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Abstract

What drives voters’ decisions to participate in large elections under costly voting,
despite the rational expectation that this has no impact on the outcome? We propose
a new model of ethical voters, by positing that they have Kantian or semi-Kantian
preferences. With such preferences, voters evaluate their behavior in light of what the
outcome would be, should a fraction of the other voters choose the same behavior.
The “other voters” can either be the entire population (“non-partisan ethics”) or the
co-partisans (“partisan ethics”). In a model with two candidates and a continuum of
voters, turnout is strictly positive as long as the evaluation by the voters of the political
outcome is not strictly of the “winner-take-all” kind. Moreover, equilibrium turnout
rates depend on the specifics of the election at hand, such as the relative stake of the
election for the two supporter groups and the presence of core constituent groups.
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1 Introduction

Election outcomes depend not only on voters’ preferences, but also on whether voters actually
vote, since turnout rates may be correlated with party preferences. To wit, in the 20th
century in the U.S.A., turnout rates in the three groups of registered voters (Democrats,
Republicans, Independents) shifted over time (DeNardo, 1980; Nagel and McNulty, 1996).So
turnout matters, and it has been found to vary not only over time but also across countries,
and to be correlated with macro-economic factors, the type of election, and even the weather
on the day of the election, to name just a few of the variables that have been examined (see,
e.g., Blais and Daoust, 2020; Cancela and Geys, 2016; Frank and Martı́nez i Coma, 2023,
and references therein). Empirical studies have further detected correlates between individual
turnout decisions and individual characteristics such as age, sex, education, occupation, and
marital status (see the meta-study by Smets and Van Ham, 2013, and references therein).

Understanding these patterns requires understanding the individual turnout decision-
making process, which has been the subject of a host of theories. Perceived benefits and
costs of voting at the individual level are at the center of any rational voter theory of turnout
(Downs, 1957). A variety of factors have been invoked to explain turnout, such as a desire
to express allegiance to the political system, to participate in the democratic process, to ex-
press an opinion, to affirm loyalty to a party, to fulfill one’s duty, or to comply with a social
norm (Riker and Ordeshook, 1968; Fiorina, 1976; Morton, 1987; Schuessler, 2000; Feddersen,
Gailmard, and Sandroni, 2009; D. K. Levine and Mattozzi, 2020). While such factors have
been shown to matter empirically (Blais, 2000; Blais and Achen, 2019; Gerber, Green, and
Larimer, 2008; Rogers, Green, Ternovski, and Young, 2017), it is not clear how they could
explain the patterns evoked above.

The aforementioned patterns suggest that there is a relation between the material impact
of the election outcome and the individual decision to vote, at least for part of the electorate.
A satisfactory theory should deliver predictions about this relation. Models with voters driven
by purely instrumental concerns do deliver such predictions, but only if voters can expect to
be pivotal (Krishna and Morgan, 2015; Ledyard, 1984; Myerson, 2000; Palfrey and Rosen-
thal, 1985).1 Since the probability of being pivotal is essentially nil in elections with large
enough electorates, instrumental motives should not matter in such elections, contradicting
the patterns evoked above. We propose a novel theory of turnout in large elections.

1See also the survey by Dhillon and Peralta (2002) and the literature discussion in Coate and Conlin (2004),
as well as the books by Aytaç and Stokes (2019) and Blais and Daoust (2020).
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The driving force is a form of ethical preferences—dubbed Homo moralis—which capture
a form of universalization: when contemplating a course of action, a Homo moralis eval-
uates what his material payoff would be if, hypothetically, a share κ of the population to
which he belongs would follow the same course of action, where κ is the individual’s de-
gree of universalization.2 This idea is reminiscent of Kant’s categorical imperative (Kant,
1785), although philosophers warn that a Kantian “maxim” is not a course of action (Braham
and van Hees, 2020). In any case, the logic of universalization spreads over moral theo-
ries (Gravel, Laslier, and Trannoy, 2000) and also guides actual moral judgments (S. Levine,
Kleiman-Weber, Schultz, and Cushman, 2020). One obtains the standard materialistic Homo
oeoconomicus for κ = 0 and the Kantian model of Laffont (1975) for κ = 1, while values of κ
between 0 and 1 trigger partial universalization (Alger and Weibull, 2013).3

Given these ethical preferences, in our model each voter will be seen to act on information
about the material consequences of the election, despite a positive cost to vote. The action is
rational in the sense that it maximizes a well-defined utility function. It is compatible with
the awareness that no single vote has any impact on the election outcome. Furthermore, at
equilibrium the beliefs about the other voters’ behaviors are taken to be correct.

We evaluate the consequences of Homo moralis preferences in a standard political model.
As in most models of turnout, there are two candidates (or parties, or referendum proposals),
A and B. We take B to be the (known) underdog. Some voters always turn out to vote,
perhaps because of a deep sense of duty, a long-held habit, a strong wish to signal support
of democracy, etc. They are the core voters (DeNardo, 1980), or the candidate’s base. Our
model is about the other voters, who do not systematically turn out to vote. Their cost of
voting is uncertain at the individual level, although the cost distributions are known, and each
such cost-sensitive voter decides on a threshold strategy: she votes if and only if the realized
cost falls short of this threshold (like in Coate and Conlin, 2004; Feddersen and Sandroni,
2006).

2These preferences emerged from analysis of the evolutionary foundations of preferences (Alger and Weibull,
2013). Our approach is thus close in spirit to Conley, Toossi, and Wooders (2006), who base their voters’
motivation to participate in elections on evolutionary arguments. See also the book by Hatemi and McDermott
(2011), which inter alia cites evidence of intriguing correlations between biological factors such as genes on
the one hand, and political preferences and even turnout on the other hand. For experimental evidence on
behavior consistent with Homo moralis preferences, see Van Leeuwen and Alger (forthcoming).

3An alternative formalization of Kantian ethics is provided by Roemer (2019).
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The distribution of expressed votes across the two candidates determines the political
outcome. At this level, we keep the familiar zero-sum pattern of electoral competition: the
outcome is positive for one side and negative for the other. But it need not be a winner-take-all
election. Our gain-loss function also encompasses institutional settings where the vote share
itself matters and political power is shared so that “the loser gets some”. This captures a
range of possible institutional settings, from the pure majoritarian case (obtained as a limit
case of our model) to a kind of “random dictatorship”, or “proportional two-party system”4

At the level of the voters we break the symmetry and introduce a parameter ρ ≥ 1 that
we call the stake of the election: this parameter represents the importance of the political
benefit obtained through the election as perceived by the underdog’s supporters relative to
the other group’s supporters. As an illustrating example, if the underdog tends to represent
low-income households, the stake is expected to be higher, the stronger are the redistributive
consequences of the election. We will say that the stake is neutral if ρ = 1. To summarize,
the material consequences of the election for each individual depend on the political outcome,
the stake, and the individual’s cost (that may be incurred or not).

By definition, universalization ethics implies a reference to a group, the population to
which the individual belongs. We examine two settings: the partisan setting and the non-
partisan one. In the non-partisan setting, the reference group can be interpreted as the set
of all (independent) voters, while in the partisan setting there are two distinct populations,
one for each candidate. In the partisan setting, the voter applies the universalization argu-
ment to the set of co-partisans, by evaluating what the outcome of the election would be
if—hypothetically—a share κ of the co-partisans were to choose the same threshold as the
voter himself. By contrast, in the non-partisan setting, the voter applies the universalization
argument to the set of independent voters, and chooses two rather than one cost thresh-
old, by taking into account the expected benefits and costs over the two possible preference
realizations, “behind a veil of ignorance”.5

4Modifying this way the political benefit function in a two-party model in order to contrast proportional
representation with winner-take-all is used, for instance by Lizzeri and Persico (2001). Studying turnout,
Herrera, Morelli, and Nunnari (2016) similarly modify the outcome function.

5This setting does not appear in the existing literature. Existing models are thus not suited to explain
turnout rates of voters who may change their ranking over parties between elections, and who are humble
enough to realize that the information used to form their party preference may be wrong, or who consider
democratic participation as a norm for all citizens, not only for those who happen to be on their side.
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Our objective is to characterize rational behavior in these (one or two) population games,
assuming that all voters have the same degree of universalization κ. The rich setting enables
us to address a host of questions: is turnout positive in equilibrium, and how do turnout rates
depend on the primitives (the way in which the relative margins affect the material benefits
accruing to the parties, the candidates’ bases, the stake of the election)? Are there equilibria
in which the underdog wins the election? Finally, do equilibria exist, and if so, can there be
multiple equilibria?

Prior to summarizing our findings, we compare our formalization of ethically driven voters
to existing ones. An early formalization (Harsanyi, 1980) of ethical voters posits that voters
are rule utilitarians: in the words of Harsanyi (1977) such a voter does not look at the various
issues from a partisan point of view but from the standpoint of an impartial but humane and
sympathetic observer.6 Furthermore, Harsanyi defines the moral behavior of rule-utilitarian
individuals as “involving a firm commitment [...] to a specific moral strategy” (p.115 in
Harsanyi, 1980), where the moral strategy maximizes the sum of individual utilities. Our
non-partisan setting is in line with Harsanyi’s view of voters as “impartial observers”, but
our formalization of ethically driven voters does not amount to altruistic utilitariansim, but
instead to a self-centered universalization thought experiment: a voter considers each course
of action in the light of what her material well-being would be if some share of the others
voters were to choose the same course of action.7

Our formalization of ethical voters should not be confused either with group-based voter
participation models in which strategic decisions are made at the collective level and an ethical
voter applies a decision rule —that is a cost threshold, like in our model— which maximizes the
group’s aggregate material well-being, given the other group’s cost threshold.8 By adopting

6“In any social situation, each participant will tend to look at the various issues from his own, self-centered,
partisan point of view. In contrast, if anybody wants to assert the situation from a moral point of view in terms
of some standard of justice and equity, this will essentially amount to looking at it from the the standpoint of
an impartial but humane and sympathetic observer.” (p.623 in Harsanyi, 1977)

7Alger and Weibull (2017) and Laslier (2023) study the relation between (partial) universalization ethics
and (partial) Beckerian altruism.

8In Coate and Conlin (2004) or Herrera et al. (2016) voters are like in our partisan setting. By contrast,
the model in Feddersen and Sandroni (2006) can be viewed as a mix of our non-partisan and partisan settings:
their voters face no uncertainty regarding their party preference, but they care about the expected cost of
voting for the supporters of both parties. See also the group-based models by Morton (1991) and Bierbrauer,
Tsyvinski, and Werquin (2022), which have both endogenous turnout and endogenous party platforms.
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this dutiful behavior, such a voter receives a constant payoff D > 0. For each group, the
equilibrium cost threshold optimally trades off the probability of winning against the group-
aggregate expected cost of voting, given the other group’s threshold. A counter-intuitive
feature of these models is that, at the individual level, each ethical voter would be perfectly
happy to incur any positive voting cost, since D is assumed to exceed the largest possible
cost realization. The duty that such a voter feels obliged to fulfill thus consists of reducing
the aggregate cost of voting, by abstaining from voting when the realized cost is above the
equilibrium threshold: some voters “receive a [duty] payoff for not voting” (Feddersen and
Sandroni, 2006, p. 1272). By contrast, in our model a voter’s utility depends directly on
the material benefit she would enjoy if some share of the others also applied the same cost
threshold, and she considers only own cost when evaluating cost thresholds. In other words,
in our model the decision to incur a positive voting cost is individually rational. In particular,
a voter would be willing to incur a positive cost to vote even if no other voter voted, whereas
in the above mentioned models an ethical voter votes only because she knows that a share of
the other voters will apply the same decision rule .

Our results depend heavily on the shape of the political outcome function that captures the
institution, being more or less power-sharing, from random dictatorship to pure majoritarian.
Since some effects vanish when the institution become close to winner-take-all, we first describe
the results for the general power-sharing cases.

With power-sharing, we can establish existence generally in the non-partisan setting, while
in the partisan setting equilibria sometimes fail to exist. We find that for any positive degree
of universalization κ, in any equilibrium aggregate turnout is strictly positive (except in two
knife-edge cases). This is because the universalization thought experiment makes each voter
act as if their decision had a real weight on the outcome, and because the smallest possible
cost realizations are close to zero. The result that positive voting costs are incurred in any
equilibrium is qualitatively similar to results found in existing models on ethical voting. How-
ever, the driver is very different, as already mentioned. We further derive results which shed
light on aspects that have hitherto been neglected in the literature.

Firstly, the inclusion in the model of core constituents, or bases, is novel. We show that the
relative size of the candidates’ bases is crucial. In particular, if the underdog’s base exceeds
that of the leader, there may exist equilibria in which the underdog wins. This result is due
to the cost advantage that a large base confers on the cost-sensitive voters: the base enables
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them to reach higher turnout levels at a lower cost. This contrasts sharply with the results
in other models with known underdogs (Feddersen and Sandroni, 2006; Herrera, Morelli, and
Nunnari, 2016), where the underdog gets the smallest (expected) vote share in the unique
equilibrium (in Feddersen and Sandroni, 2006, the underdog may win due to the assumed
uncertainty about the share of ethical voters).

Secondly, analysis of the non-partisan setting, in which voters select their participation
strategy behind the veil of ignorance as to which candidate they will support, is also novel.
In this setting the voters take into account the effects of both cost thresholds on the expected
utility, thereby internalizing the externalities they generate across the two groups of cost-
sensitive voters. We show that as a result the only candidate that obtains a turnout among
its cost-sensitive supporters is that with the highest expected net benefit from voting. By
contrast, in the partisan setting there is no internalization of externalities, and the cost-
sensitive voters of both groups incur a positive expected voting cost in any equilibrium.

Thirdly, by contrast to most of the literature, we do not impose assumptions guaranteeing
equilibrium existence and uniqueness. The key finding here is that multiple equilibria are
not uncommon. This entails an important coordination problem for the voters, who typically
prefer one equilibrium to the others. Interestingly, such coordination problems imply that
voters are more likely to incur a cost to vote, the higher is the share of co-partisans that
they believe will turn out to vote. To gauge how common non-existence and multiplicity is,
we provide illustrating examples, and an online tool that enables the reader to explore other
parameter sets (available at: https://konrad982.github.io/homo-moralis-turnout-appendix/).
There is also an Online Appendix, where we provide further examples and also derive sufficient
conditions for existence and uniqueness.

Without power sharing, that is in the majoritarian, winner-take-all case, the incentive to
vote provided by the κ-universalization reasoning vanishes so that, except for some knife-edge
values of the parameters, costly participation is nil for both sides in the partisan case. In the
non-partisan case, either costly participation is nil for both sides leaving the candidate with
the larger base to win, or is positive for one and only one side, leading to a tied outcome.

