bidders in each auction, we propose an asymptotic framework

in which the number of bidders diverges while the number of auctions remains fixed. This

framework allows us to perform asymptotically exact inference on key model features using only

transaction price data. Specifically, we examine inference on the expected utility of the auction

winner, the expected revenue of the seller, and the tail properties of the valuation distribution.

Simulations confirm the accuracy of our inference methods in finite samples. Finally, we also

apply them to Hong Kong car license auction data.
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1 Introduction

This paper considers inference in first-price and second-price sealed-bid auctions in empirical set-

tings where we observe a possibly small number of auctions, each with a large number of bidders.

The abundance of bidders in each auction prompts us to consider a novel asymptotic framework in

which the number of bidders diverges, while allowing the number of auctions to be small and re-

main fixed. This framework differs substantially from the more conventional approach in which the

researcher observes multiple bids from a large number of independent and identically distributed

(i.i.d.) auctions. See Athey and Haile (2002); Haile and Tamer (2003); Athey and Haile (2007);

Guerre, Perrigne, and Vuong (2000), among others. Our analysis can deliver an accurate approx-

imation in empirical settings in which the number of bidders is large relative to the number of

auctions. Relevant examples include online auctions, treasury auctions, spectrum auctions, art

auctions, and IPO auctions, among many others. Since our asymptotic framework does not re-

quire the number of auctions to diverge, our analysis is suitable for applications with substantial

heterogeneity across auctions, implying a limited number of truly homogeneous auctions.

Within our novel asymptotic framework, we introduce new inference methods for the winner’s

expected utility, the seller’s expected revenue, and the valuation distribution’s tail behavior. We

show that the latter can be used to test the regularity conditions commonly assumed in auction

literature. Our data requirements are minimal; our methods rely on observing transaction prices

from a finite number of auctions. We do not need to observe multiple bids or the number of

participating bidders in these auctions.

Our methodology characterizes the limiting behavior of transaction prices as the number of

bidders increases. Unlike the traditional asymptotic framework with a growing number of auctions,

the transaction price data does not allow us to fully identify the valuation distribution. However,

it can reveal the distribution’s tail properties, which are sufficient for conducting inference on

practical objects of interest, such as the winner’s expected utility and the seller’s expected revenue.

Moreover, the tail behavior allows us to evaluate whether the valuation distribution has bounded

support and positive density at its highest value, which is a common regularity in the auction

literature. (e.g., Maskin and Riley, 1984; Guerre et al., 2000; Guerre and Luo, 2022). Within our

asymptotic framework, our inference methods are shown to control size and exhibit desirable power

properties. Specifically, our confidence intervals are shown to minimize expected length and our

hypothesis tests are shown to maximize weighted average power. Finally, Monte Carlo simulations

confirm the accuracy of our methodology in finite samples, and a study of Hong Kong car license

plate auctions illustrates its empirical relevance.

Our assumptions are arguably mild. The baseline version of the model assumes that the bidders

are symmetric and have independent private values (IPV). We require a large number of bidders

and that the valuation distribution falls within the domain of attraction of the extreme value (EV)
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distribution, a condition satisfied by commonly used distributions like Pareto, Student-t, Gaussian,

and uniform distributions (see Section 2 for details). In this setup, we can conduct inference using

transaction prices from just three or more auctions. Furthermore, the auctions do not need to have

the same number of bidders (which may remain unknown), but should diverge at the same rate.

Beyond the IPV setup, we discuss how to extend our analysis to allow for conditional IPV and

reserve price.

The asymptotic framework with many bidders has been extensively employed in the economic

theory literature (e.g., Hong and Shum, 2004; Virág, 2013; Di Tillio, Ottaviani, and Sørensen, 2021)

but less so in econometrics. Hong, Paarsch, and Xu (2014) studies the asymptotic distribution of

the transaction price in a clock model of a multi-unit, oral, ascending-price auction as the numbers

of bidders and units increase. Krasnokutskaya, Song, and Tang (2022) considers a latent group

structure on the set of agents and allows both the number of agents and the number of markets

to grow. Menzel and Morganti (2013) shows that the nonparametric estimator of the valuation

distribution may become irregular and perform poorly when the number of bidders increases. This

issue does not affect our method, which relies on the EV approximation. In comparison, much of the

existing econometric literature has focused on identifying and estimating the valuation distribution.

In cases with a small number of bidders, like timber auctions, identifying the valuation distribution

is the key to understanding the relevant auction features. The seminal work by Athey and Haile

(2002) derives general results about identifying the valuation distribution from the distribution

of bids. Haile and Tamer (2003) investigates English auctions and establishes bounds on the

valuation distribution and other objects of interest with minimal structural assumptions. Chesher

and Rosen (2017) extends these bounds to the non-IPV setup. Aradillas-Lopez, Gandhi, and Quint

(2013) nonparametrically identifies bounds on seller profit and bidder surplus while accounting for

variations in the number of bidders across auctions. Brendstrup and Paarsch (2006) and Komarova

(2013) derive nonparametric identification of the valuation distribution with the transaction price

and the winner’s identity. Brendstrup and Paarsch (2007) investigates multi-object English auctions

and establishes semiparametric identification using winning bids under the Archimedean copula

assumption.

There is a vast literature that considers inference in the more traditional asymptotic framework

in which the number of auctions diverges to infinity. We now briefly highlight some of its recent

contributions. For example, Li (2005) studies first-price auctions with entry and binding reservation

prices and estimates the valuation distribution with the observed bids and the number of actual

bidders. Without knowing the number of bidders, An, Hu, and Shum (2010) proposes using a proxy

of the number of bidders and an instrument variable. Kim and Lee (2014), Song (2015), Mbakop

(2017), and Freyberger and Larsen (2022) construct identification of the valuation distribution with

two or more order statistics of bids. Shneyerov and Wong (2011) derive nonparametric identification

of model primitives based on finitely many groups of bidders. Recently, Luo and Xiao (2023) derives
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identification results with two consecutive order statistics and an instrument or three consecutive

ones. All these methods of identification, estimation, and inference are based on the traditional

asymptotic framework with many auctions and multiple bids from each auction. We refer to

Hickman, Hubbard, and Sağlam (2012) and Gentry, Hubbard, Nekipelov, and Paarsch (2018) for

recent surveys.

As already mentioned, our paper provides inference based only on transaction prices. This

aspect of our paper resembles the recent work by Guerre and Luo (2022). However, there are

considerable differences between this paper and our contribution. In particular, Guerre and Luo

(2022) considers first-price auctions in which the number of bidders in each auction is random and

has finite support. In this context, they establish that the winning bid is increasing in the number

of bidders and, hence, the density of the winning bids exhibits discontinuities as the number of

bidders changes. Our framework has many differences with Guerre and Luo (2022). First, their

identification strategy relies on the assumption that the number of bidders is finite, while we

specialize in the case when this amount diverges. Thus, the contributions are designed for different

empirical environments. Second, their argument does not apply to second-price auctions, while

ours does. Third, their method relies on observing a large number of auctions, while ours can deal

with applications with a finite number of them. Finally, their paper delivers identification analysis,

while ours focuses on inference.

Finally, our paper is also connected to the literature on testing in auction models. Donald

and Paarsch (1996) introduces parametric tests within the context of IPV setups. Haile, Hong,

and Shum (2003) devises nonparametric tests for common values in first-price auctions. Jun,

Pinkse, and Wan (2010) develops a nonparametric test for affiliation. Hortaçsu and Kastl (2012)

proposes a test of common values when some bidders have information about rivals’ bids. Hill and

Shneyerov (2013) develops a test for common values in first-price auctions utilizing tail indices.

Liu and Luo (2017) puts forward a nonparametric test for comparing valuation distributions in

first-price auctions. Relative to these studies, our work stands out as we address testing within a

comprehensive framework accommodating numerous bidders in both first and second-price auctions.

Furthermore, our methods remain applicable when multiple bids from each auction are available,

operating effectively after conditioning on unobserved heterogeneity and requiring only a small

number of auctions.

The rest of the paper is organized as follows. Section 2 establishes the new asymptotic frame-

work with many bidders and discusses its relationship with extreme value (EV) theory. Section 3

focuses on second-price auctions and introduces our new inference methods. We begin by outlining

the auction format and deriving the asymptotic distribution of transaction prices within the new

framework. Subsequently, Section 3.1 presents confidence intervals for the winner’s expected utility,

Section 3.2 introduces confidence intervals for the seller’s expected revenue, and Section 3.3 outlines

hypothesis tests for the tail index. Section 4 offers analogous results for first-price auctions. Section
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5 describes how to extend our analysis to allow for conditional IPV and the presence of reserve

prices. Section 6 provides the Monte Carlo simulation results. Section 7 presents an empirical

illustration of our methodology. Finally, Section 8 concludes. The paper’s appendix provides all

proofs, auxiliary results, and computational details.

2 Asymptotic framework with many bidders

We consider inference in sealed-bid auctions for a single object, where the data consist of transaction

prices from n ≥ 3 independent auction realizations, denoted as {Pj : j = 1, . . . , n}. Importantly,

our framework does not require n to diverge to infinity.

For each auction j = 1, . . . , n, the setup is as follows. There is a single object for sale, and

Kj potential buyers are bidding for it. These bidders have independent private values (IPV)

{Vi,j : i = 1, . . . ,Kj} distributed according to a common cumulative distribution function (CDF)

FV with support on [vL, vH ], with 0 ≤ vL < vH , where vH = ∞ is allowed. We assume that

FV strictly increases on its support and admits a continuous probability density function (PDF)

fV = F ′V . Bidders are assumed to be risk-neutral and maximize expected profits without facing any

liquidity or budget constraints. FV and Kj are common knowledge to all bidders, but unknown to

the researcher. Our inference methods rely on the asymptotics with diverging numbers of bidders

Kj and a finite number of auctions n. To this end, we assume that K ≡ min{K1, . . . ,Kn} → ∞
and Ki/K → 1 for each i = 1, . . . , n. That is, we assume all n auctions have approximately the

same large number of bidders.1

We make an additional assumption about the valuation distribution FV . We assume that it is

in the domain of attraction of the EV distribution Gξ, where ξ denotes the tail index. Formally,

this means that there is a sequence of normalizing constants {(aK , bK) ∈ R++ × R : K ∈ N} such

that, for all x that is a continuity point of Gξ,

lim
K→∞

(FV (aKx+ bK))K = Gξ(x). (2.1)

See de Haan and Ferreira (2006, Chapter 1) or David and Nagaraja (2004, Chapter 10) for recent

expositions on this topic, including sufficient conditions for (2.1). Under the condition in (2.1),

standard asymptotic results imply that Gξ belongs to one of three types: Weibull (if ξ < 0),

Gumbel (if ξ = 0), or Fréchet (if ξ > 0). We can unify these distributions into the generalized EV

1Allowing for an unknown number of bidders and Kj/K 6→ 1 for some j = 1, . . . , n significantly complicates
our inference problem. In particular, this would require observing more than the transaction price in each auction,
contradicting the core premise of this paper.
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distribution, with the following CDF:

Gξ(x) =


exp(−(1 + ξx)−1/ξ)I(1 + ξx > 0) if ξ > 0,

exp(− exp(−x)) if ξ = 0,

exp(−(1 + ξx)−1/ξ)I(1 + ξx > 0) + I(1 + ξx ≤ 0) if ξ < 0,

(2.2)

Condition (2.1) is an arguably mild restriction, as is satisfied by most commonly used valuation

distributions FV . The case with ξ > 0 covers distributions with unbounded support (i.e., vH =∞)

and polynomial decaying (i.e., “heavy”) right tail. In this case, moments of order less than 1/ξ

exist, and moments of order greater than 1/ξ do not (see de Haan and Ferreira (2006, page 176)).

Then, the restriction to ξ ≤ 1/2 implies that FV has finite second moments. Examples include

Pareto, Student-t, and F distributions. Second, the case with ξ = 0 encompasses distributions

with unbounded support (i.e., vH =∞) but with exponential decaying (i.e., “light”) right tail and

bounded moments of any order. Examples include normal and log-normal distributions. Finally,

the case ξ < 0 covers distributions with bounded support (i.e., vH <∞), such as Beta, Uniform, and

triangular distributions. In turn, condition (2.1) fails for any distribution that has a probability

mass point at the highest value of its support, such as geometric or Poisson distributions; see

de Haan and Ferreira (2006, Exercise 1.13).

The significance of (2.1) in our paper is that it allows us to characterize the joint distribution

of the ordered valuations for all auctions as the number of bidders diverges. We now introduce

the relevant notation to this end. For each auction j = 1, . . . , n, let {V(i),j : i = 1, . . . ,Kj} denote

the order statistics of {Vi,j : i = 1, . . . ,Kj} in decreasing order, i.e., V(1),j ≥ V(2),j ≥ · · · ≥ V(Kj),j .

Lemma 2.1 provides the joint distribution of the extreme order statistics for all auctions.

Lemma 2.1. Assume (2.1) holds. For any n ∈ N and any d ∈ N, and as K →∞,

{(V(1),j − bK
aK

,
V(2),j − bK

aK
, . . . ,

V(d),j − bK
aK

)
: j = 1, . . . , n

}
d→{(

Hξ(E1,j), Hξ(E1,j + E2,j), . . . , Hξ

(∑d

s=1
Es,j

))
: j = 1, . . . , n

}
, (2.3)

where {(aK , bK) ∈ R++ × R : K ∈ N} are the normalizing constants in (2.1), {Es,j : s =

1, . . . , d, j = 1, . . . , n} are i.i.d. standard exponential random variables, and

Hξ(x) ≡
{

(x−ξ − 1)/ξ if ξ 6= 0,

− ln(x) if ξ = 0.
(2.4)

Lemma 2.1 characterizes the asymptotic distribution of the largest order statistics. In this

paper, we consider first-price and second-price auction formats, which involve only V(1),j and V(2),j ,

respectively. We assume symmetric equilibrium bidding, enabling us to establish a relationship
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between private valuations, equilibrium bids, and transaction prices P ≡ {Pj : j = 1, . . . , n}. As a

corollary, we can completely describe the asymptotic distribution of transaction prices in terms of

the tail index ξ. This, in turn, allows us to perform inference of several objects of economic interest

solely based on the transaction prices.

3 Second-price auctions

We begin our analysis with second-price sealed-bid auctions, in which the highest bidder wins the

object and pays the second-highest bid. Since we consider a private value framework, second-

price auctions are equivalent in a weak sense to open ascending price (or English) auctions (see

Krishna (2009, page 4)). By standard arguments (e.g., Krishna (2009, Proposition 2.1)), the weakly

dominant strategy for a bidder with valuation v in auction j = 1, . . . , n is

βj(v) = v. (3.1)

Thus, the observed transaction price in auction j equals the second-highest bid, i.e.,

Pj = V(2),j . (3.2)

By Lemma 2.1 and (3.2), we conclude that as K →∞,

{Pj − bK
aK

: j = 1, . . . , n
}

d→ {Zj : j = 1, . . . , n}, (3.3)

where {Zj : j = 1, . . . , n} is i.i.d. with Zj ≡ Hξ(E1,j + E2,j) for each j = 1, . . . , n, and {(aK , bK) ∈
R++ × R : K ∈ N}, {(E1,j , E2,j) : j = 1, . . . , n}, and Hξ are as in Lemma 2.1.

