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1 Introduction

Optimal Top Income Tax Rate: A Puzzle. Consider a static economy in which workers

differ in productivity and choose consumption C and labor income Y given a non-linear income tax

schedule. In a milestone contribution to the modern theory of income taxation, Saez (2001) shows

that the revenue-maximizing income tax rate on top earners is given by

τSaez
Y = 1

1 − ζI
Y + ρY ζH

Y

, (1)

where ρY > 1 represents the upper Pareto coefficient of taxable income, ζH
Y > 0 is the compensated

elasticity of taxable income with respect to the retention rate (i.e., one minus the marginal tax

rate), and ζI
Y > 0 is the income effect of a lump-sum tax levy on taxable income.1 The appeal of

this formula is that it readily lends itself to quantitative evaluations of the optimal top tax rate.

For example, using standard empirical estimates of the taxable income elasticities, ζH
Y = 0.33 and

ζI
Y = 0.25 (see Section 3.1) and the Pareto coefficient of annual total income ρY = 1.5 (Diamond

and Saez 2011), we obtain τSaez
Y = 80%.

A striking feature of this optimal income tax formula is that it completely abstracts from

consumption to focus exclusively on income inequality and labor supply responses to taxes. This is

puzzling, since the marginal benefit of higher income taxes should intuitively depend on how much

redistribution the existing tax system already achieves, that is, on the distribution of consumption

rather than that of pre-tax income. More generally, focusing exclusively on measures of income

inequality may paint an incomplete picture of the link from allocations to welfare, since in practice

agents may insure against labor market risks through other means than the government, such as

private insurance, precautionary savings, or intra-family transfers.2

The static model studied by Saez (2001) in fact admits an alternative, consumption-based,

1Formally, these variables are defined as follows. We let ρY ≡ − limY →∞ ∂ ln (1 − FY (Y )) /∂ ln Y , where FY (·) is
the CDF of the income distribution. A lower value of ρY indicates a more unequal distribution, that is, a thicker right
tail. We also let ζH

Y ≡ ∂ ln Y H/∂ ln (1 − τY ), where τY is the marginal income tax rate and Y H is the compensated
labor supply. Finally, ζI

Y ≡ ∂ ln Y/∂T Y , where T Y ≡ TY (Y ) / ((1 − τY ) Y ) is the (normalized) average tax rate and
Y the uncompensated labor supply. Both Y H and Y are expressed in terms of earnings rather than hours.

2Echoing this discussion, equation (1) contrasts with a vast literature on optimal risk sharing that uses consump-
tion inequality and consumption responses to income shocks to assess the optimality of risk-sharing arrangements
or redistributive policies—including in models with asymmetric information of the kind studied in Saez (2001). The
empirical emphasis on consumption for testing efficiency of risk-sharing arrangements is well known since (at least)
Townsend (1994). See, e.g., Ligon (1998) and Kocherlakota and Pistaferri (2009) for applications of this idea in a
hidden information context.
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representation of revenue-maximizing top income taxes:

τCons
Y = 1

ζI
C + ρCζH

C

, (2)

where ρC > 1 is the Pareto tail coefficient of the consumption distribution, ζH
C > 0 is the compen-

sated elasticity of consumption with respect to the retention rate, and ζI
C > 0 is (minus) the income

effect of a lump-sum tax levy on consumption.3 Equation (2) follows immediately from equation

(1) and three model-implied identities, ρC = ρY , ζH
C = ζH

Y , and ζI
C = 1 − ζI

Y , which all follow

from the observation that consumption equals after-tax income in a static setting. Hence, the role

of consumption inequality and consumption responses for optimal income taxes is not separately

identified from the role of income inequality and labor supply. While the literature following Saez

(2001) has systematically focused on equation (1), one could equally well use the consumption-

based formula (2), or any combination of the two, to characterize the optimal policy, assuming that

reliable estimates of the corresponding sufficient statistics are available.

Using consumption rather than income inequality measures radically changes the quantitative

evaluation of the optimal top tax rate, however. Recent empirical evidence shows that consumption

is significantly more evenly distributed than income among top earners, with a Pareto coefficient

for consumption of ρC ≈ 3.1, more than twice the Pareto coefficient for total income (Toda and

Walsh 2015; Buda et al. 2022; Gaillard et al. 2023). Using the same taxable income elasticities

as in the first paragraph, the optimal top income tax rate falls to 55% if we use consumption

inequality rather than income inequality in formula (1), more than doubling the after-tax income

of top earners compared to the income-based estimate given in the opening paragraph.

Thus, the static model unfortunately provides no guidance about which measures are the most

appropriate for estimating income taxes. Moreover, it is inconsistent with the empirical discrepancy

between consumption and income inequality. Interpreting the model-implied identities instead as

testable over-identifying restrictions, their violation suggests that the static model of Saez (2001)

is not well suited to address how consumption or income inequality matter for optimal taxes, or to

offer sound, empirically grounded policy prescriptions.

Our Contribution. Motivated by these observations, in this paper we study to what extent

consumption inequality and consumption responses to income shocks influence optimal tax de-

sign, independently of income inequality and labor supply responses. We consider a Mirrleesian

3Formally, we define ρC ≡ − limY →∞ ∂ log (1 − FC (Y )) /∂ log C, ζH
C ≡ ∂ ln CH/∂ ln (1 − τY ), and ζI

C ≡
−∂ ln C/∂T Y .
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economy in which agents with heterogeneous labor productivities work, consume and save for re-

tirement.4 The additional consumption-savings margin allows us to separate consumption from

after-tax income, and also introduces capital taxes as a second margin for redistributive taxation.

This connects our analysis with another milestone result, the “zero capital taxation” (also known as

“uniform commodity taxation”, henceforth UCT) theorem of Atkinson and Stiglitz (1976), which

states that it is optimal to leave consumption choices undistorted—and, hence, not tax savings—if

preferences for savings are independent of labor productivity. Savings taxes must thus be rational-

ized by departures from this benchmark, for example if agents with higher earnings capacity also

have a stronger preference for savings (see Saez 2002).

Our main result (Theorem 2) shows that τSaez
Y and UCT are two sides of the same coin.

Formally, we show that the revenue-maximizing top income tax is equal to τSaez
Y if and only if

UCT applies and the optimal savings tax is 0, except in the trivial case where savings vanish at

the top of the income distribution. Conversely, departures from this joint benchmark identify a

tradeoff between labor income and savings taxes: Either it is optimal to tax savings and reduce the

income tax below τSaez
Y , or it is optimal to subsidize savings and raise the income tax above τSaez

Y .