In the next section we describe the political model, and in the following two sections we
analyze the partisan and the non-partisan settings, assuming that voters have Homo moralis
preferences. A final section provides a summary of the results.
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2 The political model

2.1 Institutional setting and political outcome

An election is taking place with two candidates, A and B (or two alternatives, such as political
parties, two proposals in a referendum, etc.). The electorate is formalized as a continuum,
divided in two groups: a group of size ā supporting A, and a group of size b̄ < ā supporting
B. Since the B-supporters are less numerous, we will refer to their group as the underdog
supporters, and the group of A-supporters as the leader supporters.

Each voter either votes for their preferred candidate or abstains, and candidates A and B

receive a ≤ ā and b ≤ b̄ votes, respectively, generating the relative margins α and β:

α =
a− b

a+ b
and β = −α =

b− a

a+ b
. (1)

The election outcome generates some material (instrumental) benefit to the voters. This
benefit is given by a strictly increasing and twice differentiable function h : R → R of the
relative margin of one’s candidate. We assume that h is symmetric around 0, i.e., h(−x) =

−h(x) and h′(x) = h′(−x), and that h′′(0) < 0 for all x > 0. This assumption captures the
idea that the competition between the two candidates is zero-sum, and that the marginal
impact on the material benefit is the largest at x = 0, the threshold value of x above which
the candidate wins the election by securing a greater total turnout than the other candidate.
In particular, our setting includes functions for which the slope of h at 0 is arbitrarily large,
while it is close to 0 elsewhere; this limit case of our model thus approximates the classical
winner-take-all setting. However, by including h-functions such that the slope is sizeable
everywhere, our model also encompasses situations where voters care about the margin of
victory: this assumption is natural for parliamentary elections, where margins determine the
number of seats obtained. The other limit case, opposed to the winner-take-all setting, consists
in taking h to be linear. A possible interpretation is that decisions will be taken by one side
or the other, yielding outcomes +1 and -1, with a probability equal to the proportion of votes
obtained by A and B. This has a flavor of proportional representation and could be called
“random dictatorship among participants”.

We further assume that there is a parameter ρ, which we call the stake of the election,
such that the material benefit supporters is h(α) to the A-supporters and ρ · h (β) to the
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B-supporters. If ρ > 1 the election is more important for the underdog supporters than for
the leader supporters. We will say that the stake is neutral if ρ = 1.

In the numerical examples we will use the following specification for h:

h (x) =
arctan (mx)

arctan (m)
. (2)

The parameter m ∈ R+ changes the slope of h: the larger is m, the larger is the marginal
benefit for small margins and the smaller is the marginal benefit for large margins. The linear
case obtains for m → 0 and the step function for m → ∞. This is illustrated in Figure 1.9

Figure 1: h as defined in equation (2) for different values of m

2.2 Voting costs and strategies

Some voters always turn out to vote—they may be driven by a strong sense of civic duty, a
strong social pressure, a habit, or any other motivation outside of this model. There is a mass
0 < a0 < ā of such voters who vote for A, and a mass 0 < b0 < b̄ of such voters who vote for B.
We will refer to a0 as A’s base and to b0 as B’s base. The model examines the behavior of the
remaining voters, a mass av = ā−a0 of which are A-supporters, and a mass bv = b̄−b0 of which
are B-supporters. These voters are cost-sensitive: each of them faces a positive random cost
of voting, and their turnout decision depends on their realized cost. Formally, the function
fA : R+ → R≥0 maps each cost to the probability density for a cost-sensitive A-supporter to
have that voting cost. We assume that the support of fA, i.e. {x ∈ R>0 : fA (x) > 0}, is either

9This gives m a similar role as the power-sharing parameter γ in the benefit term in the model of Herrera
et al. (2016), who posit the material benefit function aγ/(aγ + bγ) for the A-supporters and bγ/(aγ + bγ)
for the B-supporters, where the parameter γ ∈ [1,+∞) captures the power sharing rule; in Section 1 of the
Online Appendix we identify a function h that is a linear transformation of their material benefit term.
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an interval (0, c̄], for some c̄ ∈ R+, or R+; and fA is continuous on its support. We denote by
FA(c) the proportion of cost-sensitive A-supporters whose cost realization falls short of c:

FA(c) =

∫ c

0

fA(t) dt, (3)

so that 1 = F (+∞). The same assumptions apply to group B, with notation fB, and FB.

We study two different models of how the voting strategies are chosen: the partisan and the
non-partisan one. In both cases, we restrict attention to threshold strategies. A cost-sensitive
A-supporter i picks a threshold siA ∈ R≥0 ∪ {∞}, and votes (for A) if the cost realization ciA
does not exceed siA and abstains otherwise. Likewise, a cost-sensitive B-supporter j picks a
threshold sjB ∈ R≥0 ∪ {∞}. Voters have correct beliefs about the voting cost distributions.

We restrict attention to type-homogenous strategy profiles, in which all voters with the
same preference over the candidates choose the same strategy. At a type-homogenous strategy
profile s = (sA, sB), the realized turnouts are

a(sA) = a0 + avFA(sA) and b(sB) = b0 + bvFB(sB), (4)

and the following relative vote margins obtain:

α(s) =
a(sA)− b(sB)

a(sA) + b(sB)
and β(s) = −α(s). (5)

3 Partisan ethics (ex post setting)

Our formalization of an ethical voter amounts to assuming that their utility function belongs
to the Homo moralis preference class (Alger and Weibull, 2013). Following Alger and Laslier
(2022), who also study a model with a continuum of voters with such preferences, we posit
that Homo moralis preferences induce each voter to evaluate any strategy in the light of the
material benefit that would realize if—hypothetically—a fraction κ ∈ [0, 1] of the other voters
also played this strategy instead of the strategies they are actually using. The parameter κ is
the degree of universalization, here assumed to be common to all cost-sensitive voters.
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3.1 Partisan ethics: payoff computations

Under partisan ethics, the reference group is taken to be the other cost-sensitive voters who
have same preferences over the two candidates; the participation strategy is decided ex post,
once the voter’s affiliation is known. Thus, each voter i in group A (resp. each voter j in
group B) evaluates any strategy siA (resp. sjB) in the light of the material benefit that would
realize if—hypothetically—a fraction κ ∈ [0, 1] of the other cost-sensitive A-supporters (resp.
B-supporters) were also to play siA (resp. sjB) instead of the strategies they are actually using.

At a type-homogenous strategy profile s = (sA, sB), each A-supporter, respectively B-
supporter, obtains expected net material benefit

EUA(s) = h(α(s))−
∫ sA

c=0

cfA(c) dc (6)

EUB(s) = ρh(β(s))−
∫ sB

c=0

cfB(c) dc. (7)

Homo moralis preferences induce A-supporter i to consider the hypothetical number of votes

aκ(sA, s
i
A) = a0 + (1− κ)avFA(sA) + κavFA(s

i
A) (8)

in favor of A, with the corresponding relative vote margin

ακ(s, siA) =
aκ(sA, s

i
A)− b(sB)

aκ(sA, siA) + b(sB)
, (9)

and this defines the voter’s expected utility

EUκ
A(s, s

i
A) = h(ακ(s, siA))−

∫ siA

c=0

cfA(c) dc. (10)

Likewise, each B-supporter j considers the hypothetical number of votes

bκ(sB, s
j
B) = b0 + (1− κ)bvFB(sB) + κbvFB(s

j
B), (11)
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in favor of B, with the corresponding relative vote margin

βκ(s, sjB) =
bκ(sB, s

j
B)− a(sA)

a(sA) + bκ(sB, s
j
B)

, (12)

and obtains expected utility

EUκ
B(s, s

j
B) = ρh(βκ(s, sjB))−

∫ sjB

c=0

cfB(c) dc. (13)

These equations reveal the main driver of the behavior of voters under partisan ethics in
our model. Consider Equation 10. When κ > 0 an increase in siA affects the vote share in
favor of A and thus, given our assumption on h, the political benefit of an A-supporter. But,
at siA = 0, the marginal effect on the expected payed cost of an increase in siA is 0×fA(0) = 0.
It follows that setting a 0 threshold is never a best response for an A-supporter.10

3.2 A change of variables

Before going further, we proceed to a change of variables that simplifies the analysis. Seeing
from (4) that the threshold sA that yields turnout a is F−1

A

(
a−a0
av

)
∈ [0,∞] and the threshold

sB that yields turnout b is F−1
B

(
b−b0
bv

)
∈ [0,∞], we write the expected utilities in (10) and

(13) as follows:
EUA

(
a, b, ai

)
= h

(
ακ

(
a, b, ai

))
− CA

(
ai
)

(14)

EUB

(
a, b, bj

)
= ρh

(
βκ

(
a, b, bj

))
− CB

(
bj
)
, (15)

where

ακ
(
a, b, ai

)
=

(1− κ) a+ κai − b

(1− κ) a+ κai + b
and βκ

(
a, b, bj

)
=

(1− κ) b+ κbj − a

(1− κ) b+ κbi + a
, (16)

and

CA

(
ai
)
=

∫ F−1
A

(
ai−a0

av

)
0

cfA (c) dc and CB

(
bj
)
=

∫ F−1
B

(
bj−b0

bv

)
0

cfB (c) dc. (17)

10This reasoning will, however, be seen to break down in the limit case that we use to examine winner-take-all
elections, because the political outcome function h is then locally flat.
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Henceforth, the strategy of A-supporter i is thus a “turnout” ai ∈ [a0, ā], and that of B-
supporter j a “turnout” bj ∈ [b0, b̄], although it should be clear to the reader that what these
voters are really choosing are the cost thresholds that would yield these turnout levels. This
change of variables facilitates analysis because the functions CA and CB are strictly convex,
for any cost distributions FA and FB satisfying our assumptions.

Lemma 1. Both CA and CB are strictly convex and strictly increasing.

Proof. By a substitution z = FA (c)

CA (a) =

∫ a−a0
av

0

F−1
A (z) dz. (18)

Then,

C ′
A (a) =

1

av
F−1
A

(
a− a0
av

)
> 0 (19)

for a > a0, with C ′
A (a0) = 0, and

C ′′
A (a) =

1

a2v

1

fA

(
F−1
A

(
a−a0
av

)) > 0 (20)

for a ≥ a0. The same argument applies to CB.

Unless stated otherwise, in the numerical examples we use the functions

CA (a) = θA
2

(
a−a0
av

)2

and CB (b) = θB
2

(
b−b0
bv

)2

, (21)

which correspond to a uniformly distributed cost on [0, θA] for the A-supporters and a uni-
formly distributed cost on [0, θB] for the B-supporters.

3.3 Partisan ethics: comparison with group-based models

We are now in a position to provide a detailed comparison of our formalization of ethical
voters with that adopted in group-based models (first formalized by Coate and Conlin, 2004,
and Feddersen and Sandroni, 2006). In these models an ethical voter gets a “duty payoff” D

from “doing their part” (Feddersen and Sandroni, 2006), where D exceeds the highest possible
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cost realization. A decision based on a “duty to vote” would thus lead all the ethical voters
to vote. Dependence of an ethical voter’s turnout decision on their cost realization obtains
by positing that an ethical voter adopts a cost threshold in order to reduce the aggregate
cost; this cost reduction is traded off against the loss with the associated reduced probability
of winning. In other words, “doing their part” entails abstaining when the cost realization
exceeds the threshold. The predicted turnout rates are obtained as “an equilibrium between
two party planners”, each of which “looks at the total electoral benefit” for their preferred
candidate “net of the total cost incurred by his supporters” (Herrera et al., 2016, p. 612).

By contrast, in our model each voter simply maximizes his own expected utility, and there is
no constant duty payoff. Such utility maximization imposes fewer demands on the information
the voter needs to select an ethical behavior, compared to the group-based models, in which
an ethical voter needs to place himself in a social planner’s shoes to understand which cost
threshold he or she should adopt to obtain the constant duty payoff D. With Homo moralis
preferences, a voter instead evaluates each possible strategy applying a simple universalization
calculus to the benefit, while the expected cost of the deviation is the individual’s own true
expected cost. Indeed, Homo moralis preferences make a voter evaluate a strategy in the light
of the expected material utility that would obtain if a share κ of the others also adopted the
same strategy; whether or not others adopted a different threshold than they do would be
irrelevant for this voter’s expected cost of voting.

Despite this important conceptual difference between our model and group-based models,
in some settings the two models are mathematically equivalent. We begin our analysis with
such a setting. Thus, consider the special case of our model where all ethical voters have
degree of universalization κ = 1. The expected utilities in (14) and (15) then boil down to

EUA

(
a, b, ai

)
= h

(
ai − b

ai + b

)
− CA

(
ai
)

(22)

EUB

(
a, b, bj

)
= ρh

(
bj − a

a+ bj

)
− CB

(
bj
)
. (23)

The strategy profile (a∗, b∗) is a type-homogenous Nash equilibrium if and only if a∗ ∈ argmaxai∈[a0,ā] h
(

ai−b∗

ai+b∗

)
− CA (ai)

b∗ ∈ argmaxbj∈[b0,b̄] ρh
(

bj−a∗

a∗+bj

)
− CB (bj) .

(24)
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The mathematical equivalence of this setting with group-based models is easy to see, since any
(a∗, b∗) satisfying (24) could alternatively be interpreted as representing a Nash equilibrium
of a game played by “two party planners”, each of which “looks at the total electoral benefit”
for their preferred candidate “net of the total cost incurred by his supporters” (Herrera et al.,
2016, p. 612); likewise, see Definition 1 in Feddersen and Sandroni (2006) for the conditions
ensuring that the cost threshold of each party maximizes its supporters aggregate expected
material payoff, given the other party’s cost threshold, and also the description of equilibrium
on p.1481 in Coate and Conlin (2004).11 We can thus state our first observation:

Remark 1. If all cost-sensitive voters have Homo moralis preferences with degree of univer-
salization κ = 1, any pair of threholds implemented at a type-homogenous Nash equilibrium of
the two-population game is implemented at a Nash equilibrium of the two-player game between
two party planners, each of whom seeks to maximize the aggregate material payoffs of their
respective constituent groups. The type-homogenous Nash equilibrium implements the cost
thresholds in a decentralized manner (in the sense that each voter simply maximizes her own
expected utility).

Having established this mathematical equivalence with group-based models of ethical vot-
ers in the special case κ = 1, we note that equilibrium existence is not guaranteed. Indeed,
while a sufficient condition for an equilibrium to exist is that both objective functions in (24)
are quasi-concave in ai respectively bj, the strict convexity of h for negative relative margins
implies that quasi-concavity is not guaranteed. Facing the same issue with their benefit func-
tion, Herrera et al. (2016) identify and impose conditions on the cost distributions that imply
equilibrium existence, and even uniqueness. While we will return to the issues of existence
and uniqueness in the last subsection, we will first establish properties of equilibria conditional
on their existence in the general model.