If the constants {(aK , bK) ∈ R++ × R : K ∈ N} were known, we could use (3.3) to perform

inference on functions of the EV index ξ. Unfortunately, these constants are unknown and depend

implicitly on the underlying distribution of valuations. To sidestep this issue, we sort the transaction

prices across auctions (i.e., P(1) ≤ P(2) ≤ · · · ≤ P(n)), and consider the sorted and self-normalized

prices: for j = 1, . . . , N ≡ n− 2 ≥ 1,

P̃j ≡

{ P(j+1)−P(1)

P(n)−P(1)
if P(n) > P(1)

0 if P(n) = P(1),
(3.4)

and let P̃ = {P̃j : j = 1, . . . , N} ∈ Σ ≡ {h ∈ [0, 1]N : 0 ≤ h1 ≤ · · · ≤ hN ≤ 1}. The following result

characterizes the asymptotic distribution of P̃ as K →∞.
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Lemma 3.1. Assume (2.1) holds. For any N ∈ N, and as K →∞,

P̃ = {P̃j : j = 1, . . . , N} d→ Z̃ = {Z̃j : j = 1, . . . , N}, (3.5)

where the joint density of Z̃ is

fZ̃|ξ(z1, . . . , zN ) ≡ 1[0 ≤ z1 ≤ · · · ≤ zN ≤ 1] (N + 2)! Γ(2(N + 2))×

∫ −1/ξ
0 sN exp

( −2(N + 2) ln(
∑N

j=1(1 + zjξs)
−1/ξ + (1 + ξs)−1/ξ)

−(1 + 2/ξ)(
∑N

j=1 ln(1 + zjξs) + ln(1 + ξs))

)
ds if ξ < 0,

∫∞
0 sN exp

( −2(N + 2) ln(
∑N

j=1 exp(−zjs) + exp(−s))
−2s(

∑N
j=1 zj + 1)

)
ds if ξ = 0,

∫∞
0 sN exp

( −2(N + 2) ln(
∑N

j=1(1 + zjξs)
−1/ξ + (1 + ξs)−1/ξ)

−(1 + 2/ξ)(
∑N

j=1 ln(1 + zjξs) + ln(1 + ξs))

)
ds if ξ > 0,

(3.6)

and Γ is the standard Gamma function.

Lemma 3.1 reveals that the asymptotic distribution of P̃ is informative about the tail index

ξ. In the next subsections, we show how to use this information to conduct asymptotically valid

inference on the tail index ξ and several other important features of these auctions, such as the

winner’s expected utility and the seller’s expected revenue.

3.1 Inference about the winner’s expected utility

Our objective is to conduct inference on the average of the winner’s expected utility based on the

transaction prices. Since each bidder bids their own valuation, the auction is won by the highest

bidder, and the transaction price is equal to the second-highest bid, we conclude that the winner’s

expected utility in auction j = 1, . . . , n is E[V(1),j − Pj ] = E[V(1),j − V(2),j ], whose average is

µK =
1

n

n∑
j=1

E[V(1),j − V(2),j ]. (3.7)

Given transaction prices P, we consider a confidence interval (CI) for µK given by

U(P) = (P(n) − P(1))× Ũ(P̃), (3.8)

where P̃ ∈ Σ are the sorted and self-normalized transaction prices in (3.4), and Ũ : Σ → P(R) is

a CI defined on P̃. By (3.8), the CI U(P) is invariant to the sorting and translation of P, and

equivariant to their scale.

The remainder of the section denotes Z1,j = Hξ(E1,j), Z2,j = Hξ(E1,j + E2,j), {(E1,j , E2,j) :

j = 1, . . . , n} are i.i.d. standard exponential random variables and Hξ is as in (2.4). We also use
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Z = {Z2,j : j = 1, . . . , n}, Z(n) = max{Z2,j : j = 1, . . . , n}, Z(1) = min{Z2,j : j = 1, . . . , n}, for

j = 1, . . . , N = n− 2,

Z̃j =

{ Z(j+1)−Z(1)

Z(n)−Z(1)
if Z(n) > Z(1),

0 if Z(n) = Z(1),
(3.9)

and Z̃ = {Z̃j : j = 1, . . . , N} ∈ Σ. Finally, let Yµ ≡ E[Z1,1 − Z2,1]/(Z(n) − Z(1)) and κξ(Z̃) =

E[Z(n) − Z(1)|Z̃]. The distributions of these random variables are fully characterized by the tail

index ξ. In particular, Lemma A.4 shows E[Z1,1−Z2,1] = Γ(1−ξ), where Γ is the standard Gamma

function. For the remainder of this section, we will use Pξ and Eξ to refer to the probability

and expectation associated with this distribution. The following result describes the asymptotic

properties of the CI in (3.8) as K →∞.

Theorem 3.1. Assume (2.1) holds, and that for some ε > 0 with (1 + ε)ξ < 1, E[|Vi,j |1+ε] < ∞
for all i = 1 . . . ,Kj in auction j = 1, . . . , N . Finally, assume that the CI for µK , U(P), is as in

(3.8) with Ũ : Σ→ P(R) that satisfies the following conditions:

(a) Pξ({Yµ, Z̃} ∈ ∂{(y, h) ∈ R× Σ : y ∈ Ũ(h)}) = 0, where ∂A denotes the boundary of A.

(b) lg(Ũ(h)) <∞ for any h ∈ Σ, where lg(A) denotes the length of A (i.e., lg(A) ≡
∫
1[y ∈ A]dy).

(c) For any sequence {h` ∈ Σ}`∈N with h` → h ∈ Σ, lg(Ũ(h`))→ lg(Ũ(h)).

Then, as K →∞,

1. P (µK ∈ U(P)) → Pξ(Yµ ∈ Ũ(Z̃)),

2. E[lg(U(P))]/aK → Eξ[κξ(Z̃) lg(Ũ(Z̃))].

Suppose that we consider the class of CIs for µK given by (3.8) and conditions (a)-(c) in Theorem

3.1. The finite sample properties of these CIs are unknown. If the number of bidders is large, it is

natural to rely on the asymptotic behavior derived in Theorem 3.1 to choose our CI. First, we can

guarantee asymptotic validity by imposing

Pξ(Yµ ∈ Ũ(Z̃)) ≥ 1− α for all ξ ∈ Ξ. (3.10)

Second, we can seek improvements in statistical power by choosing a CI that has a small asymptotic

expected length (scaled by aK > 0). Since the tail index ξ is unknown, we focus on the CI’s

asymptotic weighted length, given by∫
ξ∈Ξ

Eξ[κξ(Z̃) lg(Ũ(Z̃)))]dW (ξ), (3.11)

where W is a user-defined weight function. We can combine both objectives by choosing the CI

for µK that minimizes the asymptotic weighted length in (3.11) subject to asymptotic validity

condition in (3.10).
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Formally, let U denote the collection of CIs that satisfy conditions (a)-(c) in Theorem 3.1. Then,

we propose choosing Ũ in (3.8) as the solution to the following problem:

arg min
Ũ∈U

∫
ξ∈Ξ

Eξ[κξ(Z̃) lg(Ũ(Z̃)))]dW (ξ) s.t. Pξ(Yµ ∈ Ũ(Z̃)) ≥ 1− α for all ξ ∈ Ξ. (3.12)

Following Müller and Wang (2017), we write down (3.12) in its Lagrangian form:

min
Ũ∈U

∫
ξ∈Ξ

Eξ[κξ(Z̃) lg(Ũ(Z̃)))]dW (ξ) +

∫
ξ∈Ξ

Pξ(Yµ ∈ Ũ(Z̃))dΛ(ξ), (3.13)

where the non-negative measure Λ denotes the Lagrangian weights chosen to guarantee the asymp-

totic size constraint in (3.12). If we ignore the constraints in U, the solution to (3.13) is given by

the following set: for every h ∈ Σ,

Ũ(h) =

{
y ∈ R :

∫
ξ∈Ξ

κξ(h)fZ̃|ξ(h)dW (ξ) ≤
∫
ξ∈Ξ

f(Yµ,Z̃)|ξ(y, h)dΛ(ξ)

}
, (3.14)

where for every (y, h) ∈ R × Σ, κξ(h)fZ̃|ξ(h) and f(Yµ,Z̃)|ξ(y, h) are given in Section A.3, and the

integrals in (3.14) can be numerically calculated by Gaussian quadrature. We can verify numerically

that Ũ(h) in (3.14) takes the form of an interval whose length varies continuously with h ∈ Σ.2

Under these conditions, Lemma A.3 shows that Ũ(h) in (3.14) belongs to U and, therefore, Ũ(h)

in (3.14) solves (3.13).

By combining (3.8), (3.14), and the arguments in the previous paragraph, we propose:

U(P) = (P(n) − P(1))×
{
y ∈ R :

∫
ξ∈Ξ

κξ(P̃)fZ̃|ξ(P̃)dW (ξ) ≤
∫
ξ∈Ξ

f(Yµ,Z̃)|ξ(y, P̃)dΛ(ξ)

}
. (3.15)

Under the conditions in the previous paragraph, Theorem 3.1 implies that (3.15) belongs to the

class of asymptotically valid CIs and minimizes the asymptotic expected length (scaled by aK > 0)

within this class.

To calculate (3.15), the only remaining challenge is to find appropriate Lagrangian weights

Λ that ensure asymptotic validity in the limiting problem, as described in (3.10). We tackle this

challenge using a numerical approach developed by Elliott, Müller, and Watson (2015). It is relevant

to emphasize that these Lagrangian weights depend solely on the value of n and, as a result, they

only need to be computed once. For more information on calculating these weights, please refer to

Section A.3.

2Given the intricate nature of the densities, we were unable to prove this result analytically.
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3.2 Inference about the seller’s expected revenue

We now conduct inference on the average of the seller’s expected revenue based on transaction

prices. Since bidders bid their valuation and the transaction price is the second-highest bid, we get

that the seller’s expected revenue in auction j = 1, . . . , n is E[Pj ] = E[V(2),j ], whose average is

πK =
1

n

n∑
j=1

E[V(2),j ]. (3.16)

Given transaction prices P, we consider a CI for πK given by

U(P) ≡ (P(n) − P(1))× Ũ(P̃) + P(1), (3.17)

where P̃ ∈ Σ are the sorted and self-normalized transaction prices in (3.4), and Ũ : Σ→ P(R) is a

CI defined on P̃. By (3.17), the CI U(P) is invariant to the sorting of P, and equivariant to their

location and scale.

The remainder of this section denotes Z2,j = Hξ(E1,j + E2,j), {(E1,j , E2,j) : j = 1, . . . , n} are

i.i.d. standard exponential random variables and Hξ is as in (2.4). We also use Z = {Z2,j : j =

1, . . . , n}, Z(n) = max{Z2,j : j = 1, . . . , n}, Z(1) = min{Z2,j : j = 1, . . . , n}, for j = 1, . . . , N = n−2,

Z̃j =

{ Z(j+1)−Z(1)

Z(n)−Z(1)
if Z(n) > Z(1),

0 if Z(n) = Z(1),

and Z̃ = {Z̃j : j = 1, . . . , N} ∈ Σ. Finally, let Yπ ≡ E[Z2,1]/(Z(n) − Z(1)) and κξ(Z̃) =

E[Z(n) − Z(1)|Z̃]. As in the previous section, the distributions of these random variables are fully

characterized by its tail index ξ. In particular, Lemma A.5 shows that E[Z2,1] = (Γ(2− ξ)− 1)/ξ if

ξ 6= 0, and −1 + γ̄ if ξ = 0, where Γ is the standard Gamma function and γ̄ ≈ 0.577 is the Euler’s

constant. For the remainder of this section, we will use Pξ and Eξ to refer to the probability and

expectation associated with this distribution. The next result provides the asymptotic properties

of the CI in (3.17) as K →∞.

Theorem 3.2. Assume (2.1) holds, and that for some ε > 0 with (1 + ε)ξ < 1, E[|Vi,j |1+ε] < ∞
for all i = 1 . . . ,Kj in auction j = 1, . . . , N . Finally, assume that the CI for πK , U(P), is as in

(3.17) with Ũ : Σ→ P(R) that satisfies the following conditions:

(a) Pξ({Yπ, Z̃} ∈ ∂{(y, h) ∈ R× Σ : y ∈ Ũ(h)}) = 0, where ∂A denotes the boundary of A.

(b) lg(Ũ(h)) <∞ for any h ∈ Σ, where lg(A) denotes the length of A.

(c) For any sequence {h` ∈ Σ}`∈N with h` → h ∈ Σ, lg(Ũ(h`))→ lg(Ũ(h)).

Then, as K →∞,
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1. P (πK ∈ U(P)) → Pξ(Yπ ∈ Ũ(Z̃)),

2. E[lg(U(P))]/aK → Eξ[κξ(Z̃) lg(Ũ(Z̃))].

Following the ideas in Section 3.2, we choose our CI based on the asymptotic behavior in

Theorem 3.2. In particular, we propose to choose Ũ in (3.17) to minimize the asymptotic weighted

length of the CI subject to asymptotic validity, given by

arg min
Ũ∈U

∫
ξ∈Ξ

Eξ[κξ(Z̃) lg(Ũ(Z̃)))]dW (ξ) s.t. Pξ(Yπ ∈ Ũ(Z̃)) ≥ 1− α for all ξ ∈ Ξ, (3.18)

where U denotes the collection of CIs that satisfy the conditions in Theorem 3.2 and W is a

user-defined weight function. The solution to (3.18) is as follows: for every h ∈ Σ,

Ũ(h) =

{
y ∈ R :

∫
ξ∈Ξ

κξ(h)fZ̃|ξ(h)dW (ξ) ≤
∫
ξ∈Ξ

f(Yπ ,Z̃)|ξ(y, h)dΛ(ξ)

}
, (3.19)

where, for every (y, h) ∈ R× Σ, κξ(h)fZ̃|ξ(h) and f(Yπ ,Z̃)|ξ(y, h) are given in Section A.3.

By combining (3.8), (3.14), and the arguments in the previous paragraph, we propose:

U(P) = P(1) + (P(n) − P(1))

×
{
y ∈ R :

∫
ξ∈Ξ

κξ(P̃)fZ̃|ξ(P̃)dW (ξ) ≤
∫
ξ∈Ξ

f(Yπ ,Z̃)|ξ(y, P̃)dΛ(ξ)

}
, (3.20)

Our derivations establish that (3.20) belongs to the class of asymptotically valid CIs and minimizes

the asymptotic expected length (scaled by aK > 0) within this class.