Moreover, data on consumption inequality and consumption responses to income tax changes

allow us to test the empirical relevance of UCT and characterize the optimal savings tax and the

departure of the optimal income tax from τSaez
Y . We re-evaluate revenue-maximizing taxes on top

income earners and argue that it is optimal to shift a significant part of redistributive taxes from

income to savings: the optimal policy prescribes a strictly positive and quantitatively significant

savings tax, while substantially lowering the income tax below the level prescribed by τSaez
Y .

What connects the income tax formula (1) of Saez (2001) to UCT? Saez (2001)’s characterization

applies to a static economy with a single labor supply margin, and only requires estimates of income

inequality and labor supply elasticities. Hence, it continues to apply in a dynamic setting, and the

optimal income tax is equal to τSaez
Y , if and only if the design of income taxes can be reduced to

a static tradeoff between labor supply and after-tax earnings, with no information needed about

how the latter is allocated between consumption and savings. But this condition is met precisely

when the UCT theorem applies and it is optimal not to tax savings. Conversely, when the UCT

theorem fails to hold, the design of optimal income taxes can no longer ignore how after-tax income

is allocated to consumption and savings, since preferences for savings and incentives to work are

no longer independent.

Why is it optimal to shift part of the tax burden from income to savings? The fact that

4Our baseline model is kept deliberately as simple as possible. In Section 5, we show that our results carry over
to more general settings that include life-cycle and stochastic economies.
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consumption is far less concentrated than income in the upper tail suggests that top earners have

a vanishing propensity to consume out of earned income. This could arise either because savings

have a higher income elasticity than consumption for given preferences, i.e., agents view savings

as a luxury good relative to consumption, or because preferences for savings correlate positively

with labor productivity. But existing empirical evidence on consumption responses to tax changes

suggests that the income elasticity of consumption cannot be so low as to explain the gap between

income and consumption inequality for top earners. Hence we reject UCT in favor of a shift towards

positive savings and lower income taxes.

Formally, we first provide a novel representation of optimal income and savings taxes as a

function of the Pareto tail coefficients of income, consumption and savings, as well as behavioral

responses of these variables to income tax changes (Theorem 1). This result generalizes the income

tax formula (1) to economies with consumption and savings, and provides an analogous formula for

optimal savings taxes. Our representation highlights that when agents work, consume, and save,

inequality and behavioral elasticities of all three variables matter independently for the design of

optimal income and savings taxes, even if they are jointly determined by the optimal allocation

and must satisfy similar over-identifying restrictions as in the static model.

As a direct corollary of Theorem 1, we then show that it is optimal to tax savings and set

the income tax below τSaez
Y if and only if ρCζ

H
C > ρY ζ

H
Y , i.e., whenever the product of the Pareto

coefficient and the compensated elasticity is higher for consumption than for income; in the opposite

case, we should tax savings and raise the income tax above the static optimum. This is precisely

the parameter condition that underlies the empirical argument in support of positive savings taxes

when comparing the concentration of consumption vs. income, summarized by the ratio of Pareto

coefficients ρY /ρC , to the pass-through of income changes to consumption, summarized by the ratio

of compensated elasticities ζH
C /ζ

H
Y .

Finally, the tradeoff between income and savings taxes described by Theorem 2 becomes es-

pecially stark when consumption has a thinner tail than income, and the highest income earners

save almost all of their income. In that case, which appears to be the empirically relevant one, the

analysis reduces again to a static tradeoff at the top, but now between labor supply and savings,

rather than between labor supply and consumption as in the static model of Saez (2001). There-

fore, the static wedge τSaez
Y continues to determine the optimal policy, but it now accounts for the

optimal combined wedge between income and savings. Consumption data then identify how this

combined wedge should be decomposed into an income tax and a savings tax, i.e., how much one

should depart from the joint benchmark of Saez (2001) and Atkinson and Stiglitz (1976).
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Policy Implications. Our results have important consequences for policy design. The income

tax formula (1) of Saez (2001) and the UCT theorem of Atkinson and Stiglitz (1976) have both

been highly influential in shaping tax policies, but they are typically invoked independently from

each other: The former features prominently in discussions about income tax design, while debate

about savings taxes focuses on the policy relevance of UCT. For example, a highly cited review

article by Diamond and Saez (2011) simultaneously makes a case for high top income taxes based

on the formula for τSaez
Y and for positive capital taxes by questioning the assumptions underlying

UCT. Theorem 2 instead implies that policy discussion of income and savings taxes cannot be

conducted in isolation from each other, but both are part of a policy mix that optimally trades off

between multiple margins of redistribution. Hence, the two policy recommendations by Diamond

and Saez (2011) are mutually inconsistent.5

Our characterization of optimal income and savings taxes in Theorem 1 in turn provides empiri-

cal guidance on how the policy maker should resolve this tradeoff: government revenue is maximized

by shifting part of the tax burden from income to savings, and consumption data allow us to identify

the magnitude of this shift. Hence, we provide empirical support for the second recommendation

by Diamond and Saez (2011), while at the same time invalidating their first recommendation.

Relationship to the Literature. Our paper relates to the optimal taxation literature originat-

ing with Mirrlees (1971), as well as the sufficient statistics approach towards estimating optimal

tax rates that was pioneered by Saez (2001). Our model is based on Atkinson and Stiglitz (1976).

Because we allow for arbitrary preferences, their uniform commodity taxation theorem only applies

as a special case of our framework.6 Mirrlees (1976), Saez (2002), and Golosov, Troshkin, Tsyvinski,

and Weinzierl (2013) study a similar problem as ours but do not characterize the optimal top tax

rates analytically nor express the formulas in terms of empirically observable sufficient statistics.

Our paper also relates to a large literature that uses consumption data to discipline models of in-

surance or risk-sharing contracts, e.g., Townsend (1994), Ligon (1998), Kocherlakota and Pistaferri

(2009), and Heathcote, Storesletten, and Violante (2014).

The most closely related papers are Scheuer and Slemrod (2021), Gerritsen et al. (2020), Schulz

5The tradeoff between income and savings taxes is intuitive from a revenue maximization perspective: since
savings taxes reduce incentives to work, they negatively impact the government revenue from income taxes. Likewise,
a higher income tax will induce agents to work and save less, and therefore reduces savings tax revenues. Therefore,
the revenue-maximizing mix of tax policies is no longer at the peak of a one-dimensional Laffer curve (except when
UCT applies), but trades off between higher revenues from one instrument versus the other. Discussing income and
savings tax policies independently from each other instead creates the false impression that the government “can have
its cake and eat it too”.