11There are also other differences between our model and those by Feddersen and Sandroni (2006) and Coate
and Conlin (2004). For example, in the former each party considers the aggregate societal cost, and not only
the aggregate cost of its supporters, while in the latter there is ex ante uncertainty about the distribution
of voters into A- and B-supporters. However, our focus here is on underlining the mathematical similarity
between type-homogenous Nash equilibria in our model with κ = 1 and the characterization of equilibrium in
the group-based models.

15



3.4 Partisan ethics: a never-a-best-response result

In the general model voters may have any degree of universalization κ ∈ [0, 1], and have the
utilities specified in (14) and (15). Then, the strategy profile (a∗, b∗) is a type-homogenous
Nash equilibrium if and only if a∗ ∈ argmaxai∈[a0,ā] h

(
(1−κ)a∗+κai−b∗

(1−κ)a∗+κai+b∗

)
− CA (ai)

b∗ ∈ argmaxbj∈[b0,b̄] ρh
(

(1−κ)b∗+κbj−a∗

a∗+(1−κ)b∗+κbi

)
− CB (bj) .

(25)

By contrast to the special case κ = 1, where each individual best-responds to the other group’s
turnout only, when κ < 1 each individual best-responds to both groups’ turnouts.

Proposition 1. Under partisan ethics,

• if κ = 0, there exists a unique equilibrium, (a∗, b∗) = (a0, b0);

• if κ ∈ (0, 1], a = a0 (resp. b = b0) is never a best response for a voter in group A (resp.
B), and thus any equilibrium (a∗, b∗) is such that ā ≥ a∗ > a0 and b̄ ≥ b∗ > b0.

Proof. For any turnouts (a, b) from the other voters, A-supporter i’s marginal utility of ai is

∂

∂ai
Uκ
A

(
a, b, ai

)
= h′(ακ(a, b, ai))

2κb

[(1− κ) a+ κai + b]2
− C ′

A

(
ai
)
, (26)

where h
′
> 0. Recalling, from the proof of Lemma 1, that

CA (x) =

∫ F−1
A

(
x−a0
av

)
0

cfA (c) dc and C ′
A (x) =

1

av
F−1
A

(
x− a0
av

)
, (27)

we see that C ′
A(a0) = 0 and C ′

A(x) > 0 for x > a0 by our assumptions on fA. It follows that if
κ = 0 the unique best response to any (a, b) is ai = a0, while if κ > 0, ai = a0 is never a best
response. Idem for any B-supporter.

With purely instrumentally driven voters (κ = 0), the cost-sensitive voters are not willing
to incur any cost to vote, since with a continuum of voters each individual vote has a nil effect
on the election outcome. The second part of the proposition shows that a willingness to incur
some cost of voting arises as soon as the degree of universalization is strictly positive. This is
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because (i) for any κ ∈ (0, 1], the individual voter considers the outcome that would realize
if some positive share of the voters voted: in some sense, it is as if the individual voter had
an impact on the outcome, and (ii) the smallest cost realizations approach zero (as per our
assumption on the voting cost distributions).

3.5 Partisan ethics: further properties of equilibria

By Proposition 1, for any κ > 0 any equilibrium (a∗, b∗) satisfies the first-order conditions:

∂

∂ai
Uκ
A

(
a, b, ai

)
|ai=a∗,b=b∗ =

2κb∗h′(α(a∗, b∗))

(a∗ + b∗)2
− C ′

A (a∗)

{
= 0 if a∗ ∈ (a0, ā)

≥ 0 if a∗ = ā
(28)

∂

∂bi
Uκ
B

(
a, b, bj

)
|a=a∗,bj=b∗ =

2κa∗ρh′(β(a∗, b∗))

(a∗ + b∗)2
− C ′

B (b∗)

{
= 0 if b∗ ∈ (b0, b̄)

≥ 0 if b∗ = b̄.
(29)

Notice that, for any interior equilibrium (a∗, b∗) ∈ (a0, ā)× (b0, b̄), the two equations and the
fact that α(a, b) = −β(a, b) and h′(x) = h′(−x) together imply:

b∗

ρa∗
=

C ′
A(a

∗)

C ′
B(b

∗)
. (30)

To prepare the ground for the results obtained from conditions (28)-(30), we derive properties
of the functions CA and CB, which depend on the mass of cost-sensitive voters (av and bv)
relative to that of the bases (a0 and b0), and the cost distributions FA and FB (see (17)).

Lemma 2. The functions CA and CB have the following properties:

1. if a0 ≥ b0, av ≥ bv, and FA(c) ≥ FB(c) for all c ∈ R+, with at least one of the inequalities
holding strictly, then C ′

A (x) < C ′
B (x) for all x;

2. if a0 < b0, then for any cost distributions FA and FB, ∃ x̄ ∈ (b0, b̄] such that C ′
A (x) >

C ′
B (x) for all x < x̄.

The lemma contains two statements about the derivatives of CA and CB. These derivatives
have a clear interpretation. For any given turnout x by the cost-sensitive voters in group A,
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C
′
A(x) is the (expected) marginal cost that each of these voters would need to incur to increase

this turnout marginally. This means that the first part of the lemma establishes sufficient
conditions for the leader supporters to enjoy an absolute cost advantage over the underdog
supporters: this occurs when their base and its mass of cost-sensitive voters is at least as large
and its cost distribution FA is more favorable, compared to the corresponding features of the
underdog supporters. Note that the underdog supporters cannot enjoy such an absolute cost
advantage, since the assumption ā > b̄ implies that if b0 ≥ a0, then bv < av. If the underdog’s
base exceeds that of the leader (b0 > a0) its supporters can still have a cost advantage over the
leader supporters for turnouts close enough to the underdog’s base b0, as shown in the second
part of the lemma. This results from the marginal cost for the underdog supporters then
being close to zero, while that of the leader supporters is strictly positive for these turnout
levels. This property holds whether the cost distributions FA and FB favor the underdog or
the leader supporters.

With these observations in hand, we first examine settings where the leader supporters
enjoy a cost advantage over the underdog supporters, like in the first part of Lemma 2.

Proposition 2 (Partisan ethics). Suppose that the leader supporters enjoy a cost advantage
over the underdog supporters: their base is at least as large (a0 ≥ b0), their mass of cost-
sensitive voters is at least as large (av ≥ bv), and the cost distributions favor them (FA(c) ≥
FB(c) for all c ∈ R+), with at least one of the inequalities holding strictly. Then:

1. if the stake is neutral or almost neutral (i.e., ρ ≥ 1 is close enough to 1), the leader
wins (α(a∗, b∗) > 0) at any equilibrium (a∗, b∗);

2. for a large enough stake ρ, there may exist equilibria (a∗, b∗) in which the underdog wins
(α(a∗, b∗) < 0).

Proof. Suppose, by contradiction, that b∗ ≥ a∗, in which case either both a∗ and b∗ are
interior, or b∗ = b̄ and a∗ is interior. Lemma 2 then implies that C ′

A(a
∗) < C ′

B(b
∗). Hence,

b∗C ′
B(b

∗) > a∗C ′
A(a

∗). If b∗ is interior, or if b∗ = b̄ and the first-order condition (29) holds
as an equality, the inequality b∗C ′

B(b
∗) > a∗C ′

A(a
∗) contradicts (30) if ρ = 1. If b∗ = b̄ and

the first-order condition holds as a strict inequality, i.e., h′(β(a∗, b∗)) 2κa∗ρ
(a∗+b∗)2

− C ′
B (b∗) > 0,

then this inequality and (28) together imply b∗C ′
B(b

∗) < ρa∗C ′
A(a

∗). A contradiction with
the inequality b∗C ′

B(b
∗) > a∗C ′

A(a
∗) is reached if ρ = 1. By continuity, the contradiction
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also obtains for ρ = 1 + ε for some ε > 0. This proves the first statement. For the second
statement, note first that the contradiction does not obtain for large values of ρ. A numerical
example below (see Figure 2) suffices to prove the statement.

Example 1. When the leader supporters have an absolute cost advantage, one might expect
the leader to always win. The proposition confirms this intuition as long as the underdog
supporters’ stake ρ is not too large. However, as shown by way of an example in Figure 2, the
leader may lose if ρ is large. In this figure, the backward bending curve shows, for each turnout
b by the B-supporters, the turnout a which for each cost-sensitive A-supporter i maximizes
her expected utility, given that all the other A-supporters also choose a. We will refer to
such a value of a as an A-consistent turnout. In the figure, the dome-shaped curve shows the
B-consistent turnouts, defined in a similar manner. A type-homogenous equilibrium (a∗, b∗)

is such that a∗ is A-consistent given b∗, and b∗ is B-consistent given a∗. In other words, any
(a∗, b∗) where the two curves intersect is an equilibrium. In the figure we thus see that there
exists a unique equilibrium, in which the underdog wins, since (a∗, b∗) is above the dashed
line, along which the turnouts are equal.

In sum, this result shows that if voters are equipped with Homo moralis preferences, the
underdog supporters can overcome a seemingly unsurmountable challenge, as captured by their
absolute cost disadvantage, if they perceive a high enough stake. In the example the underdog
wins even though its supporters represent only 1.5/3.4 ≈ 44% of the electorate. Note further
that approximately 1.313/(0.5+ 1.4) ≈ 69% of the A-supporters and 1.359/(0.4+ 1.1) ≈ 91%

of the B-supporters participate in the election, although the degree of universalization is only
κ = 0.5. In other words, full universalization is not necessary for high rates of participation
to obtain.

We turn now to settings where the underdog supporters enjoy a cost advantage for some
turnout rates, thanks to a larger base; the result is proved by way of Example 2.

Proposition 3 (Partisan ethics). Suppose that the underdog’s base exceeds that of the leader
(b0 > a0). Then, for some parameter values, there exist equilibria (a∗, b∗) in which the underdog
wins (α(a∗, b∗) < 0), even if the stake is neutral (ρ = 1).

Example 2. Figure 3 shows an equilibrium in which the underdog wins even though ρ = 1

and the two cost distributions are identical (θA = θB). Hence, the underdog’s victory is here
entirely driven by its greater base, b0 = 0.7 > 0.5 = a0.
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Figure 2: An example where the underdog wins in spite of the leader supporters’s cost advan-
tage (θA < θB, av > bv, and a0 > b0), thanks to a high enough stake ρ.

Figure 3: An example where the underdog wins thanks to a larger base (b0 > a0), in spite of
a neutral stake (ρ = 1) and identical cost distributions (θA = θB).

To get a sense of how large a victory the underdog may obtain thanks to a larger base,
a general result is obtained when the relative frequency of cost-sensitive voters is the same
for groups A and B (a0/av = b0/bv), and all the cost-sensitive voters face the same cost
distribution (FA = FB = F ). Proposition 4 provides bounds on how different the equilibrium
turnout rates in the two groups can then be, for interior equilibria. These bounds depend only
on the stake ρ and are universal with respect to the form of the function h and to the value
of the parameter κ. They are therefore valid whether the election is close to winner-take all,
a random dictatorship, or anything in between, and for any degree of morality κ ∈ (0, 1].

Proposition 4 (Partisan ethics). Suppose that a0
av

= b0
bv

, that FA(c) = FB(c) = F (c) for all
c ∈ R+, and that ρ > 1. Then under partisan ethics, at any interior equilibrium (a∗, b∗) ∈
(a0, ā)× (b0, b̄):

a∗

av
<

b∗

bv
< ρ · a

∗

av
. (31)
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Proof. Given that a∗ and b∗ are interior, equation (30) applies, and writes:

b∗

bv
F−1

(
b∗

bv
− r

)
= ρ · a

∗

av
F−1

(
a∗

av
− r

)
(32)

for r = a0/av = b0/bv. First, suppose that b∗/bv ≤ a∗/av, then: F−1 (b∗/bv − r) ≥ ρ ·
F−1 (a∗/av − r) and since ρ > 1, F−1 (b∗/bv − r) > F−1 (a∗/av − r). Because F is non-
decreasing, this implies b∗/bv > a∗/av, a contradiction. Next, suppose that b∗/bv ≥ ρa∗/av.
Then, similar reasoning yields F−1 (b∗/bv − r) ≤ F−1 (a∗/av − r) and b∗/bv ≤ a∗/av < ρa∗/av,
a contradiction.

The first inequality in (31) is similar to the “partial underdog compensation” result found
in Herrera et al. (2016) (see the first part of their Proposition 1): the share of cost-sensitive
underdog supporters who participate in the election is strictly greater than that of the leader
supporters. We thus generalize their result by showing that it holds in a different setting than
theirs, since (a) in their model there are only cost-sensitive voters (a0 = b0 = 0), (b) we do not
restrict attention to settings with a unique equilibrium, and (c) we do not restrict attention
to a particular functional form for the benefit function h. However, as shown in Proposition
2, the underdog may win if ρ is large enough, in which case a “full underdog compensation”
arises. The second inequality in (31) puts an upper bound on this full compensation, which
is increasing in the stake ρ. Note further that in the limit as ρ tends to the neutral case
(ρ = 1), the two inequalities imply that the share of cost-sensitive underdog supporters who
participate in the election tends to that of the leader supporters.

3.6 Partisan ethics: equilibrium existence and multiplicity issues

Having derived results on the properties of equilibria, should they exist, we now turn to the
questions of existence and uniqueness. It turns out that equilibria sometimes fail to exist, and
that there sometimes are multiple equilibria.12

12See Section 3.2 of the Online Appendix for a numerical example with non-existence, and Section 3.3 for
the derivation of sufficient conditions for existence and uniqueness, which are similar to those adopted by
Herrera et al. (2016).
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(a) Number of equilibria (b) Number of equilibria with
a > b (A wins)

(c) Number of equilibria with
b > a (B wins)

Figure 4: Existence and multiplicity of equilibria, depending on (κ,m) (first line), (κ, ρ)
(second line), (κ, b0) (third line), and (av, bv) (fourth line)
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Figure 4 provides some insight into how the number of equilibria varies with the parameter
values. The figures in the first column show the number of equilibria (a number that varies
between 0 and 5). The figures in the second (respectively third) column then show, for the
same parameter configurations, the number of equilibria in which the underdog (respectively
the leader) wins the election. In the first three lines, it is the universalization parameter (κ)
that varies along the horizontal axis: on the vertical axis it is the curvature parameter of the
benefit function (m) that varies in the first line of figures, while it is the underdog’s base (b0)
in the second line and the stake (ρ) in the third line of figures. The parameter values used for
the first three lines correspond to the case considered in Proposition 4, and in each group there
are almost as many cost-sensitive voters as core voters (a0/av = b0/bv ≈ 0.94). Moreover, in
the first two lines, where the stake ρ is fixed, it is high enough to generate equilibria where the
underdog wins (ρ = 5). Finally, in the fourth line of figures it is the sizes of the cost-sensitive
constituencies (av on the horizontal axis and bv on the vertical axis) that vary.