3.3 Inference about the tail index

A key parameter in our asymptotic framework is the tail index ξ ∈ Ξ. The goal of this section is

to conduct inference on this parameter. That is, we are interested in the following hypothesis test:

H0 : ξ ∈ ξ0 v.s. H1 : ξ ∈ Ξ1, (3.21)

where ξ0 is a fixed parameter value in Ξ and Ξ1 = Ξ\{ξ0}.
We divide this section into three subsections. Section 3.3.1 considers the situation where the

alternative hypothesis in (3.21) is simple, while Section 3.3.2 explores the case where this alternative

hypothesis is composite. Finally, Section 3.3.3 applies the methods in previous sections to test the

standard regularity conditions in auction models.
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3.3.1 Simple alternative hypothesis

This section considers the following inference problem:

H0 : ξ = ξ0 v.s. H1 : ξ = ξ1, (3.22)

where ξ0 and ξ1 are distinct parameter values.

By the Neyman-Pearson Lemma, a natural starting point is the likelihood ratio test for the

sorted and self-normalized version of our data. While the likelihood ratio test is unknown in finite

samples, its limiting distribution is provided in Lemma 3.1. This idea yields the following testing

procedure:

ϕ∗(Z) ≡ 1
[
fZ̃|ξ1(Z̃)/fZ̃|ξ0(Z̃) > q(ξ0, ξ1, α)

]
, (3.23)

where the critical value is given by

q(ξ0, ξ1, α) ≡ (1− α)-quantile of fZ̃|ξ1(Z̃0)/fZ̃|ξ0(Z̃0)

and Z̃0 is distributed according to fZ̃|ξ0 . The Neyman-Pearson Lemma implies that (3.23) is the

most powerful level-α test in the limiting problem.

Following the guidance of the asymptotic analysis, our candidate for optimal test follows from

replacing in (3.23) the limiting random variable Z̃ with its data analog P̃, i.e.,

ϕ∗K(P) ≡ 1
[
fZ̃|ξ1(P̃)/fZ̃|ξ0(P̃) > q(ξ0, ξ1, α)

]
. (3.24)

By Lemma 3.1 and standard convergence arguments, (3.24) is asymptotically valid, i.e.,

lim
K→∞

Eξ0 [ϕ∗K(P)] ≤ α, (3.25)

where Eξ denotes the expectation with respect to distribution with tail index ξ. In fact, (3.24)

is asymptotically level α, i.e., (3.25) holds with equality. More interestingly, we can leverage

Müller (2011, Theorem 1) to establish that (3.24) is efficient in the sense of being the asymptot-

ically most powerful test in the class of asymptotically valid and equivariant tests. Formally,

for any asymptotically valid test ϕK(P) (i.e., (3.25) holds with ϕ∗K(P) replaced by ϕK(P)),

lim sup
K→∞

Eξ1 [ϕK(P)] ≤ lim sup
K→∞

Eξ1 [ϕ∗K(P)]. We record these conclusions in the following result.

Theorem 3.3. Assume (2.1) holds. In the hypothesis testing problem in (3.22), the test defined

by (3.24) satisfies the following properties:

1. It is asymptotically valid and level α, i.e., (3.25) holds with equality.

2. It is asymptotically efficient.
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3.3.2 Composite alternative hypothesis

We now turn our attention to the case in which the alternative hypothesis in (3.21) is composite.

Following the ideas used in Section 3.3.1, we consider the feasible version of the efficient test in

the limiting problem. Unfortunately, the limiting problem does not lend itself to the usual tools

to develop uniformly most powerful tests.3 For this reason, we consider tests that maximize the

weighted average power criterion (WAP), following the approach of Wald (1943); Andrews and

Ploberger (1994). To this end, let W denote a user-defined weight function on Ξ1, which the

researcher chooses to reflect the importance attached to the various alternative hypotheses. The

weighting function W effectively transforms the composite alternative into a simple one, allowing

us to focus on the weighted average power:

WAPK(ϕK) ≡
∫

Ξ1

Eξ[ϕK(P̃)]dW (ξ).

As in the previous section, we use the asymptotic behavior to guide the construction of our

hypothesis test. The likelihood ratio test in the limiting problem applied to its data P̃ is given by

ϕ∗K(P) ≡ 1

[∫
Ξ1

fZ̃|ξ(P̃)dW (ξ)/fZ̃|ξ0(P̃) > q(ξ0,W, α)

]
, (3.26)

where the critical value is

q(ξ0,W, α) ≡ (1− α)-quantile of

∫
Ξ1

fZ̃|ξ0(Z̃0)dW (ξ)/fZ̃|ξ0(Z̃0),

and Z̃0 is distributed according to fZ̃|ξ0 . By standard asymptotic arguments, we can establish that

(3.26) is asymptotically valid and level α, i.e.,

lim
K→∞

Eξ0 [ϕ∗K(P)] = α. (3.27)

Moreover, (3.26) is efficient in the sense of maximizing the asymptotic weighted average

power criterion in the class of asymptotically valid and equivariant tests. Formally, for any

test ϕK(P) that is asymptotically valid (i.e., (3.27) holds with ϕ∗K replaced by ϕK), then

lim sup
K→∞

WAPK(ϕK) ≤ lim sup
K→∞

WAPK(ϕ∗K). The next result records these conclusions.

Theorem 3.4. Assume (2.1) holds. In the hypothesis testing problem in (3.21), the test defined

by (3.26) satisfies the following properties:

1. It is asymptotically valid and level α, i.e., (3.27) holds.

2. It is asymptotically efficient.
3In particular, the likelihood ratio statistic is not monotonic, rendering the results in Lehmann and Romano

(2005, Section 3.4) inapplicable.
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3.3.3 Testing the regularity conditions in the auction literature

The auctions literature routinely assumes the regularity condition that fV is continuous, and that

there is a finite maximum valuation (i.e., vH < ∞) with fV (vH) > 0. For examples of this, see

Maskin and Riley (1984), Guerre et al. (2000), and Guerre and Luo (2022). Within our asymptotic

framework, the next result shows that these regularity conditions imply that (2.1) holds with

ξ = −1.

Lemma 3.2. Assume that fV (v)→ fV (vH) > 0 as v ↑ vH <∞. Then, (2.1) holds with ξ = −1.

In light of Lemma 3.2, we can test the regularity conditions used in the auction literature via

the following hypothesis test:

H0 : ξ = −1 v.s. H1 : ξ ∈ Ξ1, (3.28)

where Ξ1 = Ξ\{−1}. In the remainder of this section, we will argue that Ξ = [−1, 0.5] is a suitable

choice for the parameters space for ξ. Since (3.28) is a special case of (3.21) with Ξ1 = (−1, 0.5],

we can implement this test using the procedure in (3.26). For concreteness, we consider uniform

weight W (ξ) = 1[ξ ∈ (−1, 0.5]]. By Theorem 3.4, our proposed test is asymptotically valid, level-α,

and efficient.

We now justify choosing Ξ = [−1, 0.5] as the parameter space for the test. We rely on the

so-called von Mises’ condition to interpret the different values of ξ. de Haan and Ferreira (2006,

Theorem 1.1.8) states this condition and shows that it is a sufficient condition for (2.1). Under the

von Mises’ condition and that f ′V is bounded, we have three possible cases:

1. fV (v)→ fV (vH) > 0 as v → vH <∞ implies that ξ = −1.

2. fV (v)→ fV (vH) = 0 as v → vH <∞ implies that ξ ∈ (−1, 0].

3. fV (v)→ fV (vH) = 0 as v → vH =∞ implies that ξ > 0.

A few remarks are in order. First, as expected, Case 1 aligns with the findings of Lemma 3.2.

Second, we note that de Haan and Ferreira (2006, Theorem 2.1.2) shows that vH <∞ if and only

if ξ ≤ 0. Cases 2 and 3 then follow from derivations in de Haan and Ferreira (2006, page 18) and

Falk, Hüsler, and Reiss (1994, Theorem 2.1.2). Since these three cases are exhaustive, we deduce

that ξ ≥ −1. Finally, if we also impose that V has second moments, de Haan and Ferreira (2006,

page 176) implies that ξ ≤ 1/2. Combining these restrictions, we conclude that Ξ = [−1, 0.5] is a

suitable parameter space for ξ.

Figure 1 presents the asymptotic rejection probabilities of (3.26) for the hypothesis testing

problem in (3.28). The proposed test is asymptotically valid under H0 : ξ = −1 and has nontrivial

power properties underH1, with asymptotic rejection rates that increase when either ξ or n increase.
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It is worth noting that Figure 1 only shows the asymptotic properties (as K →∞) of our test. We

explore the finite sample properties of our methodology via simulations in Section 6.
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Figure 1: Asymptotic rejection probabilities of the hypothesis testing procedure in (3.26) with
α = 5% for the hypothesis testing problem in (3.28).

4 First-price auctions

We now consider first-price sealed-bid actions, in which the highest bidder gets the object and

pays the highest bid. This type of auction is strategically equivalent to an open descending price

(or Dutch) auction (see Krishna (2009, page 4)). By standard arguments (e.g., Krishna (2009,

Proposition 2.2)), the symmetric equilibrium strategy for a bidder with valuation v in an auction

with Kj participants is to bid βj(v) ≡ E[V̌(1),j |V̌(1),j < v], where V̌(1),j denotes the highest bid

among the remaining (Kj − 1) participants. Note that

βj(v)
(1)
=

Kj − 1

FV (v)Kj−1

∫ v

vL

uFV (u)Kj−2fV (u)du
(2)
= v −

∫ v
vL
FV (u)Kj−1du

FV (v)Kj−1
, (4.1)

where (1) holds by computing E[V̌(1),j |V̌(1),j < v] using the fact that the remaining (Kj − 1)

participants have a common valuation distribution with PDF fV , and (2) by integration by parts.

Since β(v) is increasing, the auction is won by the highest-valuation bidder, with a transaction

price equal to

Pj = V(1),j −
∫ V(1),j
vL

FV (u)Kj−1du

FV (V(1),j)
Kj−1

. (4.2)
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Lemma A.7 uses (4.2) to deduce that

{Pj − bK
aK

: j = 1, . . . , n
}

d→ {Xj : j = 1, . . . , n}, (4.3)

where, for each j = 1, . . . , n,

Xj ≡ Hξ(E1,j)−
∫ Hξ(E1,j)
−∞ Gξ(h)dh

Gξ(Hξ(E1,j))
, (4.4)

with Gξ is as in (2.2), and {(aK , bK) ∈ R++ × R : K ∈ N}, {E1,j : j = 1, . . . , n}, and Hξ are as

specified in Lemma 2.1.

As in Section 3, the statement in (4.3) cannot be directly used for inference as it requires the

unknown normalizing constants {(aK , bK) ∈ R++×R : K ∈ N}. Nevertheless, we can reiterate the

idea of considering sorted and self-normalized prices in (3.4); for j = 1, . . . , N = n− 2 ≥ 1, let

P̃j ≡
{ P(j+1)−P(1)

P(n)−P(1)
if P(n) > P(1)

0 if P(n) = P(1),
(4.5)

and let P̃ = {P̃j : j = 1, . . . , N} ∈ Σ. The next result characterizes the asymptotic distribution of

P̃ as K →∞.

Lemma 4.1. Assume (2.1) holds. For any N ∈ N, and as K →∞,

P̃ = {P̃j : j = 1, . . . , N} d→ X̃ = {X̃j : j = 1, . . . , N}, (4.6)

where X̃ = {X̃j : j = 1, . . . , N} ∈ Σ is obtained as follows: for j = 1, . . . , N = n− 2 ≥ 1,

X̃j ≡
{ X(j+1)−X(1)

X(n)−X(1)
if X(n) > X(1)

0 if X(n) = X(1),
(4.7)

with {Xj : j = 1, . . . , n} is i.i.d. according to (4.4).

Given that the random variable in (4.4) is informative about the tail EV index ξ, Lemma

4.1 implicitly reveals that the asymptotic distribution of P̃ can be used to conduct inference on

functions of ξ. From this point onward, the remainder of this section is analogous to that of Section

3. The main difference is that the explicit PDF of the asymptotic distribution of P̃ in Lemma 3.1

is replaced by the implicit distribution in Lemma 4.1.

4.1 Inference about the winner’s expected utility

Our goal is to conduct inference on the average of the winner’s expected utility using the transaction

prices. Since bidders act according to (4.1), the auction is won by the bidder with the highest
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valuation. From here, we conclude that the winner’s expected utility in auction j = 1, . . . , n is

E[V(1),j − Pj ], whose average is

µK =
1

n

n∑
j=1

E
[∫ V(1),j
−∞ FV (u)Kj−1du

FV (V(1),j)
Kj−1

]
. (4.8)

By the Revenue Equivalence Theorem (e.g., Krishna (2009, Section 3)), µK coincides with the

average of the winner’s expected utility in second-price auctions.

The construction of the CI for µK closely follows the arguments and derivations presented in

Section 3.1. In particular, we propose a CI for µK given by

U(P) = (P(n) − P(1))×
{
y ∈ R :

∫
ξ∈Ξ

κξ(P̃)fX̃|ξ(P̃)dW (ξ) ≤
∫
ξ∈Ξ

f(Yµ,X̃)|ξ(y, P̃)dΛ(ξ)

}
, (4.9)

where P̃ = {P̃j : j = 1, . . . , N} with P̃j as in (4.5), X̃ = {X̃j : j = 1, . . . , N} as in (4.7),

κξ(h) = E[X(n) −X(1)|X̃ = h], and Yµ = E[
∫ X1,j

−∞ Gξ(u)du/Gξ(X1,j)]/(X(n) −X(1)). By repeating

arguments in Section 3.2, (4.9) belongs to the class of asymptotically-valid CIs and minimizes the

asymptotic expected length within this class. See Theorem A.1 in the appendix for a statement of

this result.

Unfortunately, implementing the CI in (4.9) is considerably more challenging than in the case

of second-price auctions. The main reason is that there is no closed-form expression for the PDF

of X̃ available for first-price auctions. Without these, we cannot easily compute κξ(h)fX̃|ξ(h) and

f(Yµ,X̃)|ξ(y, h) for (y, h) ∈ R × Σ. To sidestep this issue, we use a numerical approximation to the

problem based on a Taylor series expansion. See Section A.3 for a detailed explanation.

4.2 Inference about the seller’s expected revenue

We now conduct inference on the average of the seller’s expected revenue using transaction prices.

Since bidders act according to (4.1) and the transaction price equals the highest bid, the average

of the seller’s expected revenue is given by

πK =
1

n

n∑
j=1

E
[
V(1),j −

∫ V(1),j
−∞ FV (u)Kj−1du

FV (V(1),j)
Kj−1

]
. (4.10)

Reiterating arguments in Section 3.2, we propose a CI for µK given by

U(P) = P(1) + (P(n) − P(1))

×
{
y ∈ R :

∫
ξ∈Ξ

κξ(P̃)fX̃|ξ(P̃)dW (ξ) ≤
∫
ξ∈Ξ

f(Yπ ,X̃)|ξ(y, P̃)dΛ(ξ)

}
, (4.11)
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where Yπ = E[X1,j −
∫ X1,j

−∞ Gξ(h)dh/Gξ(X1,j)]/(X(n) −X(1)) and the rest of the objects are as in

Section 4.1. By the same arguments in Section 3.2, (4.9) belongs to the class of asymptotically

valid CIs and minimizes the asymptotic expected length within this class. See Theorem A.2 in the

appendix for a statement of this result.