6Christiansen (1984), Jacobs and Boadway (2014), and Gauthier and Henriet (2018) generalize Atkinson and
Stiglitz (1976) to non-homothetic preferences, but typically constrain commodity or savings taxes to being linear.
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(2021), and Ferey, Lockwood, and Taubinsky (2021). They recently characterized optimal savings

taxes in models that are similar to ours. Our contribution to this literature is threefold. First, by

studying the design of income and savings taxes concurrently, we identify the joint benchmark that

consists of Saez (2001) for the former and Atkinson and Stiglitz (1976) for the latter (Theorem

2), and highlight a sharp tradeoff between these instruments away from this benchmark. To our

knowledge, these theoretical results are new to the literature.7 Second, as in Ferey, Lockwood,

and Taubinsky (2021), we do not impose strong a priori restrictions on preferences or the sources

of underlying return heterogeneity that drive the departure from Atkinson and Stiglitz (1976).8

Third, we emphasize the use of consumption—rather than savings—data to identify the underlying

structure of preferences that pins down the relevant departure from Atkinson and Stiglitz (1976),

and to characterize and quantify optimal income and capital taxes (Theorem 1 and Corollary 1).

Consumption data are essential for identifying optimal taxes on top income earners, who are the

main focus of our analysis. In particular, Ferey, Lockwood, and Taubinsky (2021) estimate optimal

savings taxes along the income distribution, using the causal effect of income on savings as their

main sufficient statistic. As we show formally in Appendix B.1, this identification breaks down at

the top of the income distribution, when consumption is strictly less concentrated than income: The

savings of top earners then respond one-to-one to income changes, which in turn renders savings-

based sufficient statistics uninformative (i.e., redundant given the information already contained in

income-based sufficient statistics). Our paper and theirs are thus complementary.9

Outline of the Paper. In Section 2, we set up our baseline model and derive our main theoretical

results on optimal labor and savings taxes (Theorem 1, Corollary 1) and on the relationship between

Saez (2001) and Atkinson and Stiglitz (1976) (Theorem 2). In Section 3, we study the quantitative

implications of these results. In Section 4, we provide a proof of our first theorem. Section 5 show

that our results carry over to more general environments. The proofs are in the Appendix.

7Gerritsen et al. (2020) and Schulz (2021) also mention a trade-off between labor and savings taxes. However,
our result holds at a higher level of generality, and we prove and characterize this trade-off analytically.

8Scheuer and Slemrod (2021) derive a characterization of the savings tax rates on top earners when agents
have exogenous endowments in addition to labor income and marginal utilities of consumption are independent of
productivity types. In Appendix B.2, we extend our results to a model that nests their framework and discuss
in detail the relationship between both papers. Gerritsen et al. (2020) and Schulz (2021) focus on a model with
heterogeneous returns, assuming that preferences satisfy the Atkinson-Stiglitz restrictions. As we explain in Section
5.1, our model nests this framework as a special case. On the other hand, they explore various microfoundations of
return heterogeneity that are beyond the scope of our analysis.

9Note that even though most of our analysis focuses on the taxation of top earners, our general optimal tax
formulas remain valid in the rest of the distribution (see Section 4). Below the tails, they are equivalent to those
obtained by Ferey, Lockwood, and Taubinsky (2021). This is because consumption and savings data are equally
informative whenever both variables account for strictly positive shares of the agent’s budget. At the top, however,
savings become identical to income (the consumption share vanishes), and hence lose their identification power.
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2 Optimal Taxation of Top Earners

In this section, we set up the simplest environment that allows us to decouple consumption from

after-tax income and derive our optimal labor and savings tax formulas. In Section 5, we show that

our results extend directly to much richer environments, with an arbitrary number of periods and

goods, heterogeneous rates of return, and stochastic income shocks.

2.1 Environment

There is a continuum of measure 1 of heterogeneous agents indexed by a rank r ∈ [0, 1] uniformly

distributed over the unit interval. The preferences of agents of rank r are defined over “consump-

tion” C, “savings” S, and “labor income” Y .10 They are represented by

U (C, Y ; r) + V (S; r) ,

where for any r, the functions U and V are twice continuously differentiable with UC > 0, UCC < 0,

UY < 0, UY Y < 0, VS > 0, VSS < 0 and satisfy the usual Inada conditions as C, Y or S approach

0 or ∞. We further assume that U (C, Y ; r) + V (S; r) is non-decreasing in r, for any (C, Y, S). We

interpret U and V as the first- and second-period utility functions, respectively.

Assumption 1 (Single-Crossing Conditions). (i) The marginal rates of substitution (MRS)

between consumption and income, −UY /UC , and between saving and income, −UY /VS, are strictly

decreasing in r for all (C, S, Y ), i.e.,

∂ ln (−UY /UC)
∂r

≡ UY r

UY
− UCr

UC
< 0. (3)

∂ ln (−UY /VS)
∂r

≡ UY r

UY
− VSr

VS
< 0. (4)

Furthermore, the marginal disutility of effort is decreasing in r, UY r/UY < 0.

(ii) The MRS between consumption and savings, VS/UC , is monotonic in r for all (C, Y, S),

i.e.,
∂ ln (VS/UC)

∂r
≡ VSr

VS
− UCr

UC
(5)

is either non-positive or non-negative everywhere.

The single-crossing condition (3) is standard (Mirrlees 1971). Condition (4) introduces its
10While it is convenient for the analysis to define preferences in terms of the observables C, Y , and S, it is

straightforward to map the type-contingent preference over income into a preference over leisure or labor supply.
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analogue with regards to savings. These conditions rank agents according to their preferences over

leisure, on the one hand, and consumption or savings, on the other hand. On the margin, agents

with higher rank r are more willing to work for a given consumption or savings increase. The

additional restriction UY r/UY < 0 implies that higher ranks r find it less costly to attain a given

income level Y ; that is, we can associate agents’ ranks with their labor productivity.

The second part of Assumption 1 imposes that the inter-temporal MRS is monotonic. If it is

increasing, so that (5) is positive, then higher ranks have a stronger taste for saving (relative to

current consumption) than lower ranks. In other words, given the same allocation, those who are

the most inclined to work—the higher ranks—are also the most inclined to save. If instead (5) is

negative, then those who are the most inclined to work are also those who are the most inclined to

spend their incomes on current consumption.

