Buy or Rent: Measuring the Distributional Effects of Monetary Policy on the Housing Market

Martin Groiss¹ Nicolas Syrichas²

¹Goethe University Frankfurt ²Freie Universität Berlin

EEA/ESEM 2024 Rotterdam

Work in progress

29 August 2024

Monetary Policy, House Price and Rent Developments

- Since 2009 large ↑ in house prices and rents in Germany.
- Listed house prices and rents \uparrow when $i \downarrow$ (vice versa).
- Strong positive correlation between house prices and asset purchases (QE).
- Is monetary policy easing responsible for these facts?
- We aim to establish causality.

What we do (and plan to do)

What we do

- 1. New monthly <u>inflation</u> and <u>quality</u>-adjusted regional house price and rent indices across Germany.
 - Using 23 million listings data for the period 2007M1-2023M6.
- 2. Identify exogenous monetary policy (MP) shocks in the spirit of (Altavilla et al., 2019).
 - Using the high-frequency identification approach.
 - Distinguish MP shocks into a) policy rate, b) FQ, and c) QE.
- 3. Estimate the dynamic causal effects of MP shocks on house prices and rents.
 - Method: IV panel local projections + controls.

What we plan to do

- Heterogeneity: Examine the effect across different subgroups.
- Analyze the mechanisms through which monetary policy surprises pass through to local house prices and rents. (% renters switch to buyers?)

Measuring the MP Effects on House Prices/Rents

- We are not the first to study this but...
- We revisit this question using a rich dataset in Germany.
 - High frequency + wide spatial coverage + detailed housing characteristics.
 - Allows us to examine the heterogeneous effects of shocks on house prices/rents.
 - Differentiate between conventional/unconventional MP effects.
- Germany's unique institutional setting:
 - Historically, real house prices were stable, exponential growth since 2010.
 - The majority of the population are renters (51%).

Results Preview (preliminary)

- An expansionary MP shock has strong, positive, and persistent effects on house prices.
 - QE and FG cause stronger and slower responses than the target rate.
- An expansionary MP shock has smaller, positive, and immediate effects on rents.
 - QE causes stronger and slower responses; FG causes immediate and significant responses; the target rate has a negative effect.

Heterogeneity:

- Conspicuous especially in West vs East Germany and land constraint areas.
- No significant differences between urban vs rural regions.

Institutional Features and Data

Institutional Features

- Germany has unique traits setting it apart from other advanced economies.
- 1. Homeownership rates are relatively low 49%. EU 70%, US 66%, UK 63%
 - Housing policies that incentivize renting (Kaas et al., 2021).
 - Cultural reasons (Huber and Schmidt, 2022).
- 2. Real house prices have been historically on average stable (Kindermann et al., 2021) \neq US: cumulative growth 115%
- 3. Rent Regulation:
 - Since 1982, cap on rent increase within an existing contract, max 20%.
 - Mietpreisbremse (rental brake) in 2015.
 Regulation history

German Housing Dataset-ImmobilienScout24

Immo Scout24 S	Suchen - Verkaufen - Vermieten - Finanzieren -	- Umziehen -	Anzeige schalten	R Mus ^e entdecken Mein Konto ~
	Red mit d Zur kostenlose Immobilien	ReChnen Sie mit dem Besten. Zur kostenlosen Immobilienbewertung Immobilien Preiatlas Matervergieich		
	Preis bis Zimmer egal	✓ Fläche ab Un	nkreis ~	
	Meine Immobilie ab 06	Vermieten oder Verkaufen		

Residential listings from Germany's largest online platform, ImmobilienScout24

Nationwide coverage:

Data preparation > Limitations

- Coverage: January 2007 to July 2023 across 380 regions (Kreis).
- Rigorous cleaning: 18 (17) million ads for sale (rental)
- Information: posted price, housing characteristics, location, duration of a listing, # of contact attempts.

Hedonic Regression

- Goal: Remove variation in prices/rents due to housing characteristics.
- How: Simple hedonic type regression using the time-dummy approach.
- Procedure: For each Kreis *I*, tenure *τ* ∈ {price, rent} regress: *i* = unit, *t* = month-year

$$ln(p_{i,t}^{l,\tau}) = \alpha^{l,\tau} + \underbrace{\gamma_t^{l,\tau}}_{\text{time dummies}} + \beta^{l,\tau} X_{i,t}^{l,\tau} + \varepsilon_{i,t}^{l,\tau}$$

X^{*l*,τ}_{*i*,t} includes: size, size², age, # rooms, post-code dummies, cellar, guest toilet, 22 property type categories, nebenkosten.