In the three first lines the following patterns appear. First, equilibrium multiplicity (respec-
tively non-existence) appears only for sufficiently low (respectively high) values of κ. Second,
the first line shows that when there exists a unique equilibrium, the leader wins when the
value of the curvature parameter m is either low enough or high enough, while the underdog
wins for the set of values of m in between. We further see that as κ increases, the interval of
m-values for which the underdog wins gets closer to 0. Third, the size of the base b0 has an
unambiguously positive effect on the underdog’s prospects of winning, as seen in the second
line. Fourth, in the third line we see that, at least when the base of the leader exceeds that of
the underdog, an increase in the stake ρ does not necessarily lead to an increase in the number
of equilibria with a victory for the underdog.

3.7 Partisan ethics: the winner-take-all limit

The pure winner-take-all case corresponds to a discontinuous step-function sign(·) in lieu of
our function h(·). Our continuous model is not suitable for handling this case. Therefore, we
proceed by approximation as follows (the details and proofs of the propositions can be found
in the Appendix). A sequence of benefit functions ht that all satisfy the hypothesis of our
model is called an approximating sequence if the sequence converges to the winner-take-all
benefit function sign(·). An outcome (a, b) is sustained as a limit winner take all equilibrium
if there exists an approximating sequence ht and a sequence (at, bt) that converges to (a, b),
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with (at, bt) an equilibrium for ht, for all t.

Our result states that, at equilibrium, only two situations can occur. In the first situation,
which is also the generic one, costly participation is (in the limit) nil for both supporter groups,
leaving the bases to determine the result of the election. In the second situation, participation
is such that the result is (in the limit) tied and such that all (in the limit) of the voters turn
out in one of the groups. This second situation can only occur when the two parameters ā

and b̄ are equal, which, as opposed to our standing assumption ā > b̄, we exceptionally allow
in the present section.

Proposition 5 (Partisan ethics). Let (a, b) be sustained as a limit equilibrium of the winner-
take-all case.

1. If a0 6= b0 and ā > b̄, (a, b) = (a0, b0). (The underdog wins if b0 > a0 while the leader
wins if a0 > b0.)

2. If a0 6= b0 and ā = b̄ either (a, b) = (a0, b0) or (a, b) =
(
b̄, b̄

)
.

3. If a0 = b0 and ā = b̄, (a, b) =
(
b̄, b̄

)
.

4. If a0 = b0 and ā > b̄, no such pair (a, b) exists.

Example 3. While the proposition does not make any claims about existence, we provide
some illustrating examples with existence, for increasingly large values of m. Interestingly,
even in the winner-take-all limit, there may exist equilibria in which the underdog wins. We
illustrate this in Figure 5a, which also provides numerical evidence for existence in the first
case of Proposition 5. In Figure 5b, we illustrate the second case of Proposition 5.
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(a) Case 1 of Proposition 5 (b) Case 2 of Proposition 5

Figure 5: Possible equilibrium turnouts a and b depending on m

4 Non-partisan ethics (ex ante setting)

We here follow Harsanyi’s view by considering non-partisan ethics.13 In the non-partisan
setting a cost-sensitive voter i chooses a strategy which is a pair of thresholds si = (siA, s

i
B) ∈

[0,∞]2: the voter abstains when her cost for voting is larger than siA if she prefers candidate A,
and when her cost for voting is larger than siB if she prefers candidate B (siA = ∞ respectively
siB = ∞ means that she votes independently of the realized cost). Two interpretations are
possible. In the first, there is ex ante uncertainty regarding the candidate that i prefers,
and she selects the strategy behind the veil of ignorance, before this uncertainty is resolved.
This may well describe how independent voters reason. In the second interpretation, there
is no such uncertainty, but due to her ethical concern the individual adopts the viewpoint
of Harsanyi’s impartial observer, by inserting a veil of ignorance in her reasoning. Whatever
interpretation is chosen, i selects the strategy si = (siA, s

i
B) before knowing her actual cost of

voting. Voters have correct beliefs about the voting cost distributions, described in Section 2.

13Most models in the literature stick to partisan ethics. A notable exception is Feddersen and Sandroni
(2006), who adopt a mix of partisan and non-partisan ethics: the group-optimal cost threshold is obtained by
maximizing the material benefit that accrues to the group net of the expected cost for both groups.

25



Each individual votes for A or B, or abstains. Individual i in group A with realized cost ciA
votes for A if and only if ciA ≤ siA. The corresponding assumptions are made for group B.

4.1 Non-partisan ethics: payoff computations

As in the partisan setting, we are looking for homogenous equilibria, which here means that all
the cost-sensitive voters choose the same strategy. At a homogenous equilibrium s = (sA, sB),
the realized turnouts are a(s) = a0 + avFA(sA) and b(s) = b0 + bvFB(sB), respectively, for the
two candidates, and the following relative vote margins obtain:

α(s) =
a(sA)− b(sB)

a(sA) + b(sB)
and β(s) = −α(s), (33)

so that each voter obtains expected net material benefit

EU(s) =
1

av + bv

[
avh(α(s)) + bvρh(β(s))− av

∫ sA

c=0

cfA(c) dc− bv

∫ sB

c=0

cfB(c) dc

]
. (34)

With a non-partisan ethic, the voter takes into account both the expected benefits and the
expected costs that the thresholds sA and sB entail; the benefits are weighted by the relative
population shares of the groups, to reflect the ex ante perspective that the voter adopts.
Henceforth, we will without loss of generality drop the constant positive factor 1/(av + bv).
Since h(−x) = −h(x), the expected net material benefit can then be rewritten as follows:

EU(s) = (av − ρbv)h(α(s))− av

∫ sA

c=0

cfA(c) dc− bv

∫ sB

c=0

cfB(c) dc. (35)

This gives the following expression for the expected utility of a voter i with Homo moralis
preferences, given that all the other voters use strategy s:

EUκ(s, si) = (av − ρbv)h(α
κ(s, si))− av

∫ siA

c=0

cfA(c) dc− bv

∫ siB

c=0

cfB(c) dc, (36)

where

ακ(s, si) =
(1− κ)[a(sA)− b(sB)] + κ[a(siA)− b(siB)]

(1− κ)[a(sA) + b(sB)] + κ[a(siA) + b(siB)]
. (37)
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Applying the same change of variables as under partisan ethics, we henceforth assume that
an individual i’s strategy is a pair (ai, bi) ∈ [a0, ā]× [b0, b̄], and we write (a, b) for the strategy
used by the other voters at a homogenous equilibrium, so that the expected utility of i is

EUκ(a, b, ai, bi) = (av − ρbv) · h(ακ
(
a, b, ai, bi

)
)− avCA

(
ai
)
− bvCB

(
bi
)
, (38)

where
ακ

(
a, b, ai, bi

)
=

(1− κ) a+ κai − (1− κ)b− κbi

(1− κ) a+ κai + (1− κ) b+ κbi
. (39)

Under our assumptions, this is a continuously differentiable function of (ai, bi).

4.2 Non-partisan ethics: equilibrium existence

By contrast to the partisan setting, here we can establish general equilibrium existence, thanks
to the aforementioned change of variables together with Lemma 1.

Proposition 6 (Non-partisan voters). An equilibrium always exists.

Proof. Consider the auxiliary function

Φ(a, b) = κλh(α(a, b))− avCA (a)− bvCB (b) (40)

where λ = av − ρbv. It takes values in R ∪ {−∞}. We begin by showing that (a∗, b∗)

is an equilibrium if it is a global maximum of Φ. Thus, let (a∗, b∗) be a point where
Φ reaches its maximum, and suppose, by contradiction, that there exists (a′, b′) such that
EUκ(a∗, b∗, a′, b′) > EU (a∗, b∗), that is:

avCA (a∗) + bvCB(b
∗)− avCA (a′)− bvCB(b

′) > λ [h (α (a∗, b∗))− h (α (aκ, bκ))] (41)

for aκ = (1− κ) a∗ + κa′ and bκ = (1 − κ)b∗ + κb′. Since (a∗, b∗) maximizes Φ, we have
Φ (aκ, bκ) ≤ Φ (a∗, b∗), which writes:

avCA (a∗) + bvCB (b∗)− avCA (aκ)− bvCB (bκ) ≤ κλ [h (α (a∗, b∗))− h (α (aκ, bκ))] . (42)
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Combining the two previous equations we find, upon rearranging the terms,

(1− κ) avCA (a∗)+κavCA (a′)+ (1− κ) bvCB (b∗)+κbvCB (b′) < avCA (aκ)+ bvCB (bκ) . (43)

This contradicts the convexity of the functions CA, CB (see Lemma 1).

The second part of the proof consists in showing that Φ admits a maximum, which is a
sufficient condition for an equilibrium to exist, given the first part of the proof. To see this,
first note that h (α (a, b)) is continuous on [a0, ā] × [b0, b̄] and takes values in R. Moreover,
in the case where CA, CB are continuous functions on [a0, ā] × [b0, b̄] taking values in R, one
can conclude by the extreme value theorem, observing that Φ is continuous and takes values
in R. In the remaining case, where CA (ā) = ∞ or CB

(
b̄
)
= ∞, we have that CA (a) → ∞

for a → ā or CB (b) → ∞ for b → b̄. Then, since h is bounded on [a0, ā] × [b0, b̄], one can
find some εA, εB ≥ 0 such that Φ takes real values on [a0, ā− εA]× [b0, b̄− εB] and such that
Φ (a, b) ≤ Φ

(
min (a, ā− εA) ,min

(
b, b̄− εB

))
, which allows to conclude using the extreme

value theorem on [a0, ā− εA]× [b0, b̄− εB].

4.3 Non-partisan ethics: equilibrium properties

We first show that at equilibrium, exactly one group incurs positive voting costs (except in
two knife-edge cases, in which nobody votes).

Proposition 7 (Non-partisan ethics). If κ = 0 or av = ρbv, then (a∗, b∗) = (a0, b0) is the
unique equilibrium, while if κ ∈ (0, 1] then:

• if av > ρbv, any equilibrium is such that a∗ > a0 and b∗ = b0;

• if ρbv > av any equilibrium is such that a∗ = a0 and b∗ > b0.

Proof. Given that all other voters use strategy (a, b), i’s expected marginal utility from ai is

∂

∂ai
EUκ

(
a, b, ai, bi

)
= (av − ρbv)h

′(ακ(a, b, ai, bi))
∂ακ(a, b, ai, bi)

∂ai
− avC

′
A(a

i)

= (av − ρbv)h
′ (ακ(a, b, ai, bi)

) 2κ[(1− κ)b+ κbi]

[(1− κ) a+ κai + (1− κ)b+ κbi]2
− avC

′
A

(
ai
)

(44)
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and the expected marginal utility from bi is:

∂

∂bi
EUκ

(
a, b, ai, bi

)
= (ρbv − av)h

′(βκ(a, b, ai, bi))
∂βκ(a, b, ai, bi)

∂bi
− bvC

′
B(b

i)

= (ρbv − av)h
′ (βκ(a, b, ai, bi)

) 2κ[(1− κ)a+ κai]

[(1− κ) a+ κai + (1− κ)b+ κbi]2
− bvC

′
B

(
bi
)
. (45)

Since C ′
A(a0) = C ′

B(b0) = 0, and CA(a
i), CB(b

i) > 0 for ai > 0 or bi > 0 (see (19)), a best
response (ai, bi) to (a, b) has ai > a0 if and only if the first of the two terms in (44) is strictly
positive. Since h is strictly increasing, and b ≥ b0 > 0, this is true if and only if κ(av−ρbv) > 0;
otherwise, any best response has ai = a0. Likewise, a best response (ai, bi) to (a, b) has bi > b0

if and only if κ(ρbv − av) > 0; otherwise, any best response has bi = b0. These arguments
prove the proposition.

This proposition shows that both the degree of universalization (κ) and the stake of the
election for the underdog supporters (ρ) matter for the qualitative nature of the set of equilib-
ria. First, if voters are driven solely by instrumental motives (κ = 0) or if the expected benefit
that one group obtains from a positive margin of its candidate exactly outweighs the expected
cost that the other group garners from this margin (ρ = av/bv), then turnout is confined
to the bases a0 and b0, in which case the underdog wins if and only if it has a larger base
than the leader (b0 > a0). Second, whenever av 6= ρbv, any positive degree of universalization
κ > 0 triggers participation of a positive mass of cost-sensitive voters. The reason is clear:
a κ > 0 triggers in the individual voter a utility kick from contemplating the margin that
her preferred candidate would obtain if all the other cost-sensitive voters selected the same
strategy as herself; the voter is willing to incur a positive voting cost to obtain this utility kick.
Third, and in stark contrast with the partisan setting, here a voter internalizes the negative
externality that voting for one candidate has on the group supporting the other candidate.
Hence, she votes only if she belongs to the group that obtains the highest expected benefit
from its candidate’s margin.

Henceforth we examine only non-trivial settings where κ(av−ρbv) 6= 0. To begin, consider
the case av > ρbv and define

A(a∗) ≡ ∂

∂ai
EUκ

(
a, b, ai, bi

)
|ai=a∗,b=bi=b0= (av − ρbv)h

′(α(a∗, b0))
2κb0

(a∗ + b0)2
− avC

′
A (a∗) . (46)

The necessary first-order condition for any equilibrium a∗ is thus A(a∗) ≥ 0, which must hold as an
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equality if a∗ ∈ (a0, ā). The necessary second-order condition for such an interior solution is:

∂2

∂(ai)2
EUκ

(
a, b, ai, bi

)
|ai=a∗,b=bi=b0 = (av − ρbv)h

′′(α(a∗, b0))
4κ2b20

(a∗ + b0)4

− (av − ρbv)h
′(α(a∗, b0))

4κ2b0
(a∗ + b0)3

− avC
′′
A (a∗) ≤ 0. (47)

Likewise, for ρbv > av, define

B(b∗) ≡ ∂

∂bi
EUκ

(
a, b, ai, bi

)
|a=ai=a0,bi=b∗

= (ρbv − av)h
′(β(a0, b

∗))
2κa0

(a0 + b∗)2
− bvC

′
B (b∗) , (48)

so that the necessary first-order condition for any equilibrium b∗ is B(b∗) ≥ 0, which must
hold as an equality if b∗ lies in the interior (b0, b̄). The necessary second-order condition for
such an interior solution is:

∂2

∂(bi)2
EUκ

(
a, b, ai, bi

)
|a=ai=a0,bi=b∗= (ρbv − av)h

′′(β(a0, b
∗))

4κ2a20
(a0 + b∗)4

(49)

− (ρbv − av)h
′(β(a0, b

∗))
4κ2a0

(a0 + b∗)3
− bvC

′′
B (b∗) ≤ 0.