Social Planner’s Problem. Consumption, income, and savings are assumed to be observable,

but an individual’s productivity rank r is their private information. We assume that the social

planner is Rawlsian and wishes to maximize the utility of the lowest-ranked agent; for our results

on optimal top taxes, this assumption is without loss of generality.11 The optimal allocation

{C (r) , Y (r) , S (r)} maximizes the net present value of tax revenue

� 1

0

{
Y (r) − C (r) − S (r)

}
dr (6)

subject to the incentive compatibility constraint

U (C (r) , Y (r) ; r) + V (S (r) ; r) ≥ U
(
C
(
r′) , Y (r′) ; r

)
+ V

(
S
(
r′) ; r

)
(7)

for all types r and announcements r′, and a lower bound constraint on the lowest rank’s utility

U (C (0) , Y (0) ; 0) + V (S (0) ; 0) ≥ W0. (8)

To ease notation, we write X (r) ≡ X (C (r) , Y (r) , S (r) ; r) for any function X of both the alloca-

tion (C (r) , Y (r) , S (r)) and the type r.

Under the Rawlsian objective and the monotonicity of utilities with respect to r, the social

planner values transferring resources towards lower-ranked or less productive agents. On the mar-

11We generalize our results to arbitrary planner preferences in the Appendix. Our top income tax results remain
unaffected so long as the marginal utility converges to 0 at infinity, so that top-ranked agents receive vanishing weight
in the planner’s objective function.
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gin, this redistribution can occur through three channels: by redistributing effort from less to more

productive agents, or equivalently leisure towards less productive agents—that is, redistribution

“from each according to his ability” ; by redistributing consumption or savings towards lower-income

households whose marginal utilities are the highest—that is, redistribution “to each according to

his needs”. The respective signs and magnitudes of UY r/UY , UCr/UC , and VSr/VS govern how

preferences over these various channels of redistribution vary with agents’ types, and therefore how

the corresponding policy instruments interact with their incentives to work and to save.

Labor and Savings Wedges. Let τY (r) ≡ UY (r) /UC (r) + 1 denote the labor wedge at rank

r implied by the optimal allocation {C (·) , Y (·) , S (·)}, i.e., the intra-temporal distortion between

the marginal product and the marginal rate of substitution between consumption and income. Let

τS (r) ≡ VS (r) /UC (r) − 1 denote the savings wedge at rank r, i.e., the inter-temporal distortion in

the agent’s first-order condition for savings.

An interpretation of our optimal tax system is a combination of income taxes, social security

contributions and pension payments (“savings”) that are indexed to labor income, without any

additional private savings. The savings wedge then represents the marginal shortfall or excess of

social security contributions relative to pension payments. Alternatively, we could relabel S in our

model as “bequests”, let C and Y stand for life-time earnings and consumption, and reinterpret

the savings wedge as a tax on bequests.

2.2 Optimal Top Income and Savings Tax Rates

When should income and savings be taxed? It is well-known since Mirrlees (1976) that the optimal

labor and savings wedges inherit the signs of UCr (r) /UC (r)−UY r (r) /UY (r) and VSr (r) /VS (r)−

UCr (r) /UC (r), respectively. Assumption 1 implies that the former is positive, and hence that it

is optimal to tax labor income. Analogously, it is optimal to tax (respectively, subsidize) savings

whenever the latter is positive (resp., negative), that is, if higher ranks have a higher (resp., lower)

intertemporal MRS VS/UC and are thus more inclined to save (resp., consume) their current income

than lower ranks. Intuitively, if the more productive ranks have a stronger taste for savings, the

planner can screen them—i.e., deter them from mimicking lower ranks—by taxing the savings of

lower ranks. This general result nests the uniform commodity taxation setting of Atkinson and

Stiglitz (1976) as a special case. When all ranks r have the same intertemporal MRS VS/UC , savings

taxes are unable to affect the low-productivity workers differently than the more productive ones

who mimick them. It is then optimal to set τS (r) = 0 for all r, so that redistribution should only be

9



achieved through the income tax without further distorting the intertemporal consumption margin.

Our first main result, Theorem 1, extends these insights by providing a novel analytical rep-

resentation of the rank-dependence of the intra- and inter-temporal MRS UCr/UC − UY r/UY and

VSr/VS − UCr/UC , and hence the optimal income and savings taxes. Our optimal tax formulas

depend on two sets of sufficient statistics: distributional parameters, such as the Pareto coefficients,

and preference parameters or, equivalently, behavioral elasticities with respect to tax changes.

We denote by ρY (r) , ρC (r) , ρS (r) the local Pareto coefficients of the distributions of labor

income, consumption, and savings, respectively, and by sC (r) the share of consumption in retained

income at rank r. For any X ∈ {Y,C, S},

ρX (r) ≡ d ln (1 − FX (X (r)))
d lnX (r) , and sC (r) ≡ C (r)

(1 − τY (r))Y (r)

where FX denotes the CDF of the distribution of X. We assume that these Pareto coefficients and

the consumption share converge to constants for top earners; we denote ρX = limr→1 ρX (r) and

sC = limr→1 sC (r).

In addition, we define the following preference elasticities:

ζC (r) ≡ −C (r)UCC (r)
UC (r) , ζS (r) ≡ −S (r)VSS (r)

VS (r) , ζY (r) ≡ Y (r)UY Y (r)
UY (r) , ζCY (r) ≡ Y (r)UCY (r)

UC (r) .

We assume that these elasticities converge to finite limits ζC , ζS , ζY , ζCY as r → 1. Below, we

represent these parameters in terms of the substitution and income effects of labor income taxes

on taxable income (ζH
Y , ζ

I
Y ), consumption (ζH

C , ζ
I
C), and savings (ζH

S , ζ
I
S).

Theorem 1 characterizes optimal income and savings wedges in terms of these Pareto coefficients

and preference elasticities:

Theorem 1. Suppose that Assumption 1 holds and that the optimal allocation {C (·) , Y (·) , S (·)}

is co-monotonic. Suppose moreover that as r → 1 we have ζC/ρC < 1 + ζCY /ρY and ζS/ρS < 1.