• Collect: $(\gamma_t^{l,\tau})$: Missing dummy = reference period 2007M1

Cumulative House Price and Rent Growth Across German

- ► Wide heterogeneity in real house price/rent growth.
- In Berlin, house prices (rents) have increased by ×2.5(1.75) since 2007.
- Many regions in central Germany have experienced close to zero growth.

Empirical Strategy

High-frequency Identification

- Updated the MP series compiled by (Altavilla et al., 2019)
 + control for the information channel (Jarociński and Karadi, 2020)
- ► Key idea: Capture the variation in risk-free rates ≠ to the state of the economy.
 - Movements in OIS rates of various maturities (1-10Y) in a 3h window around ECB announcements . MP timeline
 - The first 3 principal components + factor rotation → economic interpretation.
- 3 MP shocks:
 - 1st factor \rightarrow Policy rate shocks.
 - 2nd factor \rightarrow Forward Guidance (FQ) shocks.
 - 3rd factor \rightarrow Quantitative Easing (QE) shocks.
- We aggregate the daily surprises into monthly series.

The Euro Area Monetary Policy Surprise Series

Quantitative Easing

Econometric Framework

- Two different approaches:
 - 1. 1 general MP shock: Use 3 instruments on a single endogenous MP variable \rightarrow Shadow rate.
 - 2. 3 separate MP shocks: Use 1 instrument per endogenous variable:
 - Target Rate shock \rightarrow short-term rate
 - FQ shock \rightarrow 2-year OIS rate change
 - QE shock \rightarrow Balance Sheet change

IV Panel Local Projections

- Second Stage: Estimate IRFs via Panel local projections (Jordà, 2005)
- Akin to (DiD) identification procedure.

$$\ln(y_{l,t+h}) - \ln(y_{l,t-1}) = c_l^h + \sum_{k=1}^K \alpha_k^h [\ln(y_{l,t-k}) - \ln(y_{l,t-k-1})] + \beta^h \widehat{policy_t^p} + \phi^h X_{l,t}^h + u_{l,t+h}^h$$

- > $y_{l,t+h}$: house price or rent index in horizon h.
- policy: either shadow rate or one of {Policy Rate, 2y OIS Rate, Balance Sheet}
- Controls X: lagged CPI_t^l , lagged U_t^l and lagged instruments

Econometric Specification

- $h = 36 \implies$ IRF up to 3 year ahead.
- K = 6 lags. Different Lags
- Smooth local projections: 3 months backward MA of the house prices and rents series.
- Inference: Heteroskedasticity, spatial and serial correlation consistent standard errors (Conley, 1999)
- Symmetric effects (no-state dependency)

Results - Preliminary

MP impact on house prices vs rents

Endogenous: shadow rate \rightarrow 3 MP shocks as instruments.

- ↓ 1 std in shadow rate (24bp) ⇒ 3% ↑ Prices 3 years ahead.
- ▶ $\downarrow 1$ std in shadow rate (24bp) $\implies 1\%$ ↑ rents 3 years ahead.

Expansionary MP \rightarrow prices: Decomposition

Quantitative Easing

Expansionary MP \rightarrow rents: Decomposition

Quantitative Easing

- 9

Summing UP

- An expansionary MP shock ⇒ strong, positive and persistence effects on house prices.
- An expansionary MP shock mmediate effects on rents.
- Prices: Stronger and sluggish responses of QE and FG > Target rate
- Rents: Stronger and sluggish responses of QE, immediate and significant FG and negative contribution of target rate

Conclusion

- An expansionary MP shock has strong, positive, and persistent effects on house prices.
 - QE and FG cause stronger and slower responses than the target rate.
- An expansionary MP shock has smaller, positive, and immediate effects on rents.
 - QE causes stronger and slower responses; FG causes immediate and significant responses; the target rate has a

Heterogeneity:

- Conspicuous especially in West vs East Germany and land constraint areas.
- No significant differences between urban vs rural regions.