If there is a unique a∗ (respectively b∗) satisfying the first-order condition, then it is the
unique equilibrium (by virtue of Proposition 6). The following proposition identifies a sufficient
condition for this to obtain. For completeness, in the proof we also show that the second-order
condition holds (as a strict inequality).

Proposition 8 (Non-partisan ethics). Suppose that κ ∈ (0, 1]. If av > ρbv and a0 ≥ b0, there
is a unique equilibrium (a∗, b0). At this equilibrium, the leader wins: α(a∗, b0) > 0. Likewise, if
ρbv > av and b0 ≥ a0, there is a unique equilibrium (a0, b

∗). At this equilibrium, the underdog
wins: β(a0, b

∗) > 0.

Proof. It is sufficient to prove the result for one of the cases, say ρbv > av. We begin by proving
the following claim: if h′′(β(a0, b)) ≤ 0 for all b ∈ [b0, b̄] there either exists a unique b∗ ∈ (b0, b̄)

satisfying B(b∗) = 0 and such that (49) holds strictly, or B (b) > 0 for all b ∈
(
b0, b̄

)
. To

see this, note first that if h′′(β(a0, b)) ≤ 0 for all b ∈ [b0, b̄], then the first term in B(b∗) is
non-increasing in b∗; this term is also strictly positive for b∗ = b0 (since h′ > 0). Since the
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second term equals 0 for b∗ = b0 and is strictly increasing in b∗, the claim follows.

If b0 ≥ a0, the two statements in the proposition then follow immediately from the fact
that ρbv > av implies b∗ > b0 and a∗ = a0. Indeed, β(a0, b) is thus strictly positive for any
b ∈ (b0, b̄), and our assumptions on h then imply that h′′(β(a0, b)) ≤ 0 for any b ∈ (b0, b̄].

This proposition again underlines the crucial role played by the bases, a0 and b0. If the
cost-sensitive voters who do participate in the election can rely on a base that is larger than
that of the other candidate, then they win the election independent of their turnout rate.
This implies a decreasing marginal benefit and an increasing marginal cost of increases in the
turnout, which in turn implies equilibrium uniqueness. Section 4.3 of the Online Appendix
provides a more general result on equilibrium uniqueness that relies on the same idea.

We turn now to settings where the group that votes (i.e., the leader supporters if av > ρbv

and the underdog supporters if ρbv > av) has a smaller base than the other group, in which
case the marginal benefit is increasing for turnout rates close enough to the base, implying
that there may be multiple candidates a∗ (respectively b∗) satisfying the first- and second-
order conditions. Each such candidate is an equilibrium if there do not exist utility-enhancing
global deviations. The main question we investigate is whether equilibrium uniqueness obtains.
Examination of the special case of full universalization provides some initial insights.

Proposition 9 (Non-partisan ethics). Suppose that κ = 1. If there exist multiple equilibria,
they all generate the same expected utility to the cost-sensitive voters.

Proof. It is sufficient to prove the result for one of the cases, say ρbv > av. Plugging in a = a0

and κ = 1 into the expected utility (38), the expected utility becomes independent of b, the
turnout rate among the other voters, and thus a function of bi only:

EUκ(a0, b, a0, b
i) = (ρbv − av)h

(
bi − a0
a0 + bi

)
− CB(b

i). (50)

Hence, each individual voter simply chooses some value of bi that maximizes this expression.
If there are multiple solutions, they must yield the same expected utility.

This proposition suggests that full universalization can generate multiple turnout rates.
The following example, for the case ρbv > av, further shows that full universalization does not
guarantee a high turnout rate.
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Example 4. As shown in Figure 6, if bv equals a knife-edge value ≈ 0.609 and the other
parameter values are as specified in the figure legend, there are two equilibria, shown as stars:
the underdog wins at one of them (b∗ ≈ 0.6 > a0) but loses at the other (b∗ is close to b0 = 0.2).
The figure further shows that small variations in the parameter values may induce discrete
jumps in b∗: for bv slightly above 0.609, there is a unique equilibrium turnout, at which the
underdog wins, while for bv slightly below 0.609, there is a unique equilibrium turnout, close
to b0.

Figure 6: Existence of two equilibria when κ = 1

While multiplicity of equilibria appears only in knife-edge cases under full universalization
(κ = 1), it is not uncommon phenomenon under partial universalization (κ ∈ (0, 1)).

Example 5. Considering still the case ρbv > av, Figure 7 shows, for κ = 0.4, an example
with two equilibria, indicated by stars. Like in the example under full universalization in
Figure 6, here one equilibrium turnout is close to the base, b∗ ≈ 0.12, while the other makes
the underdog win, b∗ ≈ 0.49 > a0 = 0.45. This victory obtains despite the underdog’s base
being weak compared to that of the leader (compare b0 = 0.1 to a0 = 0.45). We further see in
the figure that the high-turnout equilibrium gives a substantially higher expected utility than
the low-turnout one.

In the preceding example the underdog supporters face a coordination problem, and
they would prefer to coordinate on the high-turnout equilibrium. A question of interest is
whether such coordination problems — i.e., co-existence of equilibria with substantially dif-
ferent turnouts, where one equilibrium is preferred to the other(s) — are common. We here
examine the necessary conditions for global deviations not to exist. This will provide some
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Figure 7: Utility from deviating from each equilibrium: b1 ≈ 0.49, b2 ≈ 0.12

insights about parameter values that might give rise to such multiplicity of equilibria. We do
this for the case ρbv > av.

Thus, consider some turnout rate b ∈ (b0, b̄). For b to be an equilibrium, an individual
voter must not wish to deviate to any b′ 6= b. Considering first downward deviations b′ < b,
the following condition must hold:

(ρbv − av) [h(β(a0, b))− h(βκ(a0, b, a0, b
′))] ≥ CB(b)− CB(b

′) ∀b′ ∈ [b0, b), (51)

where
β (a0, b) =

b− a0
a0 + b

and βκ (a0, b, a0, b
′) =

(1− κ)b+ κb′ − a0
a0 + (1− κ) b+ κb′

. (52)

Any downward deviation b′ < b reduces the cost, i.e., the right-hand side of (51) is strictly
positive. For any b′ < b the left-hand side is equal to zero if κ = 0, and it is increasing in
κ: the utility loss that the voter incurs from a decline in its preferred candidate’s margin
gets larger as her degree of universalization gets larger. Hence, any value of κ > 0 imposes
an upper bound on the turnout rate that can be sustained in equilibrium. In particular, the
voter must not be tempted by abstention (b′ = b0), the deviation that would maximize the
cost saving CB(b) − CB(b

′), and we note that the deviation to abstention generates a cost
saving that is larger the smaller is the base b0. Taken together, these observations suggest
that the underdog supporters can achieve a victory only if κ is large enough, and that this
constraint on κ is stronger the weaker is the base b0. Noting further that CB is decreasing in
the size of the cost-sensitive electorate bv (see (17)), ceteris paribus the constraint on κ is also
stronger the smaller is bv. Finally, (51) clearly implies that the stake for the B-supporters (ρ)
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must be large for an equilibrium with a higher turnout to be sustained.

Considering now upward deviations b′ > b, the following condition must hold for an indi-
vidual not to wish to deviate:

CB(b
′)− CB(b) ≥ (ρbv − av) [h(β

κ(a0, b, a0, b
′))− h(β(a0, b)] ∀b′ ∈ (b, b̄]. (53)

Any upward deviation b′ > b raises the cost, i.e., the left-hand side is strictly positive. But it
also raises the utility gain that the voter obtains from an increase in its preferred candidate’s
margin, as long as her degree of universalization is strictly positive: the right-hand side equals
zero if κ = 0 and is increasing in κ. Hence, for any κ > 0 there is a lower bound on the
turnout rate that can be sustained in equilibrium. In particular, if the underdog has a small
base b0 and κ is close enough to 1 — so that the right-hand side of (53) is large — we should
expect existence of equilibria with a turnout rate close to b0 only if voting costs are high
enough. Since CB is decreasing in the size of the cost-sensitive electorate (bv), ceteris paribus
low turnout equilibria also require bv to be small enough. Finally, (53) clearly implies that
low turnout equilibria are more likely to be sustained the smaller is the stake ρ.

Taken together, the preceding arguments suggest that the aforementioned coordination
problem should be expected only if κ is neither too large nor too small, a0 − b0 is large
enough, and ρbv − av is neither too large nor too small.

Recalling that the same arguments apply to the case av > ρbv, the leader’s supporters may
also face a coordination problem: if the leader’s base a0 is small enough compared to that
of the underdog b0, and κ is moderate, then there may exist two equilibria, one with a high
turnout and with a low turnout, and the leader may suffer a sizeable loss in the latter.

Further examples are provided in Section 4.2 of the Online Appendix, and Section 4.3
therein provides sufficient conditions for there to be a unique equilibrium.

4.4 Non-partisan ethics: the winner-take-all limit

Finally, we adopt the same approximation as in the partisan setting to analyze the winner-
take-all limit.

Proposition 10 (Non-partisan ethics). Only two situations can be sustained as limit equilibria
in the ex ante, limit “winner-take-all” case. Either cost-sensitive voters incur no cost and the
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side with the largest base wins, or the side with the largest base pays no cost and the side with
the smallest base pays to match the other base.

Example 6. The two equilibrium types can co-exist. An illustration is provided in Figure 8.

Figure 8: Equilibrium b for varying m in the case ρbv > av

5 Discussion and conclusions

In this paper we have tried to understand what follows if some people base their turnout
decisions on an argument of the form “Voting is the right thing to do because there would
be bad consequences if too many people abstained,” formalized through the Homo moralis
preferences (Alger and Weibull, 2013), which capture well such partial universalization. The
point is particularly relevant in circumstances where voting is costly and each single vote has
a negligible effect on the relative number of votes obtained by the candidates, a feature that
we capture by modeling the electorate as a continuum.

We find, first, that any extent of Homo moralis universalization ethics, i.e., any positive κ

in the model, justifies participation in large electorates in most cases. It is generally true as
long as voters perceive some benefit to any increase in the favorite candidate’s margin. This
corresponds to the power sharing setting of our model, where both the winning and the losing
side stand to gain from further increasing their share of the expressed votes. By contrast,
Homo moralis universalization ethics do not generally justify participation in large electorates
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in the winner-take-all limit case of our model, where there is a second reason for why votes
have a negligible impact: the marginal benefit from further increasing the share of expressed
votes is nil except at the point where the two candidates tie precisely.

Second, our analysis reveals why it is important for a candidate to have a large base, that
is, a large share of voters who always turn out to vote for them. The key effect of such a base
is that it can motivate the cost-sensitive voters to vote. This occurs when a large base reduces
the cost that a cost-sensitive voter needs to incur in order to realize that participation would
have a large impact on the benefit. In these cases, the base is a complement to the turnout of
cost-sensitive voters. We show that a large enough base for the underdog compared to that
of the topdog can even trigger a large enough turnout among the cost-sensitive voters for the
underdog to win the election. While this can happen even if the underdog’s supporters do
not perceive a particularly high stake in the election (i.e., even if the stake parameter ρ = 1),
these supporters are even more motivated to incur a cost to vote if the stake is not neutral
(ρ > 1). That being said, if the base is too large, it becomes a substitute for the cost-sensitive
voters’ turnout, since it reduces the marginal benefit of higher turnout rates.

A third pattern that emerges from our analysis is that high values of κ do not necessarily
guarantee high turnout rates, because voters may face coordination problems. Indeed, similar
to the base of one’s group, an increase in the share of other cost-sensitive voters who are
expected to vote dampens the cost that an individual cost-sensitive voter needs to incur to
reach a certain benefit. While this explains why there may exist equilibria with high turnout
rates, it also explains why such equilibria can sometimes co-exist with equilibria with very
low turnout rates.

Going forward, many questions remain. In particular, it would be interesting to allow
for heterogeneity in the degrees of universalization. On the empirical side, while several
motivations behind turnout decisions have already been documented and studied (Aytaç and
Stokes, 2019; Blais, 2000; Blais and Daoust, 2020; Downs, 1957; Gerber et al., 2008; Hatemi
and McDermott, 2011), it appears that no study has sought to detect universalization ethics
as a driver of turnout decisions.
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A Proofs of the winner-take-all limit results

A.1 Approximating sequences

Definition 1. Let (ht)t=1,2... be a sequence of functions that all satisfy the hypothesis of the
model and such that, for any x ∈ [−1, 1], limt→∞ ht(x) = sign(x). Such a sequence (ht)t=1,2,...

will be called an approximating sequence.

An example of such an approximating sequence is
(

1
arctan(m)

arctan (mx)
)
m=1,2,...

.

To prepare the proofs, we establish some properties of h. First, for any ε > 0, h converges

39



uniformly to 1 on [ε, 1] (and by symmetry, it converges uniformly to −1 on [−1,−ε]). To see
this, notice that ht is increasing. Therefore, for any x ∈ [ε, 1], ht (ε) ≤ ht (x) ≤ 1. Thus,
supx∈[ε,1] |ht (x)− h (x)| ≤ 1− ht (ε) and the result follows by the pointwise convergence of ht

to one at ε. Second, the concavity of ht on positive numbers implies that for any x > 0,

lim
t→∞

h′
t(x) = 0.

To see this, note that on intervals [y, x] and [x, z], concavity of ht implies ht(z)−ht(x)
z−x

< h′
t(x) <

ht(x)−ht(y)
x−y

and apply the sandwich lemma. The same result is likewise obtained for x < 0.
Finally, since h′

t is decreasing for x > 0, h′
t converges uniformly to 0 on [ε, 1], and likewise on

[−1,−ε].

Definition 2. We say that a pair (a, b) is sustained as a limit winner-take-all equilibrium
under partisan (resp. non partisan) ethics if there exists a sequence (at, bt, ht)t∈N such that

• (ht)t=1,2... is an approximating sequence,

• for all t, (at, bt) is an equilibrium of the partisan (resp. non partisan) game when the
political outcome function is ht, and

• limt→∞ (at, bt) = (a, b).