Then the optimal labor wedge on top income earners, τY ≡ limr→1 τY (r), satisfies

τY = ζY /ρY + ζC/ρC − (1 + sCρY /ρC) ζCY /ρY

1 + ζY /ρY − sCζCY /ρC
(9)

and the optimal savings wedge on top income earners, τS ≡ limr→1 τS (r), satisfies

τS = ζS/ρS − ζC/ρC + ζCY /ρY

1 − ζS/ρS
. (10)

Equation (9) generalizes the top income tax rate formula of Saez (2001) to a dynamic environ-
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ment. Equation (10) provides an analogous formula for savings taxes. We derive these equations

from a pair of perturbations that identify possible welfare improvements starting from a sub-optimal

tax schedule: If the observed income or savings wedge is higher (lower) than the theoretical opti-

mum described by equations (9) and (10), then a marginal reduction (increase) of the corresponding

wedge is strictly welfare-improving. Moreover, the characterization of the optimal labor wedge in

equation (9) applies even if the savings wedge is not at its optimal level, and vice versa.

The Role of Consumption Inequality for Optimal Taxes. Theorem 1 represents optimal

income and savings taxes explicitly as a function of the Pareto tail coefficients and preference

elasticities of consumption and savings in addition to those of labor income. Ceteris paribus, high

income and consumption inequality (i.e., small Pareto coefficients) both lead to high optimal top

tax rates on labor income, while high wealth inequality but low consumption inequality lead to

high optimal top tax rates on savings.

The reason why income, consumption, and savings inequality all matter for optimal taxes

appears clearly in the proof of Theorem 1 in Section 4 below. Proposition 3 shows that the rank-

dependence of the intra- and inter-temporal MRS, UCr/UC −UY r/UY and VSr/VS −UCr/UC , which

determines the sign and magnitude of optimal income and savings taxes, can be identified from the

ratios of preference elasticities and Pareto coefficients, along with the progressivity of the income

and savings taxes in place. More specifically, if τS converges to a constant at the top, we obtain

(1 − r)
(
VSr

VS
− UCr

UC

)
= ζS

ρS
− ζC

ρC
+ ζCY

ρY
. (11)

With constant top savings taxes, agents’ consumption and savings must grow with after-tax

income at rates that keep the inter-temporal MRS constant, hence 1/VS and 1/UC must have

identical upper Pareto tails. With rank-independent inter-temporal MRS (VSr/VS −UCr/UC = 0),

this in turn implies that ζS/ρS = ζC/ρC − ζCY /ρY . Conversely, if preferences are rank-dependent

(VSr/VS ̸= UCr/UC), the upper Pareto coefficients of 1/VS and 1/UC augment the terms ζS/ρS

and ζC/ρC − ζCY /ρY , which capture the role of diminishing marginal utilities at a given rank, with

additional terms (1 − r)VSr/VS and (1 − r)UCr/UC that capture the rank-dependence of 1/VS and

1/UC at a given allocation. Equating the two Pareto coefficients then implies that any difference

between ζS/ρS and ζC/ρC − ζCY /ρY on the RHS of equation (11) mirrors one-for-one the rank-

dependence of the inter-temporal MRS on the LHS, and can thus be used to fully identify the

latter. Along similar lines, we identify the rank-dependence of the intratemporal MRS by equating

the Pareto tail coefficients of 1/(−UY ) and 1/UC .

11



To build intuition, consider first the case without preference complementarities (ζCY = 0)

and suppose that savings are more concentrated at the top than consumption (ρC > ρS). This

could occur either because top-ranked earners face more strongly diminishing marginal utilities of

consumption than of savings (ζC > ζS), or because agents’ intrinsic preferences for savings are rank-

dependent. The ratio ζS/ζC identifies the concentration of savings relative to consumption that

is consistent with rank-independent preferences, while the ratio ρS/ρC identifies the concentration

of savings relative to consumption observed in the data. Rank-independence is rejected when the

former differs from the latter. By comparing ρS/ρC to ζC/ζS we identify to what extent preference

heterogeneity is required to rationalize the gap between consumption and savings inequality, and

thus to what extent savings taxes or subsidies are useful to screen and redistribute from higher- to

lower-ranked agents, on top of redistributive income taxation. When ζCY > 0, the preference com-

plementarity with earnings reduces the rate at which the marginal utility of consumption vanishes

at the top, but the argument is otherwise the same. The ratios of preference elasticities and Pareto

coefficients are therefore natural and transparent sufficient statistics for intrinsic rank-dependence

of preferences and hence optimal taxes.

2.3 From Theory to Observables

To characterize optimal taxes in terms of observables, we first identify additional model-implied

restrictions that they must satisfy. We then relate preference elasticities to observable counterparts.

Additional Model-Implied Restrictions: A Tale of Three Tails. First, note that the three

Pareto coefficients and the consumption share sC are linked through the agents’ inter-temporal

budget constraint. As r → 1, the spending on consumption or savings of top-ranked agents cannot

grow faster than their after-tax income, so we have ρC ≥ ρY and ρS ≥ ρY . Hence the cross-sectional

distribution of labor income must have a weakly thicker upper tail than those of consumption and

savings. But total spending on consumption and savings must grow at the same rate as after-tax

income, which in turn implies that ρY = min {ρC , ρS}. This relationship is the analogue of the

condition ρY = ρC in the static setting. Moreover, sC = 0 if ρC > ρY and sC = 1 if ρS > ρY , i.e.,

the share of consumption (resp., savings) in retained earnings must be vanishing if consumption

(resp., savings) has a strictly thinner tail than income. On the other hand, sC ∈ [0, 1] remains

unrestricted if ρY = ρC = ρS . Hence only ρY and one of the variables ρC , ρS , sC are unrestricted,

with the other two statistics in each case pinned down by these additional restrictions.

Second, the substitution and income effects on taxable income (ζH
Y , ζ

I
Y ), consumption (ζH

C , ζ
I
C),

12



and savings (ζH
S , ζ

I
S) satisfy two additional identities, ζH

Y = sCζ
H
C + (1 − sC) ζH

S and 1 − ζI
Y =

sCζ
I
C +(1 − sC) ζI

S , which are the analogue of the conditions ζH
Y = ζH

C and 1−ζI
Y = ζI

C in the static

model. The four preference elasticities are therefore exactly identified from these six behavioral

responses to tax changes. However, the behavioral responses that matter for identification depend

on the limit of the consumption share sC : If sC = 1, the income and substitution effects on

consumption (ζH
C , ζ

I
C) mirror those on taxable income (ζH

Y , ζ
I
Y ), and therefore identification requires

using the response of savings to income tax changes (ζH
S , ζ

I
S). If sC ∈ (0, 1), any two pairs of income

and substitution effects identify the third, along with the four preference elasticities. Finally, if

sC = 0, then the income and substitution effects on savings (ζH
S , ζ

I
S) mirror those on taxable

income (ζH
Y , ζ

I
Y ), and therefore identification requires using the response of consumption to income

tax changes (ζH
C , ζ

I
C).