Thank You

Appendix

Literature Overview

Monetary policy and house prices:

- Conventional: Fratantoni and Schuh (2003), Del Negro and Otrok (2007), Jorda, Schularik and Taylor (2015), Aastveit and Anundsen (2022), Flor and Klarl (2021),...

Monetary policy and rents:

- Dias and Duarte (2019), Koeniger, Lennartz, Ramelet (2022), Lazarowicz and Richard (2023)
 - \rightarrow regional rent price indices

House price dispersion:

► Van Nieuwerburgh and Weill (2010), Kaas, Kocharov and Syrichas (2024), Amaral, Dohmen, Kohl, and Schularick (2022), La Cava and He (2021) → empirical analysis of the role of monetary policy on house price dispersion

Data preparation

- 1. Basic cleaning: Remove duplicates - multiple ads (\rightarrow keep last), new data retrieval Remove phishing and fraud attempts \rightarrow cheap objects, listed < 14 days
- 2. Outlier censoring: Filter very expensive/cheap housing, very large/small objects
- 3. Drop sparse regions at least 10 observations per month and type
- 4. Deflate house prices and rents by state-specific CPI

Limitations

- Listed prices are not transaction prices.
- Are the data sufficiently representative?

Reliability checks:

- ► ImmobilienScout24 is the largest German RE website → self-reported share of over 50%
- Comparison: Transaction prices for 18 cities from German Real Estate Index GREIX project. (Amaral et al., 2023)
 Comparison
 - Trends are remarkably similar, but there are some level differences. Solution → growth rates

Transaction vs Listing prices - Apartments

Transaction vs Listing prices - Family Houses

back

Rental market regulations

Milieuschutz (conservation of social composition)

- Introduced in 1976, specific municipalities with gentrification
- Reduce demolition, expensive renovation and conversion to non-housing purposes
- Kappungsgrenze (capping limit)
 - Introduced in 1982, federal application
 - Cap on rent increase within an existing contract, max 20% (15%) within 3 years
- Mietpreisbremse (rental brake)
 - Introduced in 2015, region-specific
 - Limit to rents of new contracts, max 10% above typical rent
 - Exceptions: newly built and substantially modernized dwellings

back

Monetary Policy Event - timeline

▶ back

High-frequency Identification - Details

- PCA to extract 3 relevant factors from different maturities
- Orthogonal rotation for interpretation: Target rate, Forward guidance and QE
- Remove information effects (Jarocinski and Karadi, 2020)
- Weighted average of two monetary policy meetings/shocks (instead of eight)
- Validity conditions (Stock and Watson, 2018):
 - 1. Exogeneity: by high-frequency identification
 - 2. Lead-lag exogeneity: (i) by shock definition, (ii) by checking explanatory power of y on instrument
 - 3. Relevance: HAC robust weak instrument test, first stage F-Statistic

Factor Loadings

First stage - IV local projection

Table: First Stage - Housing and Rents

	F-Statistic	F-Statistic	F-Statistic
	12m	24m	36m
Shadow Rates	161.8	126.2	118.2
Policy Rate	11.2	7.0	3.6
2y OIS Rate	478.1	965.9	957.9
Balance Sheet	81.7	83.1	90.1
Note:			
	F-Statistic	F-Statistic	F-Statistic
	12m	24m	36m
Shadow Rates	158.9	124.0	116.1
Policy Rate	11.3	6.8	3.4
2y OIS Rate	466.7	954.0	944.8
Balance Sheet	81.8	83.0	89.6

Note:

Different housing price growth lags - 3 / 6 /12

Transaction vs listing prices IRF 16 cities

Time-Dummy $(\gamma_t^{\prime,\tau})$ Interpretation

- The dummy-time approach method is intuitive.
- The estimates (γ^{l,τ}_t) ∀t ≠ 2007M1 can be interpreted as the index value relative to the reference year 2007M1.
- ▶ Illustration: Consider the average house with characteristics \bar{X} in region *I* and tenure τ in the period 2012M1 and 2007M1.
- ▶ It's price is $\bar{p}_{12M1}^{l_{1,s}}$ and $\bar{p}_{07M1}^{l_{1,s}}$. Take the exponent.