A.2 Partisan ethics

Proof of Proposition 5: Let (a, b) be sustained as a limit winner-take-all equilibrium under
partisan ethics by a sequence (at, bt, ht). The continuity of the function α implies that, if
a 6= b, then α(at, bt) converges to α(a, b) 6= 0, hence h′

t (α (at, bt)) tends to 0, using the uniform
convergence established above. It follows from the equilibrium conditions (Equations 28 and
29) that C ′

A

(
at−a0
av

)
tends to 0. By continuity of the function C ′

A this implies that at tends
to a0. The same argument holds for B.

We now assume that a = b with (a, b) such that a0 ≤ a < a0 + av and b0 ≤ b < b0 + bv.

Notice that there must be infinitely many (at, bt) such that bt ≤ at or infinitely many
(at, bt) such that at ≤ bt (both can be the case). We will assume that there are infinitely
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many bt ≤ at since the argument below works analogously with infinitely many at ≤ bt. By
extracting a subsequence, we will assume that the whole sequence is such that bt ≤ at.

Let δ > 0 and consider a deviation b̂t such that

κb̂t + (1− κ) bt = a+ δ, (54)

i.e.
b̂t =

a+ δ − (1− κ) bt
κ

→ a+
δ

κ
. (55)

Since bt → a and since we assumed that a = b < b0+bv, as long as δ is small enough, there
exists a T ∈ N large enough such that b̂t ∈ [b0, b0 + bv], i.e. such that b̂t is a feasible deviation
for all t > T .

Then, recalling (at, bt) → (a, a), and by possibly increasing T , we can ensure that
β (at, a+ δ) ∈ [ε, 1] for all t > T , for some ε > 0 small enough.

We will now show that b̂t is a profitable deviation for large enough t. Indeed, for t > T ,
by the uniform convergence of ht towards 1 on [ε, 1] and the continuity of CB,

Uκ
B,t

(
at, bt, b̂t

)
− Uκ

B,t (at, bt, bt) = ρ ht (β (at, a+ δ))︸ ︷︷ ︸
→1

−ρ ht (β (at, bt))︸ ︷︷ ︸
<0

+CB (bt)− CB

(
b̂t

)
︸ ︷︷ ︸
→CB(a)−CB

(
a+ δ

κ

)
(56)

is strictly positive for t large enough as well as δ small enough. The continuity of CB is used
twice in the argument: first to establish the convergence of the cost terms, and second to
argue that the cost difference is arbitrarily small for small enough δ.

Having shown that there exist profitable deviations in the approximating sequence of
equilibria for the individuals supporting at least one of the parties, we have reached a contra-
diction, i.e. there cannot be a limit winner-take-all equilibrium (a, a) with a0 ≤ a < a0 + av

and b0 ≤ b < b0 + bv.

Let us now assume that
(
b̄, b̄

)
is sustained as a limit winner-take-all equilibrium and that

ā > b̄ (where, by assumption, ā ≥ b̄, but the proof works analogously if one were to allow
b̄ > ā). Assume that ht (α (at, bt)) does not converge to 1. Then, there exists a ρ such
that there exists a subsequence of (at, bt) which satisfies ht (α (at, bt)) < 1 − ρ. Similarly to
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the sequence of eventually profitable deviations we constructed above for B, we can then
construct a sequence of eventually profitable deviations for A so that we can conclude that
ht (β (at, bt)) → 1. This in turn implies that for t large enough, B-supporters benefit from
deviating to a zero effort threshold, since the benefit of keeping a high turnout vanishes as
t → ∞.

Hence, except when ā = b̄, there cannot be a limit winner-take-all equilibrium
(
b̄, b̄

)
.

A.3 Non-partisan ethics

Proof of Proposition 10: The other parameters being fixed, let (at, bt) be a sequence of scores
sustained at equilibrium for ht. In view of Proposition 7 it is sufficient to deal with the case
where κ > 0 and av 6= ρbv.

We assume that av > ρbv, as the proof for the opposite case goes analogously. In view
of Proposition 2, for all t, at > a0 and bt = b0, and at satisfies the first-order condition (see
equation 44):

0 ≤ (av − ρbv)h
′
t

(
at − b0
at + b0

)
2κb0
at + b0

− avC
′
A(at), (57)

where < may only hold for at = ā.

Let ε > 0. Assume, for a contradiction, that the sequence at has an infinite number of
points within (a0+ ε, ā] (in the case a0 ≥ b0) or within (a0 + ε, b0 − ε)∪ (b0+ ε, ā] (in the case
b0 > a0). We can then extract a subsequence (aτ ) that converges to ã ∈ [a0 + ε, ā] (in the case
a0 ≥ b0) or to ã ∈ [a0 + ε, b0 − ε] ∪ [b0 + ε, ā] (in the case b0 > a0). In any case, aτ−b0

aτ+b0
tends

to ã−b0
ã+b0

6= 0. By the uniform convergence established above, h′
t

(
aτ−b0
aτ+b0

)
tends to 0, whereas

C ′
A (aτ ) tends to C ′

A (ã) > 0, a contradiction with all aτ satisfying above first-order condition.
It follows that limt→∞ at ∈ {a0, b0}.
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ONLINE APPENDIX

1 A comment on the benefit function used by Herrera,
Morelli, and Nunnari (2016)

Using our notation, Herrera et al. (2016) posit the material benefit function aγ/(aγ + bγ) for
the A-supporters and bγ/(aγ + bγ) for the B-supporters, where the parameter γ ∈ [1,+∞)

captures the power sharing rule. By setting

h (α) =
(1 + α)γ − (1− α)γ

(1 + α)γ + (1− α)γ
, (1)

it is straightforward to show that

h (α) = −1 + 2
aγ

aγ + bγ
, (2)

and similarly for β. Indeed,

(1 + α)γ − (1− α)γ

(1 + α)γ + (1− α)γ
=

2a
a+b

γ − 2b
a+b

γ

2a
a+b

γ
+ 2b

a+b

γ = −1 + 2
aγ

aγ + bγ
. (3)

It remains to show that the function in (1) fits the assumptions of our model. Clearly, it
takes values between −1 and 1 and is symmetric around α = 0. Moreover, it is continuous
and differentiable. Indeed, the first derivative is given by

h′ (α) =
4γ
(
(1− α2)

γ−1
)

((1 + α)γ + (1− α)γ)
2 > 0, (4)
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and therefore, the second derivative is given by

h′′ (α) = 4γ
−2α (γ − 1) (1− α2)

γ−2
((1 + α)γ + (1− α)γ)

2

((1 + α)γ + (1− α)γ)
4

− 4γ
2
(
(1− α2)

γ−1
)
((1 + α)γ + (1− α)γ) γ

(
(1 + α)γ−1 − (1− α)γ−1)

((1 + α)γ + (1− α)γ)
4

= −8γ (γ − 1)α
(1− α2)

γ−2

((1 + α)γ + (1− α)γ)
2

− 8γ2
(1− α2)

γ−1 (
(1 + α)γ−1 − (1− α)γ−1)

((1 + α)γ + (1− α)γ)
3 .

(5)

Clearly, this h satisfies our assumptions on the derivatives for any γ ∈ [1,+∞). Re-scaling
the cost accordingly, this shows that our benefit term is more general.

2 The benefit function and cost distributions used in
the examples

Throughout we will use the following specification for h to provide numerical examples to
illustrate our general results and discussions:

h (x) =
arctan (mx)

arctan (m)
. (6)

The parameter m ∈ R+ changes the slope of h: the larger is m, the larger is the marginal
benefit for small margins and the smaller is the marginal benefit for large margins. The
linear case obtains (by continuity) for m = 0 and the step function for m → ∞, giving m
a similar role as the power-sharing parameter γ in the Herrera, Morelli, and Nunnari, 2016
benefit term. This is illustrated in Figure 1.

The examples will always use uniform cost distributions with support [0, θA] and [0, θA]

for A- and B-supporters. The model is fully specified with the parameters m, ρ, θA, θB, ā,
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Figure 1: h as defined in equation (6) for different values of m

b̄, a0, b0. Unless stated otherwise, we use the functions

CA (a) = θA
2

(
a−a0
av

)2
CB (b) = θB

2

(
b−b0
bv

)2
,

(7)

which correspond to a uniformly distributed cost on [0, θA] for the A-supporters and a uni-
formly distributed cost on [0, θB] for the B-supporters.

3 Partisan ethics

3.1 Computing equilibria with the arctan benefit function and uni-
form cost

We first describe how to compute A-consistent strategies. We explain how we may compute
A-consistent strategies, where B-consistent strategies can be computed analogously. We look
for an A-consistent strategy a given a strategy b played by B-supporters. The first-order
condition for a, 0 = ∂

∂ai
EUκ

A (a, b, ai)
∣∣
ai=a

is given by

0 =
m

arctan (m)

1

1 +
(
ma−b

b+a

)2 2κb

(b+ a)2
− θA

a− a0
a2v

. (8)
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After some algebra, we obtain a polynomial:

0 = a3 +

(
2
1−m2

1 +m2
b− a0

)
a2 +

(
b2 − 2

1−m2

1 +m2
a0b

)
a− b2a0 −

2mκba2v
(1 +m2) θA arctan (m)

(9)

Solving the polynomial gives candidate A-consistent strategies, to which we have to add ā

(but a0 cannot be A-consistent).

Then, in order to rule out a profitable deviation, it is sufficient to compare the utility
level associated to such a candidate a with the utility at any solution of ∂

∂ai
Uκ (a, b∗, ai) = 0

and with the utility at ā. The equation ∂
∂ai
Uκ (a, b∗, ai) = 0 can be rewritten as another

degree three polynomial equation.

In order to find equilibria, we first find pairs (a, b) that simultaneously solve the first
order conditions, i.e. 0 = ∂

∂ai
EUκ

A (a, b, ai)
∣∣
ai=a

and 0 = ∂
∂bi
EUκ

B (a, b, ai)
∣∣
bi=b

. As above,
these can both be rewritten as polynomials in (a, b). We can solve the system of polynomials
numerically using the resultant method, where we use SymPy to compute the resultant and
NumPy to compute roots.

Other candidate equilibria are
(
ā, b̄
)
,
(
a, b̄
)

with a a candidate A-consistent strategy
given b̄ and (ā, b) with b a candidate B-consistent strategy given ā. For each candidate
equilibrium, we check for profitable deviations as described above.

3.2 Examples

Example 1 (a setting with no equilibrium). Equilibria may fail to exist. This is illustrated
in Figure 2a, where the curve showing the A-consistent turnouts does not intersect with the
curve showing the B-consistent turnouts.

Example 2 (a setting with multiple equilibria). There may exist more than one equilibrium.
In Figure 2b we show an example with five equilibria: two of them exhibit low turnouts and
a victory by the leader, while the other three exhibit high turnouts and a victory by the
underdog.
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(a) An example of failure of equilibrium existence (b) An example with five equilibria

Figure 2: Two extreme cases on multiplicity of equilibria

3.3 Sufficient conditions for equilibrium existence and uniqueness

Here we identify sufficient conditions for there to exist a unique equilibrium (a∗, b∗) of the
population game studied above. To prepare the ground for the statements and proofs, we
define the auxiliary functions

ΦA (a, b) = κh (α (a, b))− CA (a) , (10)

ΦB (a, b) = ρκh (−α (a, b))− CB (b) . (11)

We also define the auxiliary game: this is a simultaneous-move game between two players,
call them Alice and Bob, who have strategy sets [a0, ā] and [b0, b̄], and payoff functions ΦA

and ΦB, respectively.

In the following statements, by single-peaked, we mean that a function defined on [a0, ā]

(or [b0, b̄]) is strictly increasing up to some a ∈ (a0, ā) (or b ∈
(
b0, b̄

)
), and strictly decreasing

thereafter. In case it is differentiable, this amounts to its first-derivative being first strictly
positive, crossing zero once from above, and then being strictly negative.

Assumption 1. Assume that for all (a, b), ai 7→ EUκ
A (a, b, ai) and bi 7→ EUκ

B (a, b, bi) are
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single-peaked. Moreover, assume that for all b, a 7→ ΦA (a, b) is single-peaked, and for all a,
b 7→ ΦB (a, b) is single-peaked.

Lemma 1. Under Assumption 1, (a∗, b∗) is an equilibrium of the population game if, and
only if, it is a Nash equilibrium of the auxiliary game.

Proof. Claim: for any b, there exists a unique A-consistent strategy. To prove this, let us
define φ : [a0, ā] → [a0, ā] by

φ (a) = argmax
ai

EUκ
A

(
a, b, ai

)
. (12)

This is indeed well-defined, since the argmax exists and is unique due to the single-peakedness
assumption on EUκ

A. By Berge’s maximum theorem, φ is continuous. Therefore, Brouwer’s
fixed point theorem applies and there exists at least one fixed point, i.e. at least one A-
consistent strategy. By the assumption that for all a, b, the unique maximum of ai 7→
EUκ

A (a, b, ai) lies in (a0, ā), we can conclude that any such A-consistent strategy lies in
(a0, ā) (is interior). Hence, it satisfies the first-order condition

0 =
∂

∂ai
EUκ

A

(
a, b, ai

)∣∣∣∣
ai=a

. (13)

Since
∂

∂a
ΦA (a, b) =

2κbh′(α(a, b))

(a+ b)2
− C ′

A(a), (14)

and recalling the first-order condition

∂

∂ai
Uκ
A

(
a, b, ai

)
|ai=a∗,b=b∗ =

2κb∗h′(α(a∗, b∗))

(a∗ + b∗)2
− C ′

A (a∗)

{
= 0 if a∗ ∈ (a0, ā)

≥ 0 if a∗ = ā,
(15)

we conclude that any fixed point of (12) satisfies

0 =
∂

∂ai
EUκ

A

(
a, b, ai

)∣∣∣∣
ai=a

=
∂

∂a
ΦA (a, b) . (16)

Since the single-peakedness assumption on ΦA implies that there is a unique a that maximizes
ΦA (a, b), this completes the proof of the claim.
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By repeating the same argument for B-consistent strategies, we conclude that (a∗, b∗) is
an equilibrium of the population game if and only if

1. a∗ maximizes a 7→ ΦA (a, b∗), and

2. b∗ maximizes b 7→ ΦB (a∗, b).

By reducing the analysis to that of a standard two-player game, Lemma 1 facilitates
identification of sufficient conditions for there to exist a unique equilibrium of the population
game.

Assumption 2. Let h (x) = arctan(mx)
arctan(m)

, and assume that:

1. κ ∈ (0, 1],

2. fk(c)c
Fk(c)

, k = A,B, is decreasing,

3. m ≤ 1 or for some r < 2m
(m−1)2

,

lim
c→0

FA (c)

cr
> 0, (17)

4. m ≤ 1 or for some r < 2m
ρ(m−1)2

,

lim
c→0

FB (c)

cr
> 0, (18)

5. s̄B ≥ ρā
(
m2+1

)
2κbvm arctan(m)

, and

6. s̄A ≥ b̄
(
m2+1

)
2κavm arctan(m)

.