Our model thus admits three possible scenarios that we summarize as follows:

1. If ρY = ρC < ρS and sC = 1, savings are strictly less concentrated at the top than income and

consumption and top earners consume (almost) all their income. The behavioral responses of

consumption and labor supply then coincide, thus making information from consumption re-

dundant, relative to income data. Preference elasticities and optimal taxes are then identified

from Pareto coefficients and behavioral responses of income and savings.

2. If ρY = ρC = ρS and sC ∈ [0, 1], income, consumption, and savings are equally concen-

trated at the top, and top earners consume and save non-vanishing fractions of their income.

The substitution and income effects of any two of the three variables (income, consumption,

savings) can then be used to identify our four preference elasticities and determine optimal

income and savings taxes.

3. If ρY = ρS < ρC and sC = 0, consumption is strictly less concentrated at the top than income

and savings, and top earners save (almost) all their income. The behavioral elasticities of

savings and labor supply coincide, making savings information redundant relative to income

data. Preference elasticities and optimal taxes are then identified from Pareto coefficients

and behavioral responses of income and consumption.

In the sequel, we refer to these cases as Case 1, Case 2, and Case 3, respectively.

Linking Preference Elasticities to Standard Behavioral Responses. Following Chetty

(2006), we break the agent’s decision into a first stage in which the agent trades off between labor

supply and after-tax earnings M ≡ Y − TY (Y ), and a second stage in which after-tax earnings

13



are allocated to consumption and savings. Define U (M,Y ; r) ≡ maxC,S {U (C, Y ; r) + V (S, r)}

s.t. C + S + TS (S) ≤ M as the indirect utility function that characterizes the solution to the

second-stage problem. The first-stage problem then maximizes U (Y − TY (Y ) , Y ; r) with respect

to Y , and is identical to the static optimal tax problem solved by Saez (2001).

First-Stage: Which Parameters do the Labor Supply Responses Identify? Applying the same

arguments as in the static model (equations (23) and (24) in Saez (2001)), we thus obtain that the

substitution and income effects of taxable income with respect to tax changes, (ζH
Y , ζ

I
Y ), identify

the following parameters:

1 − ζI
Y

ζH
Y

= ζ̃Y − ζ̃MY , and ζI
Y

ζH
Y

= ζ̃M − ζ̃MY . (12)

where ζ̃M ≡ −MUMM/UM is the coefficient of relative risk aversion over after-tax earnings,

ζ̃Y ≡ Y UY Y /UY is the first-stage curvature over labor supply, and ζ̃MY ≡ Y UMY /UM is the

complementarity between after-tax earnings and labor supply. Suppose first that the first-period

utility function is separable between consumption and leisure, so that ζCY = 0. In this case, we

have
1
ζ̃M

= sC

ζC
+ 1 − sC

ζS
, ζ̃Y = ζY , ζ̃MY = 0.

Thus, income and substitution effects of taxable income identify the labor supply parameter ζY and

the relative risk aversion coefficient over after-tax income ζ̃M via the relationships (1−ζI
Y )/ζH

Y = ζY

and ζI
Y /ζ

H
Y = ζ̃M . More generally, preference complementarities ζCY > 0 lead to ζ̃MY > 0 and

modify the relationship between ζ̃Y and ζY . The corresponding expressions are given in Appendix

A.2 (equation (29)). We obtain that, fixing the preference complementarity ζCY and the curvature

in consumption ζC , income and substitution effects of taxable income continue to identify the labor

supply parameter ζY and the relative risk aversion coefficient over after-tax income ζ̃M .

Second Stage: Which Parameters do Consumption and Savings Responses Identify? The con-

sumption or savings responses to income tax changes then serve to identify the curvatures on con-

sumption and savings ζC , ζS , and the preference complementarity ζCY . Suppose again for simplicity

that ζCY = 0. This restriction implies that the relative strength of income and substitution effects

for taxable income, consumption and savings must be the same: (1 − ζI
Y )/ζH

Y = ζI
C/ζ

H
C = ζI

S/ζ
H
S .

In addition, we have that ζCζ
H
C = ζSζ

H
S and ζCζ

I
C = ζSζ

I
S , i.e., income and substitution effects

for consumption and savings are inversely proportional to preference elasticities. Intuitively, in the
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absence of preference complementarities, agents make no difference between earned and unearned

income changes and pass those changes through to consumption and savings with elasticities that

are inversely proportional to the respective preference elasticities ζC and ζS . We thus obtain that

the ratio of preference elasticities ζC/ζS is naturally linked the ratios of income and substitution

effects on consumption and savings:

ζC

ζS
= 1/ζI

C

1/ζI
S

= 1/ζH
C

1/ζH
S

.

More generally, when ζCY > 0, we show in Appendix A.2 that the ratio ζC/ζS is adjusted down-

wards compared to ζI
S/ζ

I
C and upwards compared to ζH

S /ζ
H
C . Thus, consumption and income are

complements if and only if ζI
S/ζ

I
C > ζH

S /ζ
H
C , and since the adjustments depend on the value of ζCY ,

we can then infer the degree of preference complementarity by comparing these two ratios of in-

come and substitution effects. Intuitively, substitution effects for taxable income, consumption and

savings all have the same sign (a higher income tax causes agents to work, consume and save less).

The complementarity between consumption and earnings increases the response of consumption

relative to savings for given ζC/ζS . This in turn implies that for given ζH
S /ζ

H
C , the inferred ratio

of elasticities ζC/ζS increases. On the other hand, an increase in unearned income reduces earned

income, while increasing consumption and savings. In this case the complementarity weakens the

income effects of consumption relative to savings for given ζC/ζS , which in turn implies that the

inferred ratio of elasticities ζC/ζS is lower than ζI
S/ζ

I
C with complementarities.

Elasticity of Intertemporal Substitution. We finally define the elasticity of inter-temporal sub-

stitution (EIS) as follows:

ζIS ≡ − ∂ ln (S/C)
∂ ln (1 + τS)

∣∣∣∣
Y,U constant

= 1
sCζS + (1 − sC) ζC

.