Implementing the CI in (4.11) suffers from the computational issues elaborated in Section 4.1,

which we avoid via numerical approximations. Once again, see Section A.3 for details.

4.3 Inference about the tail index

Finally, we consider the problem of inference about the tail index using transaction prices from

first-price auctions. As in Section 3.3, we are interested in the following hypothesis test:

H0 : ξ ∈ ξ0 v.s. H1 : ξ ∈ Ξ1, (4.12)

where ξ0 is a fixed parameter value in Ξ and Ξ1 = Ξ\{ξ0}. For brevity, we only focus on the case

when the alternative hypothesis in (4.12) is composite. By our previous arguments, we propose

using the feasible version of the generalized likelihood ratio test in the limiting problem, i.e.,

ϕ∗K(P) ≡ 1

[∫
Ξ1

fX̃|ξ(P̃)dW (ξ)/fX̃|ξ0(P̃) > q(ξ0,W, α)

]
, (4.13)

where P̃, X̃, and κξ(h) are as in Section 4.1, W is the user-defined weight function on Ξ1, and

q(ξ0,W, α) is the critical value of the likelihood ratio test in (4.12), i.e.,

q(ξ0,W, α) ≡ (1− α)-quantile of

∫
Ξ1

fX̃|ξ0(X̃0)dW (ξ)/fX̃|ξ0(X̃0).

and X̃0 is a random vector with PDF fX̃|ξ0 . By our previous arguments, it follows that (4.13)

is asymptotically valid and asymptotically level α, and efficient in the sense of maximizing the

asymptotic weighted average power criterion in the class of asymptotically valid and equivariant

tests. See Theorem A.3 in the appendix for a statement of this result. The implementation of the

hypothesis test in (4.13) suffers from the aforementioned computational issues, and is addressed by

the approximation described in Section A.3.

To conclude, we note that the arguments presented in Section 3.3.3 indicate that the hypothesis

test in (4.12) can be applied to test the standard regularity conditions in the auctions literature.

This can be achieved by conducting the hypothesis test in (4.12) with ξ0 = −1 and Ξ1 = (−1, 0.5].
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5 Extensions

Our analysis thus far considers an IPV setup and does not allow the seller to use a reserve price.

This section briefly explains how our analysis can be extended beyond these features.

5.1 Beyond the IPV setup

According to Section 2, the Kj bidders in auction j = 1, . . . , n have IPV distributed according to

a common CDF FV . The auctions may differ in the number of potential bidders, but these are

assumed to coincide asymptotically in the sense that Kj/K → 1 with K ≡ min{K1, . . . ,Kn}.
The IPV assumption may be restrictive in certain empirical settings. For example, consider

the case where the Kj bids in auction j depend on an auction-specific feature Aj . In this context,

it is plausible that auctions are independent and, conditional on Aj , the Kj bids in auction j are

independent and distributed according to a common CDF FV |Aj . This is known as the conditional

IPV model, and it is an extension of the standard IPV setup that allows for heterogeneity across

auctions and (unconditional) dependence among private values within an auction. See Li, Perrigne,

and Vuong (2000) for a discussion of the conditional IPV model. As we now explain, it is possible

to adapt our methodology to the conditional IPV setup.

First, consider the case in which the auction-specific features {Aj : j = 1, . . . , n} are observed.

In this case, one can always apply our analysis to collections of auctions that have the same (or

similar) feature value, which we refer to as clusters. One can apply the analysis to each cluster

with more than three auctions without any modification. This extension illustrates one of the

advantages of our methodology, as it does not require the number of auctions to diverge.

Second, consider the case in which {Aj : j = 1, . . . , n} are unobserved. If so, it is still possible

to implement inference based on our asymptotic framework provided that we observe at least

three bids from each action. The basic insight is to treat each auction as its own cluster (in

the sense of the previous paragraph), which naturally satisfies the IPV model in Section 2. For

illustration, we consider the second-price auctions, in which bidders declare their true valuations.

Suppose that for auction j = 1, . . . , n we observe m ≥ 3 bids {P(k1),j , P(k2),j , . . . , P(km),j} for

known indices (k1, k2, . . . , km) ∈ N, which are in increasing order without loss of generality (i.e.,

k1 < k2 < . . . < km). These bids need not be consecutive (i.e., ku+1 need not equal ku + 1 for

u = 1, . . . ,m− 1) or include the maximum in the auction (i.e., km need not equal m). Given that

the bids belong to the same auction, the unobserved auction-specific feature Aj is conditioned upon

in these data. By repeating the arguments in Lemma 2.1, it follows that, as K →∞,

(P(k1),j − bK,j
aK,j

, · · · ,
P(km),j − bK,j

aK,j

)
d→

(
Hξj

(
k1∑
s=1

Es,j

)
, · · · , Hξj

(
km∑
s=1

Es,j

))
, (5.1)

where {(aK,j , bK,j) ∈ R++ × R : K ∈ N} are auction-specific normalizing constants, Hξj (·) is
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defined in (2.4) with auction-specific EV index ξj ≡ ξ(Aj), and {Es,j : s = 1, . . . , km} are i.i.d.

standard exponential random variables. Given these bids, we can construct the auction-specific

self-normalized statistics: for u = 1, . . . ,M ≡ m− 2 ≥ 1,

P̃u,j ≡

{ P(ku+1),j
−P(k1),j

P(km),j−P(k1),j
if P(km),j > P(k1),j

0 if P(km),j = P(k1),j ,

and let P̃j = {P̃u,j : u = 1, . . . ,M} ∈ Σ ≡ {h ∈ [0, 1]M : 0 ≤ h1 ≤ · · · ≤ hM ≤ 1}. We can then

derive the asymptotic distribution of P̃j as K → ∞ from (5.1). If we observe multiple bids from

several independent auctions, we can combine the self-normalized statistics P̃j for j = 1, . . . , J for

further analysis. Since auctions are independent, the limiting distribution of the combined self-

normalized statistics is the product of their limiting distributions. We can then test hypotheses

about these auctions similar to the one in our paper. In addition, we can test the homogeneity of

the J auctions (i.e., ξ(Aj) = ξ for all j = 1, . . . , J) by using a generalized likelihood ratio test.

5.2 Reserve price

Our analysis can be adapted to allow for the presence of a reserve price r set by the seller. For

concreteness, we assume that r ∈ (vL, vH). By setting a reserve price, the seller reserves the right

not to sell the object if the price determined in the auction is below this price. Krishna (2009,

Section 2.5) analyses the effect of the reserve price on the equilibrium bidding behavior. In second-

price auctions, bidders still have a weakly dominant strategy to bid their valuation, i.e., (3.1)

holds. In first-price auctions, the symmetric equilibrium strategy for a bidder with valuation v in

an auction with Kj participants and reserve price r is to bid βj(v) ≡ E[max{V̌(1),j , r}|V̌(1),j < v],

where V̌(1),j denotes the highest bid among the remaining (Kj − 1) participants. By repeating

arguments used in Section 4, we can show that the resulting formula for βj(v) is as in (4.1) but

with vL replaced by r.

These results imply that reserve prices do not affect the asymptotic distribution of the trans-

action prices in our asymptotic framework. That is, reserve prices have no effect on Lemmas 3.1

and 4.1, or any of the subsequent asymptotic results. Since vL does not appear on our asymptotic

distributions, these remain unaltered when vL is replaced by r. Intuitively, the asymptotic behavior

of transaction prices with K →∞ is naturally focused on the upper tail of the valuation distribu-

tion (i.e., valuations in the neighborhood of vH), which remains unaffected by the introduction of

a reservation price r < vH .

The fact that reserve prices do not affect the asymptotic analysis is a by-product of our limiting

framework in which K →∞ and r < vH . If one were interested in making reserve prices a salient

feature in the asymptotic analysis, one would need to consider an asymptotic framework in which

the reserve prices approach vH as K → ∞. (As with any other asymptotic analysis, this is not
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meant to be taken literally, but rather as an approximation to a finite-sample situation in which

K is large and r is relatively close to vH). We decided to omit the results under this alternative

asymptotic framework for brevity, but these are available upon request.

6 Monte Carlo simulations

This section investigates the finite sample performance of our proposed inference methods using

Monte Carlo simulations. We also compare their performance with other inference methods that

rely on the standard asymptotic framework with a divergent number of auctions. For brevity,

we concentrate on simulations for second-price auctions. The corresponding results for first-price

auctions are provided in the supplementary material.

We first consider the problem of inference about the winner’s expected utility using only trans-

action prices. Each simulated dataset consists of n independent second-price auctions where auction

j = 1, . . . , n has K bidders with independent valuations distributed according to a distribution FV .

As explained in Section 3.1, our parameter of interest is the average winner’s expected utility across

auctions, given by µK = 1
n

∑n
j=1E[V(1),j − V(2),j ]. We conduct simulations with four distributions

for FV : (a) the standard uniform distribution over [0, 3], (b) the absolute value of standard Normal,

(c) the absolute value of Student-t(20), and (d) the Pareto distribution with exponent 0.25. These

distributions satisfy condition (2.1) with ξ = −1, 0, 0.05, and 0.25, respectively.

In our simulations, we set the number of auctions to n = 10 or n = 100. For each one of

these n auctions, we set the number of bidders to either K = 10, K = 100, or to a random

number to a uniformly distributed integer in {90, 91, . . . , 110}. This generates six possible designs

for (n,K), and includes combinations that are better approximated by our asymptotic framework

with a growing number of bidders (e.g., n = 10 and K = 100 or K ∈ {90, 91, . . . , 110}), but also

others that are better aligned to the traditional asymptotic framework with an increasing number

of auctions (e.g., n = 100 and K = 10). Our results are based on S = 500 independent datasets.

Finally, we set the significance level equal to α = 5% throughout this section.

We now describe the three CIs that we consider for µK :

(i) This is our proposed CI in Section 3.1. The method is implemented by constructing U(P)

in (3.15) with Ξ = [−1, 0.5] and W equal to the uniform distribution over this interval. As

already explained, the validity of this CI is based on asymptotics as K →∞.

(ii) A CI based on observing the two highest bidders in each auction. We note that this approach

is infeasible in our data setting (we only observe transaction prices), but we take it as a

benchmark for any method that relies on the traditional asymptotics with n → ∞. These

data allow us to compute Dj ≡ B(1),j − B(2),j for each auction j = 1, . . . , n. In turn, this

enables us to test H0 : µK = b using the t-statistic
√
n(D̄n − b)/sn with D̄n =

∑n
j=1Dj/n
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and s2
n =

∑n
j=1(Dj − D̄n)2/(n− 1). One can then construct a CI by standard asymptotic

approximations based on n→∞.

(iii) A bootstrap-based CI. To implement this idea, we first need to express µK as a function of the

distribution of transaction prices (further details are provided in Section A.5). By replacing

this distribution with a suitable estimator, one can consistently estimate µK . In addition,

one can repeat this process using bootstrap samples to construct a CI for µK . The method

is implemented with 500 bootstrap samples. The validity of this method relies on standard

asymptotic arguments with n → ∞. For references using this type of CI, see Bajari and

Hortaçsu (2003) and Haile and Tamer (2003).

Table 1 presents the average coverage and length of the three CIs. We summarize the findings as

follows. First, our proposed CI exhibits excellent coverage properties across all data configurations.

As one would expect, in scenarios where K is significantly larger than n, our empirical CI coverage

closely approximates the desired level. On the other hand, when n is considerably larger than K,

our proposed CI exhibits slight overcoverage, especially when valuations are distributed according

to U(0, 3). Second, the CI based on the two highest bids and n → ∞ are relatively shorter

and tend to suffer from slight undercoverage, especially when n is small or valuations are Pareto

distributed. Finally, the bootstrap-based CI tends to suffer significant undercoverage problems.

We attribute this to the fact that n ∈ {10, 100} is insufficient to guarantee accuracy based on

asymptotic arguments as n→∞.

Next, we consider the problem of hypothesis testing the value of the tail index based on trans-

action prices. Motivated by Section 3.3.3, we focus on H0 : ξ = −1 vs. H1 : ξ ∈ (−1, 0.5], with W

equal to the uniform distribution over this interval. As explained, the validity of this method is

based on asymptotics as K →∞. We consider the same four distributions for FV : (a) the standard

uniform distribution over [0, 3], (b) the absolute value of standard Normal, (c) the absolute value of

Student-t(20), and (d) the Pareto distribution with exponent 0.25. The first distribution satisfies

H0 : ξ = −1, while the other three belong to H1 with ξ = 0, 0.05, and 0.25, respectively.

Table 2 presents the empirical rejection rate of the test proposed in Section 3.3.3 over 500

simulations using a nominal size of 5%. Under H0 (i.e., when valuations are U(0, 3)), our proposed

test controls size as long as the number of bidders is not too small relative to the sample size.

Under H1 (i.e., when valuations are not U(0, 3)), our methodology provides reasonable power.

7 Empirical illustration

This section illustrates our new inference method using auction data for vehicle license plates in

Hong Kong. Since 1973, the Hong Kong government has employed standard oral ascending auctions

to auction license plates. As mentioned in Section 3, this auction format is weakly equivalent to
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# Bidders K = 10 K = 100 K ∼ U{90, 91, . . . , 110}

# Auctions n = 10 n = 100 n = 10 n = 100 n = 10 n = 100

Dist. Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth

Method (i): Our proposed CI, asy. with K →∞

U(0, 3) 0.98 0.72 0.96 0.09 0.98 0.30 0.99 0.13 0.97 0.30 0.98 0.13

|N(0, 1)| 0.95 1.54 0.97 0.29 0.94 1.20 0.98 0.23 0.92 1.21 0.97 0.23

|t(20)| 0.93 1.74 0.97 0.37 0.94 1.52 0.98 0.35 0.93 1.49 0.99 0.35

Pa(0.25) 0.96 1.45 0.99 0.62 0.95 2.62 0.98 1.11 0.95 2.62 0.98 1.10

Method (ii): CI based on two highest bids, asy. with n→∞

U(0, 3) 0.86 0.28 0.94 0.10 0.83 0.03 0.93 0.01 0.88 0.03 0.88 0.01

|N(0, 1)| 0.89 0.46 0.94 0.16 0.88 0.35 0.96 0.12 0.88 0.35 0.95 0.12

|t(20)| 0.89 0.55 0.92 0.19 0.86 0.48 0.92 0.17 0.87 0.47 0.93 0.17

Pa(0.25) 0.81 0.76 0.90 0.30 0.80 1.34 0.90 0.51 0.78 1.35 0.88 0.51

Method (iii): CI based on bootstrap, asy. with n→∞

U(0, 3) 0.66 0.22 0.93 0.08 0.67 0.03 0.95 0.01 0.68 0.03 0.94 0.01

|N(0, 1)| 0.04 0.22 0.23 0.11 0.05 0.15 0.20 0.08 0.05 0.15 0.18 0.08

|t(20)| 0.02 0.24 0.15 0.13 0.04 0.19 0.13 0.11 0.03 0.19 0.14 0.11

Pa(0.25) 0.00 0.17 0.06 0.15 0.01 0.31 0.05 0.25 0.00 0.30 0.05 0.25

Table 1: Empirical coverage frequency (Cov) and length (Lgth) of various CIs for the winner’s
expected utility µK in second-price auctions. The results are the average of 500 simulation draws
and a nominal coverage level of 95%.

a second-price auction. The dataset was provided by Ng, Chong, and Du (2010), who obtained

it from the Hong Kong Transport Department. The data include a detailed description of 292

license plate auctions conducted from 1997 to 2009, resulting in the sale of a total of 40,000 license

plates. Given the substantial size of the auction venue and the rapid increase in the number of

registered private cars in Hong Kong, it is reasonable to assume that a significant number of bidders

participated in these auctions. On average, each one of these auctions sells more than a hundred

different plates sequentially. In terms of our asymptotic framework, we treat each one of these

license plates as an individual instance of a second-price auction with a large number of bidders.