$$\frac{\bar{p}_{12M1}^{h,s}}{\bar{p}_{07M1}^{h,s}} = \frac{\exp(\hat{\alpha}^{h,s} + \hat{\gamma}_{12M1}^{h,s} + \hat{\beta}^{h,s}\bar{X}^{h,s})}{\exp(\hat{\alpha}^{h,s} + \hat{\gamma}_{07M1}^{h,s} + \hat{\beta}^{h,s}\bar{X}^{h,s})} = \frac{\exp(\hat{\gamma}_{12M1}^{h,s})}{\exp(\hat{\gamma}_{07M1}^{h,s})} = \underbrace{\exp(\hat{\gamma}_{12M1}^{h,s})}_{\mathsf{Index Value}}$$

References I

- AASTVEIT, K. A. AND A. K. ANUNDSEN (2022): "Asymmetric effects of monetary policy in regional housing markets," *American Economic Journal: Macroeconomics*, 14, 499–529.
- ALTAVILLA, C., L. BRUGNOLINI, R. S. GÜRKAYNAK, R. MOTTO, AND G. RAGUSA (2019): "Measuring euro area monetary policy," *Journal of Monetary Economics*, 108, 162–179.
- AMARAL, F., M. DOHMEN, S. KOHL, AND M. SCHULARICK (2023): "Interest rates and the spatial polarization of housing markets," .
- CONLEY, T. G. (1999): "GMM estimation with cross sectional dependence," *Journal of econometrics*, 92, 1–45.
- DEL NEGRO, M. AND C. OTROK (2007): "99 Luftballons: Monetary policy and the house price boom across US states," *Journal of Monetary Economics*, 54, 1962–1985.

References II

DIAS, D. A. AND J. B. DUARTE (2019): "Monetary policy, housing rents, and inflation dynamics," *Journal of Applied Econometrics*, 34, 673–687.

FRATANTONI, M. AND S. SCHUH (2003): "Monetary policy, housing, and heterogeneous regional markets," *Journal of Money, Credit and Banking*, 557–589.

- GOREA, D., O. KRYVTSOV, AND M. KUDLYAK (2022): "House Price Responses to Monetary Policy Surprises: Evidence from the US Listings Data," .
- HUBER, F. AND M. T. PUNZI (2020): "International housing markets, unconventional monetary policy, and the zero lower bound," *Macroeconomic Dynamics*, 24, 774–806.
- HUBER, S. J. AND T. SCHMIDT (2022): "Nevertheless, they persist: Cross-country differences in homeownership behavior," *Journal of Housing Economics*, 55, 101804.

References III

- HÜLSEWIG, O. AND H. ROTTMANN (2021): "Euro area house prices and unconventional monetary policy surprises," *Economics Letters*, 205, 109962.
- JAROCIŃSKI, M. AND P. KARADI (2020): "Deconstructing monetary policy surprises: The role of information shocks," *American Economic Journal: Macroeconomics*.
- JORDÀ, Ò. (2005): "Estimation and inference of impulse responses by local projections," *American economic review*, 95, 161–182.
- JORDÀ, Ò., M. SCHULARICK, AND A. M. TAYLOR (2015): "Betting the house," *Journal of international economics*, 96, S2–S18.
- KAAS, L., G. KOCHARKOV, E. PREUGSCHAT, AND N. SIASSI (2021): "Low homeownership in Germany—A quantitative exploration," *Journal of the European Economic Association*, 19, 128–164.

References IV

- KINDERMANN, F., J. LE BLANC, M. PIAZZESI, AND M. SCHNEIDER (2021): "Learning about housing cost: Survey evidence from the german house price boom," Tech. rep., National Bureau of Economic Research.
- KOENIGER, W., B. LENNARTZ, AND M.-A. RAMELET (2022):"On the transmission of monetary policy to the housing market," *European Economic Review*, 145, 104107.
- LA CAVA, G. AND C. HE (2021): "The distributional effects of monetary policy: Evidence from local housing markets in australia," *Australian Economic Review*, 54, 387–397.
- LAZAROWICZ, T. AND M. RICHARD (2023): "Winners and Losers from Monetary Policy: Evidence from the UK Rental Market," *Working Paper*.

References V

- STOCK, J. H. AND M. W. WATSON (2018): "Identification and estimation of dynamic causal effects in macroeconomics using external instruments," *The Economic Journal*, 128, 917–948.
- VAN NIEUWERBURGH, S. AND P.-O. WEILL (2010): "Why has house price dispersion gone up?" *The Review of Economic Studies*, 77, 1567–1606.