Proposition 1. Under Assumption 1, there exists a unique equilibrium of the population
game. Moreover, Assumption 1 holds under Assumption 2.

Proof. Proving first the first claim, let us define a function ψ : [a0, ā]×
[
b0, b̄

]
→ [a0, ā]×

[
b0, b̄

]
by

ψ (a, b) =

(
argmaxã ΦA (ã, b)

argmaxb̃ΦB

(
a, b̃
)) , (19)
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which is well-defined by the assumptions on ΦA and ΦB. Applying Berge’s maximum theo-
rem, we conclude that ψ is continuous, allowing us to apply Brouwer’s theorem. We deduce
that ψ has at least one fixed point, proving equilibrium existence.

In order to prove uniqueness, we again rely on the auxiliary two-player game. Assume,
for a contradiction, that (a1, b1) and (a2, b2) are both equilibria of that game. Then,

ΦA (a1, b1) ≥ ΦA (a2, b1) , (20)

ΦA (a2, b2) ≥ ΦA (a1, b2) , (21)

ΦB (a1, b1) ≥ ΦB (a1, b2) , (22)

ΦB (a2, b2) ≥ ΦB (a2, b1) . (23)

Writing these expressions out,

κh (α (a1, b1))− CA (a1) ≥ κh (α (a2, b1))− CA (a2) , (24)

κh (α (a2, b2))− CA (a2) ≥ κh (α (a1, b2))− CA (a1) , (25)

−ρκh (α (a1, b1))− CB (b1) ≥ −ρκh (α (a1, b2))− CB (b2) , (26)

−ρκh (α (a2, b2))− CB (b2) ≥ −ρκh (α (a2, b1))− CB (b1) . (27)

Rewriting,

κh (α (a1, b1))− κh (α (a2, b1)) ≥ CA (a1)− CA (a2) , (28)

CA (a1)− CA (a2) ≥ κh (α (a1, b2))− κh (α (a2, b2)) , (29)

ρκh (α (a1, b2))− ρκh (α (a1, b1)) ≥ CB (b1)− CB (b2) , (30)

CB (b1)− CB (b2) ≥ ρκh (α (a2, b2))− ρκh (α (a2, b1)) . (31)

Combining and eliminating constant positive factors,

h (α (a1, b1))− h (α (a2, b1)) ≥ h (α (a1, b2))− h (α (a2, b2)) , (32)

h (α (a1, b2))− h (α (a1, b1)) ≥ h (α (a2, b2))− h (α (a2, b1)) . (33)
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Rewriting once more,

h (α (a1, b1)) + h (α (a2, b2)) ≥ h (α (a1, b2)) + h (α (a2, b1)) , (34)

h (α (a1, b2)) + h (α (a2, b1)) ≥ h (α (a2, b2)) + h (α (a1, b1)) . (35)

Combining the two inequalities, we have equality throughout:

h (α (a1, b1)) + h (α (a2, b2)) = h (α (a1, b2)) + h (α (a2, b1)) . (36)

Multiplying with κ and subtracting CA (a1) as well as CA (a2) on both sides,

ΦA (a1, b1) + ΦA (a2, b2) = ΦA (a1, b2) + ΦA (a2, b1) . (37)

Since ΦA (a1, b1) ≥ ΦA (a2, b1) and ΦA (a2, b2) ≥ ΦA (a1, b2), we have

ΦA (a1, b1) = ΦA (a2, b1) and ΦA (a2, b2) = ΦA (a1, b2) . (38)

Since we assumed that a 7→ ΦA (a, b) is single-peaked for any b, we deduce a1 = a2. By
repeating the same argument on ΦB, we deduce b1 = b2, thus proving equilibrium uniqueness
of the auxiliary game. Lemma 1 then implies that this is also the unique equilibrium of the
population game. This completes the proof of the first claim of the proposition.

We turn now to the second claim of the proposition. To begin, for any turnout levels
(a, b) let us write the expected utility of B-supporter i as a function of the cutoff strategy
siB:

EUκ
B

(
a, b, siB

)
= ρh

(
βκ
(
a, b, siB

))
−
∫ siB

0

cf (c) dc, (39)

where
βκ
(
a, b, siB

)
=

(1− κ) b+ κ (bvFB (siB) + b0)− a

(1− κ) b+ κ (bvFB (siB) + b0) + a
. (40)

Likewise, write the associated auxiliary function as a function of sB:

ΦB (a, sB) = ρκh (β (a, sB))−
∫ sB

0

cf (c) dc. (41)

Clearly, since FB is strictly increasing, single-peakedness of EUκ
B (a, b, siB) in siB holds if and
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only if single-peakedness of EUκ
B (a, b, bi) in bi holds. Likewise, single-peakedness of Φ (a, sB)

in sB holds if and only if single-peakedness of ΦB (a, b) in b holds.

We will show that for all (a, b), siB 7→ EUκ
B (a, b, siB) and sB 7→ ΦB (a, sB) are single-

peaked, as the proof goes analogously for EUκ
A and ΦA (with ρ = 1).

In order to ease notation, let

Mκ
(
siB
)
= (1− κ) b+ κ

(
bvFB

(
siB
)
+ b0

)
− a, and

T κ
(
siB
)
= (1− κ) b+ κ

(
bvFB

(
siB
)
+ b0

)
+ a.

(42)

We then have
∂

∂siB
βκ
(
a, b, siB

)
=

2κabvfB (siB)

(T κ (siB))
2 (43)

so that
∂

∂siB
EUκ

B

(
a, b, siB

)
= ρh′

(
βκ
(
a, b, siB

)) 2κabvfB (siB)

(T κ (siB))
2 − siBfB

(
siB
)
. (44)

Hence, for h (x) = arctan(mx)
arctan(m)

,

∂

∂siB
EUκ

B

(
a, b, siB

)
= ρ

2mκabvfB (siB)

arctan (m)

1

(T κ (siB))
2

1

1 +m2
(
Mκ

(
siB

))2(
Tκ

(
siB

))2
− siBfB

(
siB
)

= fB
(
siB
)( 2mκρabv

arctan (m)

1

(T κ (siB))
2
+m2 (Mκ (siB))

2 − siB

)

=
fB (siB)

(T κ (siB))
2
+m2 (Mκ (siB))

2︸ ︷︷ ︸
>0

(
2mκρabv
arctan (m)

−
((
T κ
(
siB
))2

+m2
(
Mκ

(
siB
))2)

siB

)
.

(45)

Consider now the auxiliary function in (41). Since

∂

∂sB
β (a, sB) =

2abvfB (sB)

(T 1 (sB))
2 , (46)
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for h (x) = arctan(mx)
arctan(m)

we obtain

∂

∂sB
ΦB (a, sB) = ρκh′ (β (a, sB))

2κabvfB (sB)

(T 1 (sB))
2 − sBfB (sB)

=
fB (sB)

(T 1 (sB))
2 +m2 (M1 (sB))

2︸ ︷︷ ︸
>0

(
2mκρabv
arctan (m)

−
((
T 1 (sB)

)2
+m2

(
M1 (sB)

)2)
sB

)
.

(47)

Therefore, to show the single-peakedness of EUκ
B (a, b, siA) in siB and of ΦB (a, sB) in sB,

it is sufficient that φκ̃
B (sB)

def
=
((
T κ̃
)2

+m2
(
M κ̃
)2)

sB is, for both κ̃ = κ and κ̃ = 1,

(a) strictly increasing, and

(b) eventually greater than 2mκρabv
arctan(m)

.

To prove (a) it is sufficient to prove that prove that
(
φκ̃
B

)′
(sB) > 0, where

(
φκ̃
B

)′
(sB) =

(
T κ̃
)2

+m2
(
M κ̃
)2

+ 2sBκ̃bvfB (sB)
(
T κ̃ +m2M κ̃

)
. (48)

It is straightforward to see that
(
φκ̃
B

)′
(sB) > 0 holds for m ≤ 1. For m > 1, writing b̃ = b−b0,

and minimizing the expression over a, b̃ and b0 using SymPy (the code is included in Section
5 below), we show that

(
φκ̃
B

)′
(sB) > 0 if

sB <
2FB (sB)m

ρfB (sB) (m− 1)2
(49)

or, equivalently,
fB (sB) sB
FB (sB)

<
2m

ρ(m− 1)2
. (50)

Since fB(c)c/FB(c) is decreasing (by assumption 2), it is sufficient to have

lim
c→0

fB (c) c

FB (c)
<

2m

ρ(m− 1)2
. (51)
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For this, in turn, it is sufficient to have, for some r < 2m
ρ(m−1)2

,

lim
c→0

FB (c)

cr
> 0. (52)

Let us now turn to (b). It is sufficient to give a condition on s̄B such that

s̄B

((
T κ̃
)2

+m2
(
M κ̃
)2)

>
2mκ̃ρabv
arctan (m)

, (53)

where Mκ and T κ are evaluated at siB = s̄B, for both κ̃ = κ and κ̃ = 1.

Using SymPy, we minimize ψ =
((
T κ̃
)2

+m2
(
M κ̃
)2) over a, b̃ and b0; we also maximize

the right-hand side by plugging in a = ā. We find that (53) holds if

s̄B
4κ̃2b2vm

2

m2 + 1
≥ 2mκ̃ρābv

arctanm
, (54)

or equivalently,

s̄B ≥ ρā (m2 + 1)

2κ̃bvm arctan (m)
. (55)

We also observe that this condition holds for both κ̃ ∈ {κ, 1} if

s̄B ≥ ρā (m2 + 1)

2κbvm arctan (m)
. (56)

Conditions 2-6 of Assumption 2 are reminiscent of those that Herrera et al. (2016) adopt
to ensure equilibrium existence and uniqueness in their model (see their “decreasing gener-
alized reversed hazard rate (DGRHR) property” and their Condition 1). These conditions
ensure that the density for low costs is large enough to avoid possible multiple peaks for low
turnouts levels.

Observe that, for arbitrarily large m, part 3 and 4 of Assumption 2 require FA and FB to
be arbitrarily steep at 0. Therefore, there cannot be a single continuous cost distribution on
[0,∞) that satisfies Assumption 2 for all m > 0. A similar observation holds for arbitrarily
large γ in Condition 1 of Herrera et al. (2016). Under both our and their assumptions, it is

12



therefore impossible to guarantee existence and uniqueness while taking the limit m→ ∞ (or
γ → ∞, respectively). The next section deals with this limit whilst dropping Assumption 2.
In fact, in case a0 = b0 and ā 6= b̄, part 4 of Proposition 5 in the main text suggests that
there cannot be a sufficient condition that implies existence independently of m.

4 Non-partisan ethics

4.1 Computing equilibria with the arctan benefit function and uni-
form cost

We assume, without loss of generality, that ρbv − av > 0: indeed, we have established that
in this case, a = a0. Finding an equilibrium therefore amounts to finding b > b0. In case the
opposite inequality holds, one needs to find the equilibrium a for b = b0.

Let us write out the first-order condition 0 = ∂
∂bi
EUκ (a, b, ai, bi) |bi=b,ai=a=a0 :

0 =
m (ρbv − av)

arctan (m)

1

1 +
(
m b−a0

b+a0

)2 2κb

(b+ a0)
2 − θ

b− b0
bv

. (57)

It is then straightforward to rewrite this equation as a polynomial equation in b. Finding
roots of the polynomial yields candidate equilibria.

Finally, for some candidate equilibrium b, one can write out ∂
∂bi
EUκ (a, b, ai, bi) |ai=a=a0 ,

observe that it can be rewritten as a polynomial in bi (we use SymPy) and check if any
solution or b̄ is associated with a higher expected utility, in order to rule out profitable
deviations.

4.2 Further examples

Example 3. Figure 3 shows the set of equilibrium turnouts for the leader supporters, as a
function of a0, and for three values of κ. For κ = 1, we see that there is a unique equilibrium
for any value of a0, while for κ = 0.8 and κ = 0.5, there are two equilibria for small values
of a0 and a unique equilibrium for large enough values of a0. The leader wins at equilibria

13



above the dashed line, which corresponds to a = b0. The figure thus shows that if the base
a0 is small, the leader supporters face a coordination problem: they may win or lose. By
contrast, a victory for the leader is guaranteed if the base a0 is large enough.

Figure 3: Set of equilibrium turnouts a for different values of a0

We now examine whether there may be even more than two equilibria.

Example 4. Returning to settings where ρbv − av > 0, Figure 4 shows an example with
three equilibria. Like for the example with two equilibria in the main text, here the expected
utility is higher the higher is the equilibrium turnout.
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Figure 4: Utility from deviation for each equilibrium candidate

By contrast to the partisan setting, however, in our numerical examples we did not
identify any parameter values for which there are more than three equilibria.

Example 5. In Figure 5, we still examine the case ρbv > av and we vary two parameters
at a time. Then, we plot the number of equilibria in panel (a) and the number of equilibria
such that the underdog wins in panel (b).

The first line of figures shows how the set of equilibria varies with the degree of univer-
salization κ and the stake ρ. For high (resp. low) enough values of ρ and κ there is a unique
equilibrium, in which the underdog wins (resp. loses). The coordination problem appears
either if κ is not very high but ρ is, or the reverse, and it is the combination of a modest κ
and a high ρ that favors the appearance of more than two equilibria.

The second line of figures then shows how the set of equilibria varies with the degree
of universalization κ and m, the curvature parameter for the h function (see (6)). For low
enough values of m, the expected utility is concave and equilibrium uniqueness obtains.
Multiplicity of equilibria appears for a value of m around 5.

Note that the first two lines of figures confirm one of the conclusions from our analysis
of global deviations above: multiplicity of equilibria appears only for values of κ neither too
close to 0, nor too close to 1. One exception appears in the second line, however, where a
value of ρ slightly below 2 corresponds to a knife-edge case with two equilibria for κ = 1.
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(a) Number of equilibria
(b) Number of equilibria with b > a0 (B
wins)

Figure 5: Multiplicity of equilibria, depending on (κ,m) (first line), (κ, ρ) (second line),
(κ, b0) (third line), and (a0, b0) (fourth line)
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4.3 Sufficient conditions for equilibrium uniqueness

Sufficient conditions for uniqueness are analogous to the partisan case described in Sec-
tion 3.3. We will show that uniqueness holds if the auxiliary function from the proof of
Proposition 7 is single-peaked in a suitable sense. Recall

Φ (a, b) = κavh (α (a, b)) + ρκbvh (β (a, b))− avCA (a)− bvCB (b)

= κ (av − ρbv)h (α (a, b))− avCA (a)− bvCB (b)

= κ (ρbv − av)h (β (a, b))− avCA (a)− bvCB (b)

(58)

As opposed to the partisan case (see Section 3.3) it is sufficient to assume single-
peakedness in the following sense: a univariate function is called single-peaked if it is strictly
increasing until reaching its unique maximum, where the latter could be equal to b̄. Recall
also Proposition 8 in the main text: if ρbv > av, any equilibrium is such that a = a0, and
vice-versa, if av > ρbv, any equilibrium is such that b = b0.