While the dataset includes numerous individual instances of license plate auctions, there is

significant heterogeneity among them. In fact, the main finding in Ng et al. (2010) is that certain

plates are more valuable due to superstition. To account for this observed heterogeneity, we focus

on ordinary license plates that meet specific criteria: letters are not ‘HK’, letters are not the same

(e.g., not AA, BB, CC, etc.), the numbers on the plate are not in order (e.g., not 1369), or in
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# Bidders K = 10 K = 20 K = 100 K ∼ U{90, 91, . . . , 110}

# Auctions n = 10 n = 100 n = 10 n = 100 n = 10 n = 100 n = 10 n = 100

U(0, 3) 0.06 0.35 0.05 0.14 0.04 0.05 0.03 0.04

|N(0, 1)| 0.42 1.00 0.46 1.00 0.48 1.00 0.45 1.00

|t(20)| 0.46 1.00 0.48 1.00 0.54 1.00 0.51 1.00

Pa(0.25) 0.73 1.00 0.71 1.00 0.68 1.00 0.66 1.00

Table 2: Empirical rejection rate of the test proposed in Section 3.3.3 forH0 : ξ = −1 in second-price
auctions. The results are the average of 500 simulation draws and a nominal size of 5%.

reverse order (e.g., not 9631), the number part of the plate has 4 digits, and none of these digits

is an 8 or a 4 (considered fortunate or unfortunate), and the transaction price exceeds the reserve

price. After imposing these restrictions, we are left with 318 license plates sold from 1997 until

2008. These data are further divided by year, allowing valuation distributions to vary over time.

This results in 12 separate datasets, one for each year from 1997 to 2008, with an average of 26.5

auctions per year. We assume that the selected auctions within each year are homogeneous, with

a large and relatively constant number of bidders. Under these conditions, we can implement our

methods for each one of these years.

Table 7 displays the confidence intervals for the expected utility of the winner and the p-values

of the test (3.26) with a null hypothesis H0 : ξ = −1 using data from each year. Our analysis reveals

several interesting empirical observations. First, the expected utility of the winner is economically

substantial, with the midpoints of the 95% confidence intervals ranging from approximately 1,500

to 7,000 HKDs (equivalent to 192 to 895 USD at the current exchange rate). Prior to 2006, the

average confidence interval had a midpoint of approximately 3,500 HKDs and a width of around

4,500 HKDs. After 2006, these figures were reduced to 1,600 HKDs and 2,300 HKDs, respectively.

We speculate that these differences could be attributed to the introduction of special license plates

in these auctions in 2006. Third, the hypothesis of ξ = −1 is strongly rejected for all years.

This suggests that the standard regularity conditions imposed by traditional inference methods in

auction literature do not hold in this dataset.

8 Conclusions

This paper considers the problem inference for first-price or second-price sealed-bid auctions with

many bidders with symmetric independent private values. In this context, we present a novel

asymptotic framework where the number of bidders increases significantly while the number of

auctions remains small and fixed. This approach differs from the more conventional approach with

a divergent number of auctions, while the number of bidders remains fixed. We argue that our
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year n
95% CI p-value for

year n
95% CI p-value for

for µK H0 : ξ = −1 for µK H0 : ξ = −1

1997 26 [2.23 , 9.23] 0.00 2003 46 [0.82 , 2.98] 0.00

1998 27 [1.71 , 7.29] 0.00 2004 12 [0.69 , 5.59] 0.00

1999 32 [1.22 , 5.72] 0.00 2005 22 [0.61 , 3.83] 0.00

2000 29 [1.58 , 6.63] 0.00 2006 17 [0.12 , 1.69] 0.00

2001 34 [1.23 , 4.71] 0.00 2007 31 [0.69 , 3.07] 0.00

2002 18 [1.02 , 6.30] 0.00 2008 24 [0.58 , 3.54] 0.00

Table 3: 95% CIs for the winner’s expected utility (in 1,000 HKDs) and p-values for the test in
(3.26) for H0 : ξ = −1 in Hong Kong car license plate auctions.

results provide an accurate approximation in auction settings where the number of bidders is large

relative to the number of auctions. This framework is especially well-suited for applications with

substantial heterogeneity across auctions, where only a few truly homogeneous auctions exist.

Within our novel asymptotic framework, we introduce new inference methods for the expected

utility of the auction winner, the expected revenue for the seller, and the tail behavior of the

valuation distribution. We show that the latter can serve as a means to test the validity of the

regularity conditions typically imposed in auction literature (e.g., bounded valuation support and

nonzero density at the upper end of the support). Our data requirements are minimal; our tests

only necessitate observing transaction prices from a fixed and finite number of auctions. That is,

we do not require observing multiple bids from these auctions or the number of bidders.

Our methodology relies on the fact that, as the number of bidders grows, the transaction prices

reveal the tail properties of the valuation distribution. This information is sufficient to provide

asymptotically valid inference for the above-mentioned objects of economic interest. Within our

asymptotic framework, our inference methods are shown to control size and have desirable power

properties. We demonstrate through Monte Carlo simulations that our methodology provides an

accurate approximation in finite samples.

A Appendix

The appendix is organized as follows. Section A.1 collects all of the proofs omitted from the main

text. Section A.2 gives intermediate results. Section A.3 provides computational details omitted

from the main text. Section A.4 presents additional Monte Carlo simulations, focusing on first-price

auctions. Finally, Section A.5 provides auxiliary derivations related to the Monte Carlo simulations.
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A.1 Proofs of results in the main text

Proof of Lemma 2.1. By independence across auctions, it suffices to prove that for any auction

j = 1, . . . n and as K →∞,

(V(1),j−bK
aK

, . . . ,
V(d),j−bK

aK

) d→
(
Hξ(E1,j), . . . , Hξ

(∑d

s=1
Es,j

))
, (A.1)

where {Es,j : s = 1, . . . , d} are i.i.d. standard exponential random variables.

Let x be any continuity point of Gξ. Since Kj → ∞ as K → ∞, (2.1) implies that there is a

sequence of constants {(aKj , bKj ) ∈ R++ × R : Kj ∈ N} such that

lim
K→∞

F (aKjx+ bKj )
Kj = Gξ(x) as K →∞. (A.2)

Under (A.2), de Haan and Ferreira (2006, Theorem 2.1.1), implies that as K →∞,

Ψj ≡
(V(1),j−bKj

aKj
, . . . ,

V(d),j−bKj
aKj

) d→
(
Hξ(E1,j), . . . , Hξ

(∑d

s=1
Es,j

))
. (A.3)

Note that

(V(1),j−bK
aK

, . . . ,
V(d),j−bK

aK

)
= Ψj

aKj
aK

+
( bK−bKj

aK
, . . . ,

bK−bKj
aK

)
. (A.4)

By (A.3) and (A.4), (A.1) follows from showing that

lim
K→∞

(aKj
aK

,
bKj−bK
aK

)
= (1, 0). (A.5)

We devote the remainder of this proof to establish (A.5).

Let x be any continuity point of Gξ. By (A.2) and Kj/K → 1 as K →∞,

lim
K→∞

F (aKjx+ bKj )
K = Gξ(x) as K →∞. (A.6)

Under (2.1) and (A.6), de Haan (1976, Lemma 1) implies that for all y ∈ R,

Gξ
(

lim
K→∞

(aKj
aK

y +
bKj−bK
aK

))
= Gξ(y). (A.7)

Regardless of ξ, there is a continuum of values for which Gξ is strictly increasing and, thus, invert-

ible. For any y in this continuum, (A.7) implies that

lim
K→∞

aKj
aK

y +
bKj−bK
aK

= y. (A.8)

From this observation, (A.5) follows.
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Proof of Lemma 3.1. This result follows from Lemma 2.1, Lemma A.1, and the continuous mapping

theorem.

Proof of Theorem 3.1. Part 1. By (3.2) and Lemma 2.1, as K →∞,

{(V(1),j−Pj
aK

,
Pj−bK
aK

)
: j = 1, . . . , N

} d→ {(Z1,j − Z2,j , Z2,j) : j = 1, . . . , N}. (A.9)

Let δ > 0 and K̄ ∈ N be as in Lemma A.2. Then, for all j = 1, . . . , N and K > K̄,

E
[
|V(1),j−PjaK

|1+δ
] (1)

= E
[
|V(1),j−V(2),jaK

|1+δ
]
≤ 2δ

(
E
[
|V(1),j−bKaK

|1+δ + |V(2),j−bKaK
|1+δ

]) (2)
< ∞, (A.10)

where (1) holds by (3.1) and (3.2), and (2) by Lemma A.2. By (3.7), (A.9), and (A.10), as K →∞,

{µK
aK
,
{(Pj−bK

aK

)
: j = 1, . . . , N

}} d→ {E[Z1,1 − Z2,1], {Z2,j : j = 1, . . . , N}}, (A.11)

where we have used that Z1,1 − Z2,1
d
= Z1,j − Z2,j for all j = 1, . . . , n. Define

RK ≡
{ µK

P(n)−P(1)
if P(n) 6= P(1),

0 if P(n) = P(1).
(A.12)

By (A.11), (A.12), Lemma A.1, and the continuous mapping theorem, we have that, as K →∞,

{RK , P̃}
d→ {Yµ, Z̃}. (A.13)

Next, consider the following derivation as K →∞.

P (µK ∈ U(P)) = P ({µK ∈ U(P)} ∩ {P(n) 6= P(1)}) + P ({µK ∈ U(P)} ∩ {P(n) = P(1)})
(1)
= P ({µK ∈ (P(n) − P(1))× Ũ(P̃)} ∩ {P(n) 6= P(1)}) + o(1)

(2)
= P ({RK ∈ Ũ(P̃)} ∩ {P(n) 6= P(1)}) + o(1)

(3)
= P (RK ∈ Ũ(P̃)) + o(1)

= P ({RK , P̃} ∈ {(y, h) ∈ R× Σ : y ∈ Ũ(h)}) + o(1)

(4)→ P ({Yµ, Z̃} ∈ {(y, h) ∈ R× Σ : y ∈ Ũ(h)})

= P (Yµ ∈ Ũ(Z̃)),

as desired, where (1) holds by (3.8) and Lemma A.1, (2) holds because (A.12) implies that {µK ∈
(P(n) − P(1)) × Ũ(P̃)} = {RK ∈ Ũ(P̃)} under P(n) 6= P(1), (3) by Lemma A.1, and (4) by (A.13),

Assumption (a), and the Portmanteau Theorem.
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Part 2. By similar arguments as those used in the proof of Lemma 3.1, we have that, as K →∞,

{(P(n) − P(1))/aK , P̃}
d→ {Z(n) − Z(1), Z̃}. (A.14)

By (A.14), Assumption (c), and the continuous mapping theorem, we have that, as K →∞,

((P(n) − P(1))/aK)× lg(Ũ(P̃))
d→ (Z(n) − Z(1))× lg(Ũ(Z̃)). (A.15)

Let δ > 0 and K̄ ∈ N be as in Lemma A.2. Then,

|P(n) − P(1)|1+δ ≤ (
n∑

l,m=1

|Pl − Pm|)1+δ

(1)
= (

n∑
l,m=1

|V(2),l − V(2),m|)1+δ

≤ (2n)1+δ
n∑
l=1

|V(2),l − bK |1+δ, (A.16)

where (1) holds by (3.2). Then, for all K > K̄,

E[| (P(n)−P(1))

aK
lg(Ũ(P̃))|1+δ]

(1)

≤ (2n)1+δ
n∑
l=1

E
[
|V(2),l−bKaK

|1+δ| lg(Ũ(P̃))|1+δ
] (2)
< ∞, (A.17)

where (1) holds by (A.16), and (2) by Assumption (b), lg(Ũ(h)) ≥ 0 for all h ∈ Σ, and Lemma A.2.

Then, consider the following derivation as K →∞.

E[lg(U(P))/aK ]
(1)
= E[((P(n) − P(1))/aK)× lg(Ũ(P̃))]

(2)→ E[(Z(n) − Z(1))× lg(Ũ(Z̃))]

= Eξ[κξ(Z̃)× lg(Ũ(Z̃))],

as desired, where (1) holds by (3.8), and (2) by (A.15) and (A.17).

Proof of Theorem 3.2. This proof follows from the same arguments as in Theorem 3.1. The main

difference between the proofs is that the vector {(V(1),j − Pj) : j = 1, . . . , N} is replaced by

{(Pj − bK) : j = 1, . . . , N}, which then implies that (πK − bK) and Yµ are replaced by µK and Yπ,

respectively. With these changes in place, the desired result follows from repeating the steps used

to prove Theorem 3.1.

Proof of Theorem 3.3. This proof follows from applying Müller (2011, Theorem 1) based on the

convergence result in Lemma 3.1. To apply these results in that paper, we specify the connection

between our object and the relevant objects in that paper: the class of DGPs satisfying (2.1) take
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the role of M, K →∞ takes the role of T →∞, j = 1, . . . , n the role of i = 1, . . . , n, {ξ0} the role

of Θ0, {ξ1} the role of Θ1, P the role of YT , P̃ the role of XT , Σ the role of S, the self-normalizing

transformation {(Pj−P(1))/(P(n)−P(1))}Nj=1 : P→ Σ the role of hT , Z̃ the role of X, ϕ̃∗(Z̃) ≡ ϕ∗(Z)

the role of ϕS(Y ), ϕ∗K(P) the role of ϕ̂∗T (P), ϕK(P) the role of ϕT (P), and fZ̃|ξ0 the role of µP .

Moreover, we set Fs equal to the set with the zero function and π0 = 0, which effectively trivializes

Müller (2011, Equations (5)-(6) and (10)-(11)).

By definition, ϕ̃∗(Z̃) : Σ → [0, 1] is a level-α test in the limiting problem, i.e., (3.25) holds.

According to the Neyman-Pearson Lemma, it maximizes power in the limiting problem. Finally,

note that ϕ̃∗ is continuous except for a set of zero fZ̃|ξ0-measure. These conditions align with the

requirements in Müller (2011, Theorem 1), and so our desired results follow immediately from its

application.

Proof of Theorem 3.4. This proof follows from the same arguments as in Theorem 3.3.

Proof of Lemma 3.2. Fix x > 0 arbitrarily. By vH <∞ and de Haan and Ferreira (2006, Theorem

1.2.1), it suffices show that

lim
t↓0

1−FV (vH−tx)
1−FV (vH−t) = x.