Thus, the EIS ζIS and risk aversion ζ̃M jointly depend on the preference elasticities ζC and ζS . In

Case 1, sC = 1 implies that ζIS = 1/ζS . That is, while consumption mirrors after-tax income at

the top and the first-stage elasticities fully determine the consumption-earnings tradeoff (ζ̃M = ζC ,

ζ̃Y = ζY , and ζ̃MY = ζCY ), the EIS governs the response of savings to tax changes (and is thus

identified from the latter). The opposite holds in Case 3 (sC = 0): the first-stage elasticities imply

ζ̃M = ζS , ζ̃Y = ζY , ζ̃MY = 0, and the EIS ζIS = 1/ζC is identified from the response of consumption

to tax changes. In this case, the top agents face a static trade-off between earnings and savings,

with consumption responses to tax changes determined by inter-temporal substitution.
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This discussion also highlights that risk aversion ζ̃M and intertemporal substitution ζIS play

conceptually different roles for determining optimal income and savings taxes: the former governs

variation in marginal utilities of after-tax income, which enters the social planner’s redistribution

motive. The latter affects how much consumption and savings respond to tax changes, which in turn

determines the relative importance of diminishing marginal utilities and rank-dependent preferences

in accounting for consumption and savings inequality—and thus how much redistribution should

be shifted from income to savings taxes.

Optimal Taxes in Terms of Observables. We are now in a position to answer our central

motivating question: To what extent do consumption inequality and consumption responses to

income taxes matter for optimal tax design, independently of income inequality and labor income

responses? The following corollary to Theorem 1 provides alternative expressions for the optimal

income and savings tax rates in terms of behavioral elasticities. This result pinpoints the precise

role that consumption data play in disciplining optimal income and savings taxes in the expressions

given in Theorem 1. For simplicity, we focus again on the case of a separable utility, and treat the

general case in Appendix A.2.

Corollary 1. Suppose that ζCY = 0. The optimal income tax can be rewritten as:

τY = τSaez
Y

[
1 − ζI

Y

(
1 − ρY ζ

H
Y

ρCζH
C

)]
(13)

where τSaez
Y is given by (1), and the optimal savings tax can be rewritten as:

τS = ζI
Y

ρSζH
S − ζI

Y

(
1 − ρSζ

H
S

ρCζH
C

)
. (14)

Hence, τY ⪋ τSaez
Y if and only if ρC ζ

H
C ⪌ ρY ζ

H
Y , and τS ⪌ 0 if and only if ρC ζ

H
C ⪌ ρS ζ

H
S .

Suppose in addition that sC < 1 (Cases 2 and 3). It is then optimal to tax savings if and only if

the product of the consumption-Pareto and the EIS is large enough:

ζIS >
ρY

ρC

ζH
S

ζI
Y

. (15)

Corollary 1 yields empirically testable necessary and sufficient conditions for the deviation from

the benchmark optimal tax results of Saez (2001) and Atkinson and Stiglitz (1976), obtained by

comparing the substitution effects of consumption with those of earnings and savings, respectively.

As long as the utility function is not quasilinear in consumption (i.e., ζI
Y > 0), the optimal labor
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income tax is strictly lower than the static benchmark whenever the product of the Pareto coeffi-

cient and the Hicksian elasticity is larger for consumption than for labor income, ρCζ
H
C > ρY ζ

H
Y ;

analogously, the optimal savings tax is strictly positive if and only if ρCζ
H
C > ρSζ

H
S . In the next

section, we show that these departures from the Saez (2001) and Atkinson and Stiglitz (1976)

benchmarks, respectively, are in fact closely linked.

Furthermore, condition (15) gives a particularly simple necessary and sufficient condition under

which taxing savings is optimal, in the form of a lower bound on the elasticity of intertemporal

substitution, or an upper bound on the ratio of Pareto coefficients on income vs. consumption.

If the consumption share of income converges to zero at the top, which we argue below is the

empirically relevant case, this condition simply reads ζIS > (ρY ζ
H
Y )/(ρCζ

I
Y ), which depends on

parameters that all have readily available estimates in the empirical literature. In Section 3, we

use condition (15) to argue that for empirically plausible values of the EIS the optimal savings tax

is indeed strictly positive.

Equations (32), (31), and (33)-(34) in the Appendix generalize the formulas of Corollary 1 to the

case ζCY > 0. (We further generalize these results to the case where savings are not separable from

consumption and income in Appendix A.3.) Importantly, the results that τY ⪋ τSaez
Y if and only if

ρC ζ
H
C ⪌ ρY ζ

H
Y , and τS ⪌ 0 if and only if ρC ζ

H
C ⪌ ρS ζ

H
S , continue to hold. When it is optimal to

tax savings, however, the magnitude of τS (and, correspondingly, the lower bound on the EIS) are

adjusted upwards if ζCY > 0. These comparative statics follow from the familiar logic of Corlett

and Hague (1953): When preferences are non-separable, it is optimal to tax less heavily the goods

that are complementary to labor. Thus, a higher degree of complementarity between consumption

and labor income unambiguously raises the optimal top savings tax rate and, symmetrically, lowers

the optimal top income tax rate.

2.4 Deviations from Seminal Taxation Results

Our second theorem connects our representation of optimal income and savings taxes in Theorem 1

and Corollary 1 to the seminal results of Saez (2001) and Atkinson and Stiglitz (1976). It highlights

a deep connection between these two benchmarks, which to our knowledge has not been recognized

before: One cannot hold without the other—outside of the “trivial” case where savings vanish (as

a fraction of earnings) at the top of the income distribution. In other words, the static optimal

income tax rate and the uniform commodity taxation theorem are two sides of the same coin.

Theorem 2. 1. Consider Case 1, in which sC = 1 and ρC = ρY < ρS. Then the optimal top

income tax rate τY is equal to the static optimum τSaez
Y = τCons

Y given by equations (1) or (2).
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2. Consider next Cases 2 and 3; i.e., suppose that sC < 1.Then the optimal savings tax rate on

top earners is positive (resp., negative), τS ⪌ 0, if and only if the optimal top income tax rate is

lower (resp., higher) than the static optimum, τY ⪋ τSaez
Y .

3. In particular, in Case 3, where sC = 0, the static wedge is equal to the combined wedge on

income and savings:

1 − τSaez
Y = 1 − τY

1 + τS
. (16)

Consider first Case 1, with sC = 1. In this case, savings simply do not matter at the top and the

model converges to the standard static trade-off between consumption and income; hence, τSaez
Y and

τCons
Y continue to provide correct representations of optimal income taxes in the dynamic model.