Proposition 2. Let κ > 0. If ρbv > av and b 7→ Φ (a0, b) is single-peaked, there exists a
unique equilibrium. Similarly, if av > ρbv and a 7→ Φ (a, b0) is single-peaked, there exists a
unique equilibrium.

Proof. We restrict ourselves to the case ρbv > av, as the proof in the opposite case goes
analogously. By Proposition 8 in the main text, a = a0, so that any equilibrium is entirely
described by b, and b > b0.

Let b be an equilibrium. It satisfies

∂

∂bi
EUκ

(
a0, b, a0, b

i
)∣∣∣∣

bi=b

=
∂

∂b
Φ (a0, b) = 0 (59)

if b ∈ (b0, b̄) and
∂

∂bi
EUκ

(
a0, b, a0, b

i
)∣∣∣∣

bi=b

=
∂

∂b
Φ (a0, b) ≥ 0 (60)

if b = b̄. In both cases, the single-peakedness assumption implies that b is a maximum of
b 7→ Φ (a0, b).

Now, assume for a contradiction that there exist two equilibria b1 6= b2. Then, both are
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maxima of the auxiliary function, contradicting the single-peakedness assumption.

Note that this proposition generalizes Proposition 9 of the main text: indeed, if, say,
av > ρbv and a0 ≥ b0, then α (a, b0) ≥ 0 for all a ∈ [a0, ā] and therefore h′′ (a, b0) ≥ 0 by
assumption. Recalling that the cost term is strictly convex, a 7→ Φ (a, b0) is strictly concave.

Similar to the partisan case (see Section 3.3), we can pin down sufficient conditions for
single-peakedness for the specifc function we use in our illustrating examples.

Lemma 2. Let κ > 0 and let h (x) = arctan(mx)
arctan(m)

.

1. Let λ = av − ρbv > 0. If

• fA(c)c
FA(c)

is decreasing,

• for some r < 2avm
λ(m2−2m+1)

,

lim
c→0

FA (c)

cr
> 0, (61)

• and s̄A ≥ λb0
(
m2+1

)
2a2vm arctan(m)

,

single-peakedness of a 7→ Φ (a, b0) holds.

2. Let λ = ρbv − av > 0. If

• fB(c)c
FB(c)

is decreasing,

• for some r < 2bvm
λ(m2−2m+1)

,

lim
c→0

FB (c)

cr
> 0, (62)

• and s̄B ≥ λa0
(
m2+1

)
2b2vm arctan(m)

,

single-peakedness of b 7→ Φ (a0, b) holds.

Proof. We restrict ourselves to the case λ = av−ρbv > 0, as the proof for the other case goes
analogously. By an abuse of notation, we write Φ (sA, b0) instead of Φ (a0 + avFA (sA) , b0).
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Then, writing M (sA) = a0 + avFA (sA)− b0 and T (sA) = a0 + avFA (sA) + b0,

∂

∂sA
Φ (a0, sB) = λκh′ (α (sA, b0))

2κb0avfA (sA)

T (sA)
2 − avsAfA (sA)

= av
fA (sA)

T (sA)
2 +m2M (sA)

2︸ ︷︷ ︸
>0

λκh′ (α (sA, b0))

(
2mκλb0

arctan (m)
−
(
T (sA)

2 +m2M (sA)
2) sA) .

(63)

Note that a 7→ Φ (a, b0) is single-peaked if and only if sA 7→ Φ (sA, b0) is single-peaked.
Therefore, it is sufficient to show that φ (sA) =

(
T (sA)

2 +m2M (sA)
2) is strictly increasing,

and eventually greater than 2mκλb0
arctan(m)

. This follows from the conditions in the same way as
in the proof of Proposition 1.

5 SymPy calculations

[1]: from sympy import *

[2]: m,rho, sbi,bars,bv, kap = symbols(r'm \rho s_B \bar{s}_B b_v␣
↪→\tilde{\kappa}',positive=True)

b = Symbol(r"\tilde{b}")

a = Symbol("a")

abar = Symbol(r"\bar{a}",positive=True)

b0 = Symbol("b_0")

FB = Function("F_B")(sbi)

fB = Function("f_B")(sbi)

FBsymb = Symbol("F_B")

fBsymb = Symbol("f_B")

Analyzing φB

[9]: Tkap = kap*bv*FB + (1-kap)*b + b0 + a

Mkap = kap*bv*FB + (1-kap) * b + b0 - a

phi = Tkap**2 + m**2 * Mkap**2 + 2*sbi*kap*rho *bv*fB *(Tkap + m**2*Mkap)
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display(collect(expand(phi),[a**2,a]))

−2ρκ̃2b̃bvm
2siBfB

(
siB
)

− 2ρκ̃2b̃bvs
i
BfB

(
siB
)

+ 2ρκ̃2b2vm
2siBFB

(
siB
)
fB
(
siB
)

+

2ρκ̃2b2vs
i
BFB

(
siB
)
fB
(
siB
)
+ 2ρκ̃b̃bvm

2siBfB
(
siB
)
+ 2ρκ̃b̃bvs

i
BfB

(
siB
)
+ 2ρκ̃b0bvm

2siBfB
(
siB
)
+

2ρκ̃b0bvs
i
BfB

(
siB
)
+ κ̃2b̃2m2 + κ̃2b̃2 − 2κ̃2b̃bvm

2FB

(
siB
)
− 2κ̃2b̃bvFB

(
siB
)
+ κ̃2b2vm

2F 2
B

(
siB
)
+

κ̃2b2vF
2
B

(
siB
)
− 2κ̃b̃2m2 − 2κ̃b̃2 − 2κ̃b̃b0m

2 − 2κ̃b̃b0 + 2κ̃b̃bvm
2FB

(
siB
)
+ 2κ̃b̃bvFB

(
siB
)
+

2κ̃b0bvm
2FB

(
siB
)

+ 2κ̃b0bvFB

(
siB
)

+ b̃2m2 + b̃2 + 2b̃b0m
2 + 2b̃b0 + a2

(
m2 + 1

)
+

a
(
−2ρκ̃bvm

2siBfB
(
siB
)
+ 2ρκ̃bvs

i
BfB

(
siB
)
+ 2κ̃b̃m2 − 2κ̃b̃− 2κ̃bvm

2FB

(
siB
)
+ 2κ̃bvFB

(
siB
)
−

−2b̃m2 + 2b̃− 2b0m
2 + 2b0

)
+ b20m

2 + b20

Indeed, the leading coefficient is positive.

[10]: asol = simplify(solve(diff(phi,a),a)[0])

phi = simplify(phi.subs(a,asol))*(m**2 +1)

display(collect(expand(phi),[b**2,b]))

−ρ2κ̃2b2vm4
(
siB
)2
f 2
B

(
siB
)

+ 2ρ2κ̃2b2vm
2
(
siB
)2
f 2
B

(
siB
)

− ρ2κ̃2b2v
(
siB
)2
f 2
B

(
siB
)

+

8ρκ̃2b2vm
2siBFB

(
siB
)
fB
(
siB
)
+8ρκ̃b0bvm

2siBfB
(
siB
)
+4κ̃2b2vm

2F 2
B

(
siB
)
+8κ̃b0bvm

2FB

(
siB
)
+ b̃2 ·(

4κ̃2m2 − 8κ̃m2 + 4m2
)
+ b̃
(
−8ρκ̃2bvm

2siBfB
(
siB
)
+ 8ρκ̃bvm

2siBfB
(
siB
)
− 8κ̃2bvm

2FB

(
siB
)
−

−8κ̃b0m
2 + 8κ̃bvm

2FB

(
siB
)
+ 8b0m

2
)
+ 4b20m

2

Notice that κ̃2 − 2κ̃+ 1 = (κ̃− 1)2 > 0 for κ̃ 6= 1, showing that the leading coefficient is
positive. Moreover, observe that for κ̃ = 1, the polynomial is actually constant in b̃, i.e. of
degree zero.

[11]: bsol = simplify(solve(Eq(diff(phi,b),0),b)[0])

display(bsol)

ρκ̃bvs
i
BfB(s

i
B) + κ̃bvFB(s

i
B) + b0

κ̃− 1

If κ̃ 6= 1, after minimizing over b̃, we conclude that the expression is minimal for a
negative b̃. For κ̃ = 1, the expression does not change with b̃. In either case, we can plug in
b̃ = 0 because it minimizes the expression over b̃ in our admissible range [0, bv].

[12]: phi = collect(expand(simplify(phi.subs(b,0))),b0)

display(phi)
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−ρ2κ̃2b2vm4
(
siB
)2
f 2
B

(
siB
)

+ 2ρ2κ̃2b2vm
2
(
siB
)2
f 2
B

(
siB
)

− ρ2κ̃2b2v
(
siB
)2
f 2
B

(
siB
)

+

8ρκ̃2b2vm
2siBFB

(
siB
)
fB
(
siB
)

+ 4κ̃2b2vm
2F 2

B

(
siB
)

+ 4b20m
2 + b0 ·(

8ρκ̃bvm
2siBfB

(
siB
)
+ 8κ̃bvm

2FB

(
siB
))

Observe that the coefficient in front of b0 is strictly positive, allowing us to minimize
easily over b0.

[13]: b0sol = simplify(solve(Eq(diff(phi,b0),0),b0)[0])

display(b0sol)

−κ̃bv
(
ρsiBfB

(
siB
)
+ FB

(
siB
))

This expression is negative. Since we allow only positive values for b0, our expression is
minimal for b0 = 0. The next step is to plug in b0 = 0 and to obtain a polynomial in sB,
regarding FB and fB as constants.

[14]: phi = phi.subs(b0,0).subs(fB,fBsymb).subs(FB,FBsymb)

display(collect(expand(phi),sbi))

4F 2
Bκ̃

2b2vm
2 + 8FBρκ̃

2b2vfBm
2siB +

(
siB
)2 (−ρ2κ̃2b2vf 2

Bm
4 + 2ρ2κ̃2b2vf

2
Bm

2 − ρ2κ̃2b2vf
2
B

)
2FBm

ρfB (m2 − 2m+ 1)

− 2FBm

ρfB (m2 + 2m+ 1)

We see here that that the leading coefficient is negative as long as m4−2m2+1 = (m2−1)2

is positive, i.e. for m 6= 1,−1. Therefore, the polynomial expression is positive as long as
sB is between the roots of the polynomial expression. For m = 1, the expression is always
positive for sB ≥ 0. We calculate the roots below.

[16]: sols = solve(phi,sbi)

for sol in sols:

display(simplify(sol))

2FBm

ρfB (m2 − 2m+ 1)

− 2FBm

ρfB (m2 + 2m+ 1)
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The second root being negative whereas sB ≥ 0, this allows us to find a positivity criterion
by comparing sB to the first root.

Analyzing ψB

[17]: psi = Tkap**2 + m**2 * Mkap **2

display(collect(expand(psi),[a**2,a]))

κ̃2b̃2m2 + κ̃2b̃2 − 2κ̃2b̃bvm
2FB

(
siB
)

− 2κ̃2b̃bvFB

(
siB
)

+ κ̃2b2vm
2F 2

B

(
siB
)

+

κ̃2b2vF
2
B

(
siB
)
− 2κ̃b̃2m2 − 2κ̃b̃2 − 2κ̃b̃b0m

2 − 2κ̃b̃b0 + 2κ̃b̃bvm
2FB

(
siB
)
+ 2κ̃b̃bvFB

(
siB
)
+

2κ̃b0bvm
2FB

(
siB
)

+ 2κ̃b0bvFB

(
siB
)

+ b̃2m2 + b̃2 + 2b̃b0m
2 + 2b̃b0 + a2

(
m2 + 1

)
+

a
(
2κ̃b̃m2 − 2κ̃b̃− 2κ̃bvm

2FB

(
siB
)
+ 2κ̃bvFB

(
siB
)
− 2b̃m2 + 2b̃− 2b0m

2 + 2b0

)
+ b20m

2 + b20

The leading coefficient in a being positive, we can minimize easily in a. We plug the
result into ψB.

[18]: asol = solve(psi.diff(a),a)[0]

psi = simplify(psi.subs(a,asol))

display(collect(expand(psi),[b**2,b]))

4κ̃2b2vm
2F 2

B(s
i
B)

m2 + 1
+

8κ̃b0bvm
2FB(s

i
B)

m2 + 1
+ b̃2 ·

(
4κ̃2m2

m2 + 1
− 8κ̃m2

m2 + 1
+

4m2

m2 + 1

)
+

b̃

(
−8κ̃2bvm

2FB(s
i
B)

m2 + 1
− 8κ̃b0m

2

m2 + 1
+

8κ̃bvm
2FB(s

i
B)

m2 + 1
+

8b0m
2

m2 + 1

)
+

4b20m
2

m2 + 1

This expression as a polynomial in b̃ has a positive leading coefficient for κ̃ 6= 1, and is
otherwise constant in b̃. For κ̃ 6= 1, we minimize over b̃.

[19]: bsol = solve(psi.diff(b),b)[0]

display(bsol)

κ̃bvFB(s
i
B) + b0

κ̃− 1

This solution being negative for κ̃ 6= 1 and the aforementioned expression being constant
in b̃ for κ̃ = 1, we may plug in b̃ = 0 as our lowest possible b̃.

[20]: psi = simplify(psi.subs(b,0))

display(collect(expand(psi),[b0**2,b0]))
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4κ̃2b2vm
2F 2

B(s
i
B)

m2 + 1
+

8κ̃b0bvm
2FB(s

i
B)

m2 + 1
+

4b20m
2

m2 + 1

We minimize this expression over b0, which is straightforward due to the positive leading
coefficient.

[21]: b0sol= solve(psi.diff(b0),b0)[0]

display(b0sol)

−κ̃bvFB

(
siB
)

This expression being negative, we may substitute b0 = 0. Moreover, recall that we
assumed sB = s̄B, so that FB(sB) = 1, yielding the minimal ψB for sB = s̄B.

[23]: psi = psi.subs(b0,0)

psi = psi.subs(FB,1)

display(psi)

4κ̃2b2vm
2

m2 + 1
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