To this end, consider the following derivation.

lim
t↓0

1−FV (vH−tx)
1−FV (vH−t)

(1)
= lim

t↓0
xfV (vH−tx)
fV (vH−t)

(2)
= x,

as desired, where (1) holds by L’Hôpital rule and (2) by fV (v)→ fV (vH) > 0 as v ↑ vH .

Proof of Lemma 4.1. This result follows from Lemma A.1, Lemma A.7, and the continuous map-

ping theorem.

A.2 Auxiliary results

Lemma A.1. For any n > 1 and for first-price or second-price auctions,

P (P(n) = P(1)) = 0.

Proof. Note that

{P(n) = P(1)}
(1)

⊆
⋂

l,m=1,...,n,l 6=m

⋃
il=1,...,Kl,im=1,...,Km

{Vil,l = Vim,m}, (A.18)
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where (1) holds by (3.2) and (4.1) for second-price and first-price auctions, respectively. Then,

P (P(n) = P(1))
(1)

≤ min
l,m=1,...,n,l 6=m

∑
il=1,...,Kl,im=1,...,Km

P (Vil,l = Vim,m)
(2)
= 0,

as desired, where (1) holds by (A.18) and (2) by the fact that valuations are continuously distributed

and l,m refer to different and, thus, independent, auctions.

Lemma A.2. Assume (2.1) holds. For some ε > 0 with (1+ε)ξ < 1, assume that E[|Vi,j |1+ε] <∞
for all i = 1 . . . ,Kj in auction j = 1, . . . , N . Then, ∃K̄ ∈ N such that for δ = ε/2 and K ≥ K̄,

E[|V(1),j−bKaK
|1+δ] < ∞ and E[|V(2),j−bKaK

|1+δ] < ∞. (A.19)

Proof. The first result in (A.19) is a corollary of de Haan and Ferreira (2006, Theorem 5.3.1). Thus,

we focus the rest of this proof on the second result in (A.19).

It is convenient to introduce the following notation. For any K̃ ∈ N, let U(K̃) distributed

according to max{Vi,j : j = 1, . . . , K̃}. For any x ∈ [vL, vH ], the CDF and PDF of U(K̃) are

FU(K̃)(x) = FV (x)K̃ and fU(K̃)(x) = K̃(FV (x))K̃−1fV (x). (A.20)

Conditional on V(1),j = x ∈ [vL, vH ], V(2),j is the highest valuation among the remaining Kj − 1

bidders. Thus, for any t ≤ x with x, t ∈ [vL, vH ], P (V(2),j ≤ t|V(1),j = x) = (FV (t)/FV (x))Kj−1. By

setting t̃ = (t− bK)/aK and x̃ = (x− bK)/aK for any x, t ∈ [vL, vH ] with t ≤ x,

P
(
V(2),j−bK

aK
≤ t̃
∣∣∣V(1),j−bKaK

= x̃
)

=
(
FV (t̃aK+bK)
FV (x̃aK+bK)

)Kj−1

and, so, the conditional PDF is

f(V(2),j−bK
aK

∣∣∣V(1),j−bKaK
=x̃

)(t̃) =
(Kj−1)(FV (t̃aK+bK))Kj−2fV (t̃aK+bK)aK

FV (x̃aK+bK)Kj−1 =
fU(Kj−1)(t̃aK+bK)aK

FU(Kj−1)(x̃aK+bK) . (A.21)

For any x ∈ [vL, vH ], we have P ((V(1),j − bK)/aK ≤ x̃) = (FV (x̃aK + bK))Kj and, so,

fV(1),j−bK
aK

(x̃) = Kj(FV (x̃aK + bK))Kj−1fV (x̃aK + bK)aK = fU(Kj)(x̃aK + bK)aK . (A.22)
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Consider the following derivation:

E
[∣∣V(2),j−bK

aK

∣∣1+δ]
= E

[
E
[∣∣V(2),j−bK

aK

∣∣1+δ∣∣V(1),j−bK
aK

]]
(1)
=

∫ x̃=
vH−bK
aK

x̃=
vL−bK
aK

(∫ t̃=x̃

t̃=
vL−bK
aK

|t̃|1+δ fU(Kj−1)(t̃aK+bK)aK

FU(Kj−1)(x̃aK+bK) dt̃
)
fU(Kj)(x̃aK + bK)aKdx̃

(2)
=

∫ x̃=
vH−bK
aK

x̃=
vL−bK
aK

(
E
[∣∣U(Kj−1)−bK

aK

∣∣1+δ
1[U(Kj − 1) ≤ x̃aK + bK ]

]) fU(Kj)
(x̃aK+bK)

FU(Kj−1)(x̃aK+bK)aKdx̃, (A.23)

where (1) holds by (A.21) and (A.22) and (2) by the change of variables t = t̃aK + bK .

For any p, q > 1 with 1/p+ 1/q = 1, we have

E
[∣∣U(Kj−1)−bK

aK

∣∣1+δ
1[U(Kj − 1) ≤ x̃aK + bK ]

]
(1)

≤ E
[∣∣U(Kj−1)−bKj−1

aKj−1

aKj−1

aK
+

bKj−1−bK
aK

∣∣(1+δ)p]1/p
FU(Kj−1)(x̃aK + bK)1/q

(2)

≤

{
2

(1+δ)p−1
p

[
E
[∣∣U(Kj−1)−bKj−1

aKj−1

∣∣(1+δ)p]∣∣aKj−1

aK

∣∣(1+δ)p
+
∣∣ bKj−1−bK

aK

∣∣(1+δ)p
]1/p

×FU(Kj−1)(x̃aK + bK)1/q

}
, (A.24)

where (1) holds by Hölder’s inequality and (2) by Minkowski’s inequality. Next, let C >

2((1+δ)p−1)/p[E(|Zξ|(1+δ)p)]1/p where Zξ has CDF Gξ, and p = (1 + ε)/(1 + δ) = (2 + 2ε)/(2 + ε) > 1

(since δ = ε/2). Under these conditions, we have that

lim
K→∞

[
E
[∣∣U(Kj−1)−bKj−1

aKj−1

∣∣(1+δ)p]∣∣aKj−1

aK

∣∣(1+δ)p
+
∣∣ bKj−1−bK

aK

∣∣(1+δ)p
]1/p

< C. (A.25)

This result is a corollary of two observations. First, we note that (A.5) implies that

limK→∞(aKj−1/aK , (bKj−1 − bK)/aK) = (1, 0). Second, under p = (1 + ε)/(1 + δ), (1 + ε)ξ < 1,

and E[|Vi,j |1+ε] <∞, de Haan and Ferreira (2006, Theorem 5.3.1) implies that

lim
K→∞

E(|
U(Kj−1)−bKj−1

aKj−1
|(1+δ)p) = lim

K→∞
E(|

U(Kj−1)−bKj−1

aKj−1
|1+ε) = E[|Zξ|1+ε] < ∞.

Note that (A.24) and (A.25) imply that ∃K̄ ∈ N such that for all K > K̄,

E
[∣∣U(Kj−1)−bK

aK

∣∣1+δ
1[U(Kj − 1) ≤ x̃aK + bK ]

]
≤ C × FU(Kj−1)(x̃aK + bK)1/q. (A.26)
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To complete the proof, consider the following argument for all K > max{K̄, 2},

E[|V(2),j−bKaK
|1+δ]

(1)

≤ C

∫ vH−bK
aK

vL−bK
aK

FU(Kj−1)(x̃aK + bK)1/q−1fU(Kj)(x̃aK + bK)aKdx̃

(2)
= C

∫ vH−bK
aK

vL−bK
aK

FU(Kj−1)(x̃aK + bK)1/q−1Kj(FV (x̃aK + bK))Kj−1fV (x̃aK + bK)aKdx̃

(3)

≤ 2C

∫ vH−bK
aK

vL−bK
aK

FU(Kj−1)(x̃aK + bK)1/q−1(Kj − 1)(FV (x̃aK + bK))Kj−2fV (x̃aK + bK)aKdx̃

(4)
= 2C

∫ vH−bK
aK

vL−bK
aK

FU(Kj−1)(x̃aK + bK)1/q−1fU(Kj−1)(x̃aK + bK)aKdx̃

(5)
= 2C

∫ 1

0
y1/q−1dy = 2C < ∞,

as desired, where (1) holds by (A.23) and (A.26), (2) and (4) by (A.20), (3) by FV (x̃aK + bK) ≤ 1

and Kj ≥ K ≥ 2, and (5) by the change of variables y = FU(Kj−1)(x̃aK + bK).

Lemma A.3. For any h ∈ Σ, assume that{
y ∈ R :

∫
Ξ
κξ(h)fZ̃|ξ(h)dW (ξ) ≤

∫
Ξ
f(Yµ,Z̃)|ξ(y, h)dΛ(ξ)

}
= [A(h), B(h)], (A.27)

where B(h)−A(h) : Σ→ R+ is continuous. Then,

Ũ(h) =
{
y ∈ R :

∫
Ξ
κξ(h)fZ̃|ξ(h)dW (ξ) ≤

∫
Ξ
f(Yµ,Z̃)|ξ(y, h)dΛ(ξ)

}
.

Proof. It suffices to show that [A(h), B(h)] satisfies conditions (a)-(c) of Theorem 3.1.

Part (a). Consider the following derivation.

P (∂{(y, h) ∈ R× Σ : y ∈ Ũ(h)})
(1)

≤
∫
Pξ(Yµ ∈ {A(h), B(h)}|Z̃ = h)fZ̃|ξ(h)dh

(2)
= 0,

where (1) holds by (A.27), which implies that ∂{(y, h) ∈ R×Σ : y ∈ Ũ(h)} ⊆ {(A(h), h), (B(h), h) :

h ∈ Σ}, and (2) because {Yµ|Z̃ = h; ξ} is continuously distributed.

Part (b). Fix h ∈ Σ arbitrarily. Since

lim
|y|→∞

∫
Ξ
f(Yµ,Z̃)|ξ(y, h)dΛ(ξ) = 0 <

∫
Ξ
κξ(h)fZ̃|ξ(h)dW (ξ),

∃y(h) ∈ (0,∞) such that max{|B(h)|, |A(h)|} ≤ y(h) for all |y| > y(h). Then, [A(h), B(h)] ⊆
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[−y(h), y(h)], and so lg([A(h), B(h)]) ≤ 2y(h) <∞.

Part (c). Under (A.27), lg([A(h), B(h)]) = B(h)−A(h) which is assumed continuous.

Lemma A.4. Assume that ξ < 1. Let Z1 = Hξ(E1) and Z2 = Hξ(E1 + E2) with E1, E2 i.i.d.

standard exponential random variables and Hξ as in (2.4). Then,

E[Z1 − Z2] = Γ(1− ξ),

where Γ is the standard Gamma function.

Proof. The support of (Z1, Z2) is Sξ = {(x1, x2) : x1 ≥ x2, ξx1 ≥ −1, ξx2 ≥ −1}. For any

(x1, x2) ∈ Sξ, the PDF of (Z1, Z2) is

fZ1,Z2|ξ(x1, x2) =

 (1 + ξx1)−1/ξ−1(1 + ξx2)−1/ξ−1 exp(−(1 + ξx2)−1/ξ) if ξ 6= 0,

exp(−x1) exp(−x2) exp(− exp(−x2)) if ξ = 0,

The desired result follows from this formula. We only show the result for ξ < 0, as the result for

the other two cases is analogous.

E[Z1 − Z2]

=

∫ −1/ξ

−∞

∫ −1/ξ

x2

(x1 − x2)(1 + ξx1)−1/ξ−1(1 + ξx2)−1/ξ−1 exp(−(1 + ξx2)−1/ξ)dx1dx2

(1)
=

1

ξ3

∫ 0

∞

∫ 0

t2

(t1 − t2)t
−1/ξ−1
1 t

−1/ξ−1
2 exp(−t−1/ξ

2 )dt1dt2

(2)
=

∫ ∞
0

(
1

(1− ξ)
) exp(−v)v−ξ+1dv

(3)
= Γ(1− ξ),

as desired, where (1) holds by the change of variables t1 = 1 + ξx1 and t2 = 1 + ξx2, (2) by the

change of variables v = t
−1/ξ
2 , and (3) by (1− ξ)Γ(1− ξ) = Γ(2− ξ).

Lemma A.5. Assume that ξ < 1. Let Z = Hξ(E1 + E2) with E1, E2 i.i.d. standard exponential

random variables and Hξ as in (2.4). Then,

E[Z] =

{
(Γ(2− ξ)− 1)/ξ if ξ 6= 0

γ̄ − 1 if ξ = 0

where Γ is the Gamma function and γ̄ ≈ 0.577 is the Euler constant.
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Proof. Note that the PDF of Z is

fZ|ξ(z) =

{
(1 + ξz)−(2+ξ)/ξ exp(−(1 + ξz)−1/ξ)1[1 + ξz ≥ 0] if ξ 6= 0

exp(−2z) exp(− exp(−z)) if ξ = 0.

We only show the result for ξ 6= 0, as the result for ξ = 0 is analogous.

E[Z] =

∫ ∞
−∞

z(1 + ξz)
−2+ξ

ξ exp(−(1 + ξz)−1/ξ)1[1 + ξz ≥ 0]dz

(1)
=
( ∫ ∞

0
(t1−ξ − t) exp(−t)dt

)
/ξ

(2)
= (Γ(2− ξ)− 1)/ξ,

where (1) holds by the change of variables u = (1 + ξz)−1/ξ and (2) by Γ(0) = 1.

Lemma A.6. Assume (2.1) holds. Also, assume that ξ < 1 and E[|V |1+ε] < ∞ for some ε > 0.

For any sequence {xK : K ∈ N} with xK → x ∈ S̄ξ ≡ {s : Gξ(s) > 0}, limK→∞ LK(xK) = L(x),

where

LK(x) ≡ x−
∫ x
(vL−bK )/aK

FV (haK+bK)Kdh

FV (xaK+bK)K
and L(x) ≡ x−

∫ x
−∞Gξ(h)dh

Gξ(x) . (A.28)

Proof. Throughout this proof, it is relevant to note that FV (haK + bK)K is the CDF of (V(1) −
bK)/aK and Gξ is the CDF of Hξ(E1), where V(1) denotes the sample maximum of K random

draws from FV , Hξ and E1 are as in Lemma 2.1.

As a preliminary step, we show that for any x ∈ R,

lim
K→∞

∫ x

−∞
(FV (haK + bK)K −Gξ(h))dh = 0. (A.29)

To this end, consider the following argument for any K.∫ x

−∞
(FV (haK + bK)K −Gξ(h))dh

(1)
=

[
x(FV (xaK + bK)K −Gξ(x))+

E[Hξ(E1)1[Hξ(E1) ≤ x]]− E[
V(1)−bK
aK

1[
V(1)−bK
aK

≤ x]]

]
. (A.30)

where (1) holds by limh→−∞ FV (haK + bK)K = limh→−∞Gξ(h) = 0 and integration by parts.

Lemma 2.1 implies that as K →∞,

V(1)−bK
aK

d→ Hξ(E1). (A.31)
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Since Hξ(E1) is continuously distributed, (A.31) implies that

lim
K→∞

x(FV (xaK + bK)K −Gξ(x)) = 0 (A.32)

Also, note that (A.31) and the continuous mapping theorem imply that as K →∞,

V(1)−bK
aK

1[
V(1)−bK
aK

≤ x]
d→ Hξ(E1)1[Hξ(E1) ≤ x]. (A.33)

Let δ > 0 and K̄ ∈ N be as in Lemma A.2. Then, for all K ≥ K̄,

E[|V(1)−bKaK
1[
V(1)−bK
aK

≤ x]|1+δ] ≤ E[|V(1)−bKaK
|1+δ] < ∞. (A.34)

Then, (A.33) and (A.34) imply that

lim
K→∞

E[
V(1)−bK
aK

1[
V(1)−bK
aK

≤ x]] = E[Hξ(E1)1[Hξ(E1) ≤ x]]. (A.35)

Finally, note that (A.29) follows from (A.30), (A.32), and (A.35).

As a second preliminary step, we note that∫ x

−∞
Gξ(h)dh

(1)
= xGξ(x)−

∫ x

−∞
hgξ(h)dh ≤ xGξ(x) + E[|Hξ(E1)|]

(2)
< ∞, (A.36)

where (1) holds by integration by parts and limx→−∞ xGξ(x) = 0, and (2) by ξ < 1.

We are now ready to show the desired results. For any x ∈ S̄ξ, consider the following argument:

|LK(xK)− L(x)| (1)
=

∣∣∣∣∫ xK−∞ FV (haK+bK)Kdh

FV (xKaK+bK)K
−

∫ x
−∞Gξ(h)dh

Gξ(x)

∣∣∣∣

(2)

≤

∣∣∣∣∣
|xK − x|+ |

∫ x
−∞(FV (haK + bK)K −Gξ(h))dh|

+(
∫ x
−∞Gξ(h)dh) supy∈R |FV (yaK + bK)K −Gξ(y)|

+(
∫ x
−∞Gξ(h)dh)|Gξ(xK)−Gξ(x)|

∣∣∣∣∣
Gξ(x)[Gξ(x)−supy∈R |FV (yaK+bK)K−Gξ(y)|−|Gξ(xK)−Gξ(x)|] , (A.37)

where (1) holds because FV (v) = 0 for v < vL, and (2) by supy∈R FV (yaK + bK)K ≤ 1 and Gξ(x) ≤
1. As K → ∞, we can show that the numerator and the denominator of the right-hand side of

(A.37) converge to zero and Gξ(x)2 > 0, respectively. This conclusion relies on x ∈ S̄ξ (and so

Gξ(x)2 > 0), xK → x ∈ S̄ξ as K → ∞, the continuity of Gξ, (A.29), (A.36), and van der Vaart

(1998, Lemma 2.11). From this and (A.37), the desired result follows.

Lemma A.7. Assume (2.1) holds. Assume that ξ < 1 and that E[|Vi,j |1+ε] <∞ for all i = 1 . . . ,Kj
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in auction j = 1, . . . , N for some ε > 0. For any n ∈ N and as K →∞,

{Pj−bK
aK

: j = 1, . . . , n
} d→

{
Hξ(E1,j)−

∫Hξ(E1,j)

−∞ Gξ(h)dh

Gξ(Hξ(E1,j))
: j = 1, . . . , n

}
,

with {(aK , bK) ∈ R++ × R : K ∈ N}, {E1,j : j = 1, . . . , n}, and Hξ as in Lemma 2.1.

Proof. Since auctions are independent, it suffices to prove that for any auction j = 1, . . . n, as

K →∞,

Pj−bK
aK

d→ Hξ(E1,j)−
∫Hξ(E1,j)

−∞ Gξ(h)dh

Gξ(Hξ(E1,j))
, (A.38)

where E1,j is a standard exponential random variable. To this end, consider the following argument.

Pj−bK
aK

=
(V(1),j−bKj−1

aKj−1
−

(
∫ V(1),j
vL

FV (u)Kj−1du)/aKj−1

FV (V(1),j)
Kj−1

)aKj−1

aK
+

bKj−1−bK
aK

(1)
=
(
LKj−1

(V(1),j−bKj−1

aKj−1

))aKj−1

aK
+

bKj−1−bK
aK

, (A.39)

where (1) holds by the change of variables u = haKj−1 + bKj−1 and LK as in (A.28).

Since (Kj − 1)/K → 1 as K →∞, the same argument as Lemma 2.1 implies that

lim
K→∞

(aKj−1

aK
,
bKj−1−bK

aK

)
= (1, 0). (A.40)

Next, notice that Lemma 2.1 and (A.40) imply that as K →∞,

V(1),j−bKj−1

aKj−1
=

V(1),j−bK
aK

aK
aKj−1

+
bK−bKj−1

aK

d→ Hξ(E1). (A.41)

In addition, Hξ(E1) ∈ S̄ξ ≡ {x ∈ R : Gξ(x) > 0}. By (A.41), Lemma A.6, and the extended

continuous mapping theorem (e.g. van der Vaart, 1998, Theorem 1.11.1), as K →∞,

LKj−1

(V(1),j−bKj−1

aKj−1

) d→ L(Hξ(E1)) = Op(1), (A.42)

where L is as in (A.28). Then, (A.38) follows from (A.39), (A.40), and (A.42).

Theorem A.1. Assume (2.1) holds, and that for some ε > 0 with (1 + ε)ξ < 1, E[|Vi,j |1+ε] < ∞
for all i = 1 . . . ,Kj in auction j = 1, . . . , N . Finally, assume that the CI for µK , U(P), is as in

(4.9) with Ũ : Σ→ P(R) that satisfies the following conditions:

(a) Pξ({Yµ, X̃} ∈ ∂{(y, h) ∈ R× Σ : y ∈ Ũ(h)}) = 0, where ∂A denotes the boundary of A.

(b) lg(Ũ(h)) <∞ for any h ∈ Σ, where lg(A) denotes the length of A (i.e., lg(A) ≡
∫
1[y ∈ A]dy).

(c) For any sequence {h` ∈ Σ}`∈N with h` → h ∈ Σ, lg(Ũ(h`))→ lg(Ũ(h)).

Then, as K →∞,
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1. P (µK ∈ U(P)) → Pξ(Yµ ∈ Ũ(X̃)),

2. E[lg(U(P))]/aK → Eξ[κξ(X̃) lg(Ũ(X̃))].

Proof. This proof follows from the same arguments used to prove Theorem 3.1. The main difference

between the proofs is that we replace {(Pj − bK)/aK : j = 1, . . . , N} with {LKj ((V(1),j − bK)/aK) :

j = 1, . . . , N} with LKj as in (A.28) (instead of {(V(2),j−bK)/aK : j = 1, . . . , N} as in second-price

auctions). Then, the vectors {Zj : j = 1, . . . , n} and Z̃ = {Z̃j : j = 1, . . . , N} are replaced by

{Xj : j = 1, . . . , N} and X̃ = {X̃j : j = 1, . . . , N}, as in (4.4) and (4.7), respectively. With these

changes in place, the results follow from repeating the steps used to prove Theorem 3.1.

Theorem A.2. Assume (2.1) holds, and that for some ε > 0 with (1 + ε)ξ < 1, E[|Vi,j |1+ε] < ∞
for all i = 1 . . . ,Kj in auction j = 1, . . . , N . Finally, assume that the CI for πK , U(P), is as in

(4.11) with Ũ : Σ→ P(R) that satisfies the following conditions:

(a) Pξ({Yπ, X̃} ∈ ∂{(y, h) ∈ R× Σ : y ∈ Ũ(h)}) = 0, where ∂A denotes the boundary of A.

(b) lg(Ũ(h)) <∞ for any h ∈ Σ, where lg(A) denotes the length of A.

(c) For any sequence {h` ∈ Σ}`∈N with h` → h ∈ Σ, lg(Ũ(h`))→ lg(Ũ(h)).

Then, as K →∞,

1. P (πK ∈ U(P)) → Pξ(Yπ ∈ Ũ(X̃)),

2. E[lg(U(P))]/aK → Eξ[κξ(X̃) lg(Ũ(X̃))].

Proof. This proof follows from the same arguments as in Theorems 3.1 and A.1.

Theorem A.3. Assume (2.1) holds. In the hypothesis testing problem in (4.12), the test defined

by (4.13) satisfies the following properties:

1. It is asymptotically valid and level α, i.e., limK→∞Eξ0 [ϕ∗K(P)] = α.

2. It is asymptotically efficient.

Proof. This proof follows from the same arguments as in Theorems 3.3 and 3.4.

A.3 Computational details

A.3.1 Second-price auctions

This section provides computational details for objects introduced in Section 3. Throughout this

section, we use z̃ = (z1, . . . , zN ) ∈ Σ and N = n− 2.
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First, recall that fZ̃|ξ(z̃) is as computed in (3.6). For z̃ ∈ Σ, we can compute:

κξ(z̃)fZ̃|ξ(z̃) = n!(Γ(2n− ξ))
∫ b(ξ)

0
sn−1 exp

(
(ξ − 2n) log

(∑n
j=1(1 + zjξs)

−1/ξ
)

−(1 + 2
ξ )
(∑n

j=1 log(1 + zjξs)
) )

ds, (A.43)

where κξ(z̃) = E[Z(n) − Z(1)|Z̃ = z̃] and b(ξ) = −1/ξ for ξ < 0, and b(ξ) = ∞ otherwise. For

(y, z̃) ∈ R+ × Σ, calculations yield:

fYµ,Z̃|ξ(y, z̃) =

n!(Γ(1−ξ))n−1

yn

∫ cµ(ξ)

aµ(ξ)
exp

( −
∑n

j=1(1 + ξs+ (Γ(1− ξ))ξzj/y)−1/ξ

−(1 + 2
ξ )
∑n

j=1 log(1 + ξs+ (Γ(1− ξ))ξzj/y)

)
ds, (A.44)

where aµ(ξ) and cµ(ξ) are defined such that for all s ∈ (aµ(ξ), cµ(ξ)), we have 1+ξs+(Γ(1−ξ))ξ/y >
0 and 1 + ξs > 0. For (y, z̃) ∈ R× Σ, more calculations yield:

fYπ ,Z̃|ξ(y, z̃) =

n!
|y|n

∫ cπ(ξ)

aπ(ξ)
|π − s|n−1 exp

( −
∑n

j=1(1 + ξ(s+ zj(π − s)/y)−1/ξ

−(1 + 2
ξ )
∑n

j=1 log(1 + ξ(s+ zj(π − s)/y)

)
ds, (A.45)

where aµ(ξ) and cµ(ξ) are such that for all s ∈ (aµ(ξ), cµ(ξ)), we have 1 + ξ(s + (π − s)/y > 0,

1 + ξs > 0, and (π − s)/y > 0. The integrals in (A.43), (A.44), and (A.45) can be approximated

by Gaussian quadrature.

The CI’s in Section 3 require Lagrange multipliers Λ that we compute using the algorithm

developed by Elliott et al. (2015). See Müller and Wang (2017) for another application of this

algorithm. We now provide a detailed description of how we implemented this algorithm:

1) Discretize Ξ into a fine grid ΞM ≡ {ξ1, ξ2, . . . , ξM} between ξ1 = inf{Ξ} and ξM+1 = sup{Ξ} (we

use M = 50 uniformly located points between ξ1 and ξM+1). Set s = 1, and define an arbitrary

set of initial positive weights λ(s) = {λ(s)
m : m = 1, . . . ,M} over ΞM (we use a uniform weights,

i.e., λ(1) = {1/M, . . . , 1/M}).

2) For each m = 1, . . . ,M , simulate a large number B of n i.i.d. draws the EV distribution with

parameter ξm (we use B = 10, 000). For each m = 1, . . . ,M and b = 1, . . . , B, the samples

is denoted by Zξm(b) = {Zξm,1(b), . . . , Zξm,n(b)}. By applying (3.9) to each sample, we get

N = n− 2 sorted and normalized draws, denoted by Z̃ξm(b) = {Z̃ξm,1(b), . . . , Z̃ξm,N (b)} ∈ Σ.

3) For each m = 1, . . . ,M , use the random draws in step 2) to approximate the limiting coverage

probabilities for parameter ξm in the following manner:

(a) For the winner’s expected utility, we approximate Pξm(Γ(1− ξm)/(Z(n) − Z(1)) ∈ U(Z̃))

38



with

P̂m ≡ 1
B

B∑
b=1

1
( Γ(1−ξm)
Zξm,(1)(b)−Zξm,(n)(b)

∈ U(Z̃ξm(b))
)
,

where Γ is the standard Gamma function and U(Z̃ξm(b)) is as in (3.14), involving integrals

of (A.43) and (A.44).

(b) For the seller’s expected revenue, we approximate Pξm((π(ξm)− Z(1))/(Z(n) − Z(1)) ∈
U(Z̃))), with

P̂m ≡ 1
B

B∑
b=1

1
( π(ξm)−Zξm,(n)(b)
Zξm,(1)(b)−Zξm,(n)(b)

∈ U(Z̃ξm(b))
)
,

where π(ξm) = (Γ(2− ξm)− 1)/ξm with Γ is the standard Gamma function if ξm 6= 0, and

π(ξm) = −1 + γ̄ if ξm = 0 with γ̄ ≈ 0.577 equal to the Euler’s constant, and U(Z̃ξm(b)) is

as in (3.19), involving integrals of (A.43) and (A.44).

4) Update the weights by setting λ
(s+1)
m = λ

(s)
m + ε((1− P̂m)− α) for all m = 1, . . . ,M , where α is

the significance level and ε > 0 is a small step length (we use ε = 0.05). Intuitively, the weight

on ξm is decreased or increased if the CI has overcoverage and undercoverage, respectively.

5) Repeat steps 3)-4) a large number of times S (we use S = 2, 000), to get λ(S) = {λ(S)
m : m =

1, . . . ,M}. The Lagrange multipliers Λ is obtained by interpolating λ(S) from ΞM to Ξ.

If the algorithm’s tuning parameters are appropriately chosen, the Lagrange multipliers generated

by it yield a CI that (a) approximately minimizes asymptotic weighted length (due to the reliance

on (3.14) or (3.19)), and (b) achieves approximately size control for all ξ ∈ ΞM , which should

extend to all ξ ∈ Ξ by continuity. Finally, it is worth noting that these Lagrange multipliers only

need to be determined once for a given value of n and set Ξ. The tables of the Lagrange multipliers

and the corresponding MATLAB code are available on our website.

A.3.2 First-price auctions

We now consider analogous expressions for first-price auctions. Let j = 1, . . . , N denote an arbitrary

first-price auction. Relative to the previous section, the main difficulty here is that PDF of Xj in

(4.4) does not generally have a closed-form expression and, thus, we do not have an analog of (3.6)

for first-price auctions.

To explain this issue, we now provide an implicit formula for the PDF of Xj for any arbitrary
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auction j = 1, . . . , N . Consider the following argument for ξ < 0:

Xj
(1)
= H1 − 1

Gξ(H1)

∫ H1

−∞
Gξ(h)dh

(2)
= H1 − exp((1 + ξH1)−1/ξ)

∫ H1

−∞
exp(−(1 + ξh)−1/ξ)dh

(3)
= H1 − exp((1 + ξH1)−1/ξ)Γ(−ξ, (1 + ξH1)−1/ξ)

(4)
= [(E1,j)

−ξ − 1]/ξ − exp(E1,j)Γ(−ξ, E1,j)

(5)
= [exp(E1,j)Γ(1− ξ, E1,j)− 1]/ξ, (A.46)

where (1) holds by (4.4) and denoting H1 = Hξ(E1,j) with {E1,j : j = 1, . . . , n} and Hξ as specified

in Lemma 2.1, (2) by (2.2), (3) by the change of variables u = (1 + ξh)−1/ξ and using Γ(a, x) =∫∞
x ua−1 exp(−u)du to denote the upper incomplete Gamma function, (4) by E1,j = H−1

ξ (H1), and

(5) by Γ(1 + a, x) = aΓ(a, x) +xa exp(−x) applied to a = −ξ and x = E1,j . By a similar derivation

for ξ > 0 and ξ = 0, we get Xj = eξ(E1,j) with

eξ(x) ≡
{

[exp(x)Γ(1− ξ, x)− 1]/ξ if ξ 6= 0,

− ln(x)− exp(x)Γ(0, x) if ξ = 0.
(A.47)

We numerically verified that eξ(x) is decreasing in x for all ξ, and so the PDF of Xj can be expressed

as follows:

fXj |ξ(x) = − ∂e−1
ξ (x)

∂x exp(−e−1
ξ (x)). (A.48)

We can use (A.48) to derive an implicit expression for the joint PDF of X̃ = {X̃j : j = 1, . . . , N} ∈
Σ with X̃j as in (4.7). The main difficulty relative to the second-price auction is that neither

eξ in (A.47) nor its inverse have closed-form expressions, and so evaluating them repeatedly is

computationally challenging. For this reason, we do not have a closed-form analog of (3.6) for

first-price auctions.

To deal with the aforementioned computational issues, we propose a numerical approximation

based on a series expansion of the incomplete Gamma function in Abramowitz and Stegun (1964,

Page 263): for x sufficiently large,

Γ(1− ξ, x) ≈ x−ξ exp(−x)[1 + (−ξ)
x + (−ξ)(−ξ−1)

x2
+ (−ξ)(−ξ−1)(−ξ−2)

x3
+ . . . ]. (A.49)

A first-order approximation based on (A.49) gives ln(exp(x)Γ(1 − ξ, x)) ≈ −ξ lnx. To allow for

approximation errors, we propose the following equation:

ln(exp(x)Γ(1− ξ, x)) ≈ r2(ξ)− r1(ξ) lnx, (A.50)
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where r1(ξ) and r2(ξ) are functions of ξ.4 To find suitable values for these functions we fit an

OLS regression of ln(Γ(1− ξ, x) exp(x)) on lnx and a constant for a grid of 50,000 equally-spaced

values of x between 10−6 and 1− 10−6 quantiles of the exponential distribution. We use the OLS

coefficients as our values for (−r1(ξ), r2(ξ)). By combining (A.47) and (A.50), we get

eξ(x) ≈
{

[x−r1(ξ) exp(r2(ξ))− 1]/ξ if ξ 6= 0,

(r1(0)− 1) lnx− r2(0) if ξ = 0.
(A.51)

By (A.51) and using r3(ξ) = exp(r2(ξ)/r1(ξ)), we get

e−1
ξ (x) ≈

{
r3(ξ)(1 + ξx)−1/r1(ξ) if ξ 6= 0,

exp[(x+ r2(0))/(r1(0)− 1)] if ξ = 0,

∂e−1
ξ (x)

∂x ≈
{ −(1 + ξx)−(1/r1(ξ)+1)ξr3(ξ)/r1(ξ) if ξ 6= 0,

exp[(x+ r2(0))/(r1(0)− 1)]/(r1(0)− 1) if ξ = 0.
(A.52)

By combining (A.48) and (A.52), we obtain an approximation of the joint distribution of X̃ and

related functions. Ignoring the case ξ = 0, then for x̃ ∈ Σ and N = n− 2 we get

fX̃|ξ(x̃) = n!Γ(n)|r1(ξ)|
|ξ|

∫ b(ξ)

0
sn−2 exp

( −n ln(r3(ξ)
∑n

j=1(1 + ξx̃js)
−1/r1(ξ))

−(1/r1(ξ) + 1)
∑n

j=1 ln(1 + ξx̃js)

+n ln(|ξr3(ξ)/r1(ξ)|)

)
ds, (A.53)

where b(ξ) = −1/ξ for ξ < 0, and b(ξ) = ∞ otherwise. This expression is the analog of (3.6) for

first-price auctions. Analogously, we have

κξ(x̃)fX̃|ξ(x̃) =

n!|r1(ξ)|Γ(n−r1(ξ))
|ξ|

∫ b(ξ)

0
sn−1 exp

( (r1(ξ)− n) ln(r3(ξ)
∑n

j=1(1 + ξx̃js)
−1/r1(ξ))

−(1/r1(ξ) + 1)
∑n

j=1 ln(1 + ξx̃js)

+n ln(|ξr3(ξ)/r1(ξ)|)

)
ds, (A.54)

where κξ(x) = E[X(n) −X(1)|X̃ = x]. For (y, x̃) ∈ R+ × Σ, we also have

fYπ ,X̃|ξ(y, x̃) =

1
|y|n

∫ cπ(ξ)

aπ(ξ)
|π − s|n−1 exp

( −(1/r1(ξ) + 1)
∑n

j=1 ln(1 + ξ(s+ x̃j(π − s)/y))

−r3(ξ)
∑n

j=1(1 + ξ(s+ x̃j(π − s)/y))−1/r1(ξ)

+n ln(|ξr3(ξ)/r1(ξ)|)

)
ds, (A.55)

where aπ(ξ) and cπ(ξ) are such that for all s ∈ (aπ(ξ), cπ(ξ)), we have 1 + ξ(s + (π − s)/y) > 0,

4If the first-order approximation was exact, we would have r1(ξ) = ξ and r2(ξ) = 0.
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1 + ξs > 0, and (π − s)/y > 0. The integrals in (A.53), (A.54), and (A.55) can be approximated

by Gaussian quadrature. Given these expressions, we can use the algorithm in Section A.3.1 to

compute the CI.

A.4 Additional Monte Carlo simulations

This section provides Monte Carlo simulations for first-price auctions. We first consider the problem

of inference on the winner’s expected utility using only transaction prices. The parameters of the

simulations are as in Section 6.

We consider three CIs for µK that are analogous to those used in Section 6:

(i) This is our proposed CI in Section 4.1. As in Section 6, this method is implemented by

constructing U(P) in (4.9) with Ξ = [−1, 0.5] and W equal to the uniform distribution over

this interval. As before, the validity of this CI is based on asymptotics as K →∞.

(ii) A CI based on observing the transaction price and the highest valuation for each auction.

These data are infeasible in empirical applications of first-price auctions (valuations are unob-

served), but we take it as a benchmark for any method that relies on the traditional asymp-

totics with n → ∞. These data allows us to compute Dj ≡ V(1),j − Pj for each auction

j = 1, . . . , n. In turn, this information enables us to test H0 : µK = b using the t-statistic
√
n(D̄n − b)/s, where D̄n =

∑n
j=1Dj/n and s2 =

∑n
j=1(Dj − D̄n)2/(n− 1). Under H0,

standard asymptotic arguments imply that the t-statistic converges to a standard normal dis-

tribution as n→∞. One can then construct a CI by inverting the aforementioned hypothesis

tests. In contrast to the first CI, the validity of this method relies on standard asymptotic

arguments with n→∞.

(iii) A bootstrap-based CI based on observing the highest valuations for each auction. This ap-

proach is obviously infeasible in using data from first-price auctions, but it could be feasible

with bid data from second-price auctions; cf. Menzel and Morganti (2013). Observing the

highest valuations across auctions allows us to identify the distribution of valuations which,

in turn, allows us to identify µK (further details are provided in Section A.5). By replacing

identified objects with suitable estimators, one can consistently estimate µK . In addition,

one can repeat this process using bootstrap samples to construct a CI for µK . The method

is implemented with 500 bootstrap samples. The validity of this method relies on standard

asymptotic arguments with n→∞.

Table 4 presents the coverage and length of the three CIs. Our proposed CI suffers from a slight

undercoverage when valuations are U(0, 3) or when n is significantly larger than K. As our theory

predicts, this undercoverage should diminish as K increases. On the other hand, our proposed CI

demonstrates excellent size control for the non-U(0, 3) valuations and K is significantly larger than

42



n. The other two methods perform analogously to Table 1. The CI based on observing the highest

valuation and the transaction price and the asymptotics n→∞ are relatively shorter and tend to

suffer from undercoverage, especially when n is small or valuations are Pareto distributed. In turn,

the bootstrap-based CI tends to suffer significant undercoverage problems.

# Bidders K = 10 K = 100 K ∼ U{90, 91, . . . , 110}

# Auctions n = 10 n = 100 n = 10 n = 100 n = 10 n = 100

Dist. Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth

Method (i): Our proposed CI, asy. w. K →∞

U(0, 3) 0.89 1.20 0.89 0.29 0.91 0.22 0.98 0.12 0.91 0.22 0.98 0.13

|N(0, 1)| 0.94 1.28 0.84 0.40 0.97 1.46 0.98 0.33 0.98 1.47 0.98 0.33

|t(20)| 0.95 1.29 0.86 0.46 0.98 1.30 0.97 0.42 0.98 1.34 0.98 0.43

Pa(0.25) 0.97 1.47 0.87 0.54 0.97 2.12 0.95 0.99 0.97 2.12 0.96 1.00

Method (ii): CI based on highest valuations, asy. w. n→∞

U(0, 3) 0.89 0.03 0.95 0.01 0.85 0.00 0.95 0.00 0.90 0.00 0.96 0.00

|N(0, 1)| 0.86 0.31 0.94 0.11 0.86 0.24 0.93 0.09 0.86 0.25 0.93 0.09

|t(20)| 0.88 0.40 0.93 0.14 0.83 0.37 0.92 0.13 0.85 0.36 0.94 0.13

Pa(0.25) 0.81 0.69 0.88 0.28 0.76 1.22 0.91 0.47 0.75 1.21 0.90 0.47

Method (iii): CI based on bootstrap & highest valuations, asy. w. n→∞

U(0, 3) 0.35 0.19 0.89 0.11 0.36 0.02 0.89 0.01 0.36 0.02 0.88 0.01

|N(0, 1)| 0.28 0.29 0.84 0.12 0.28 0.21 0.85 0.09 0.27 0.21 0.86 0.09

|t(20)| 0.29 0.34 0.85 0.14 0.27 0.28 0.82 0.12 0.26 0.28 0.86 0.12

Pa(0.25) 0.20 0.34 0.69 0.20 0.23 0.61 0.69 0.35 0.23 0.61 0.69 0.35

Table 4: Empirical coverage frequency (Cov) and length (Lgth) of various CIs for the winner’s
expected utility µK in first-price auctions. The results are the average of 500 simulation draws and
a nominal coverage level of 95%.

Finally, we consider the problem of hypothesis testing about the tail index using only transaction

prices. We focus on testing H0 : ξ = −1 vs. H1 : ξ ∈ Ξ/{−1}, with Ξ = [−1, 0.5] and W equal

to the uniform distribution over this interval. Table 5 shows the average rejection rate of the test

proposed in Section 4.3 over 500 simulations using a desired nominal size of 5%. Under H0 (i.e.,

when valuations are U(0, 3)), our proposed test controls size as long as the number of bidders is

not too small relative to the sample size. Under H1 (i.e., when valuations are |N(0, 1)|, |t(20)|, and

Pa(0.25)), our proposed test exhibits adequate power.
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# Bidders K = 10 K = 20 K = 100 K ∼ U{90, 91, . . . , 110}

# Auctions n = 10 n = 100 n = 10 n = 100 n = 10 n = 100 n = 10 n = 100

U(0, 3) 0.06 0.09 0.04 0.06 0.04 0.05 0.03 0.09

|N(0, 1)| 0.25 1.00 0.22 1.00 0.28 1.00 0.29 1.00

|t(20)| 0.27 1.00 0.29 1.00 0.34 1.00 0.36 1.00

Pa(0.25) 0.54 1.00 0.55 1.00 0.55 1.00 0.62 1.00

Table 5: Empirical rejection rate of the test proposed in Section 4.3 for H0 : ξ = −1 in first-price
auctions. The results are the average of 500 simulation draws and a nominal size of 5%.

A.5 Auxiliary derivations related to the Monte Carlo simulations

We first provide auxiliary derivations related to the third CI considered in Section 6. In a second-

price auction j = 1, . . . , n with K bidders, the CDF of the transaction price satisfies:

FPj (x)
(1)
= FV(2),j (x)

(2)
= FV (x)K +KFV (x)K−1(1− FV (x)), (A.56)

where (1) holds by (3.2) and (2) by the fact that bidders’ valuations are i.i.d. The previous equation

expresses the CDF of the transaction price as a function of the CDF of valuations. By inverting

this mapping, we can derive a relationship between the distribution of transaction prices and the

distribution of valuations. Furthermore, we have the following connection between the distribution

of valuations and the winner’s expected utility:

µK
(1)
= E[V(1),j − Pj ]
(2)
= E[V(1),j − V(2),j ]

(3)
= K

∫ ∞
0

xFV (x)K−1fV (x)dx− (K − 1)K

∫ ∞
0

x(fV (x)(1− FV (x))FV (x)K−2)dx

(4)
= K

(∫ ∞
0

(1− FKV (x))dx−
∫ ∞

0
(1− FK−1

V (x))dx

)
,

where (1) holds because the auctions are i.i.d. (which holds in all of our Monte Carlo designs), (2)

holds by (3.2), (3) by the fact that bidders are i.i.d and valuations are nonnegative (which holds in

all of our Monte Carlo designs), and (4) by integration by parts.

To conclude, we provide auxiliary derivations related to the third CI considered in Section A.4.

Recall that this method presumes that we observe the highest valuation V(1),j for each auction

j = 1, . . . , n. Given that there are K bidders, the CDF of the highest valuation satisfies:

FV(1)(x)
(1)
= FV (x)K , (A.57)
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where (1) holds by the fact that bidders’ valuations are i.i.d. and V(1) = max{V1, V2, . . . , VK}.
Furthermore, we can connect the distribution of valuations and the winner’s expected utility in the

following fashion:

µK
(1)
= E

[∫ V(1)
0 FV (u)K−1du

FV (V(1))
K−1

]
(2)
=

∫ ∞
0

(∫ v

0
KFK−1

V (x)dx

)
fV (v)dv

(3)
= K

∫ ∞
0

(1− FV (v))FV (v)K−1dv,

where (1) holds by (4.8) and by the fact that valuations are nonnegative and auctions are i.i.d.

(which holds in all of our Monte Carlo designs), (2) by (A.57), and (3) by integration by parts.
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