Both consumption and income inequality still matter for optimal income taxes even in this case,

but this distinction only arises at a conceptual level—it does not affect quantative prescriptions,

because Pareto coefficients and behavioral responses of income and consumption are observation-

ally equivalent in the upper tail. Thus, the optimal income tax τY can be inferred from either

(ρY , ζ
H
Y , ζ

I
Y ) or (ρC , ζ

H
C , ζ

I
C). On the other hand, savings taxes may or may not satisfy the uniform

commodity taxation theorem and still be either positive or negative, but this departure cannot

be inferred by comparing income and consumption data—it depends instead on the comparison

between the ratio of Pareto tails for income and savings ρY /ρS with a ratio of compensated labor

supply and savings elasticities, ζH
S /ζ

H
Y .

This raises the question under what conditions consumption inequality and consumption re-

sponses to tax changes matter for optimal tax policies independently of income inequality and

income responses, or conversely, under what conditions the income-based representation τSaez
Y cor-

rectly identifies optimal income taxes in the dynamic model. The second part of Theorem 2 answers

this question by showing that whenever sC < 1, the optimal income tax equals τSaez
Y if and only

if the Atkinson-Stiglitz theorem applies and τS = 0. To understand this insight, recall that we

can represent the agent’s labor supply and consumption-savings decision as a two-stage problem,

where the second stage allocates after-tax income M to consumption and savings, and the first-

stage decision determines labor supply and after-tax income. Therefore, the optimal income tax is

equal to τSaez
Y if and only if the optimal tax design can be reduced to a static problem with prefer-

ences directly defined over earnings Y and after-tax income M , with no information needed about

how the latter is allocated between consumption and savings. But this condition is met precisely

when preferences satisfy the necessary and sufficient condition for the uniform commodity taxation

theorem of Atkinson and Stiglitz (1976); that is, if the MRS between consumption and savings is

independent of rank r. In this case, income and substitution effects of labor supply, along with the
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Pareto coefficient for earnings, are sufficient to estimate the optimal income tax, and it is optimal

not to tax savings. Measures of consumption inequality, along with income and substitution effects

for consumption, remain therefore irrelevant for optimal income and savings taxes.

By contrast, the reduction to a single decision margin and single tax distortion characterized by

Saez (2001) no longer applies when the preference restrictions of Atkinson and Stiglitz (1976) fail

to hold. The design of optimal income taxes can no longer ignore how after-tax income is allocated

to consumption and savings, since preferences for savings and incentives to work are no longer

independent. If higher-ranked agents are more inclined to save, the taxation of savings facilitates

redistribution towards lower-ranked agents and allows the social planner to reduce labor supply

distortions. Hence, the optimal income tax is strictly lower than the static benchmark τSaez
Y , and

vice versa if higher-ranked agents are less inclined to save and it becomes optimal to subsidize

savings. The third part of Theorem 2 shows that this trade-off between income and savings taxes

is especially stark when sC = 0 and consumption vanishes at the top. In that case, the optimal

top income tax is again governed by a static trade-off—but it is now between income and savings,

rather than between income and consumption. The static wedge τSaez
Y therefore equals the combined

wedge between labor earnings and savings, as formalized by equation (16).

It follows from this discussion that, when sC < 1, income and consumption inequality, as well

as the income and consumption responses to tax changes, both matter independently for determin-

ing optimal income and savings taxes. If sC = 0, then the income-Pareto ρY and taxable income

elasticities uniquely pin down τSaez
Y , while the moments from consumption data—specifically, the

consumption-Pareto and the elasticity of intertemporal substitution—serve to decompose the com-

bined wedge τSaez
Y into τY and τS , as discussed in Section 2.3. More generally, Corollary 1 shows

that savings should be taxed, and income should be taxed at a lower rate than the static wedge,

iff the product of compensated elasticities and Pareto tail coefficients is larger for consumption

than for savings, i.e., ρCζ
H
C > ρSζ

H
S . Using standard identities, this condition can equivalently be

restated as ρCζ
H
C > ρY ζ

H
Y as long as the marginal propensity to save does not go to zero.

Finally, we show in Section 5.2 and Appendix A.3 (equations (35) and (36)) that these results

do not rely on the separability between saving, on the one hand, and consumption and income,

on the other hand. The tight relationship between Saez (2001) and Atkinson and Stiglitz (1976),

along with the condition on ρCζ
H
C and ρY ζ

H
Y to identify the departures of the optimal income and

saving taxes away from this joint benchmark, carry over to the case of arbitrary preferences over

the three variables.
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Consequences for Policy Recommendations. The static optimal tax formula (1) of Saez

(2001) features prominently in discussions about income tax design, while debates about savings

taxes typically focus on the policy relevance of the uniform commodity taxation theorem of Atkin-

son and Stiglitz (1976). For example, a highly cited review article by Diamond and Saez (2011)

simultaneously makes a case for high top income taxes based on the formula for τSaez
Y and for

positive savings taxes by questioning the assumptions underlying the Atkinson-Stiglitz theorem.

We showed, however, that the static income tax formula and the Atkinson-Stiglitz theorem cannot

be studied in isolation—one does not apply without the other. In other words, the two policy rec-

ommendations made by Diamond and Saez (2011) are mutually inconsistent: An expert calling for

high income taxes based on τSaez
Y must also support the recommendation of zero capital taxation,

and support for positive savings taxes must be accompanied by less extreme recommendations for

the income tax. More broadly, policy recommendations about income and savings taxes cannot be

made in isolation from each other, but are part of a policy mix that optimally trades off between

multiple margins of redistribution.

3 Quantitative Implications

3.1 Calibration

Pareto Tail Coefficients (ρY , ρS , ρC). In Gaillard et al. (2023), we document that labor income

and consumption both have Pareto tails and estimate their respective coefficients in the U.S. using

the 2005 to 2021 waves of the PSID. We find an average estimate of the Pareto coefficient on labor

income equal to ρY = 2.3. Karahan, Ozkan, and Song (2022) find an even smaller value for the

Pareto coefficient of lifetime earnings, ρY = 2.13. By contrast, we obtain a much larger average

estimate of the Pareto coefficient on consumption.12 Figure 1, taken from Gaillard et al. (2023),

plots the upper tail of the distribution of consumption for each wave of the data set, along with

the best Pareto fit. We obtain an average value of the Pareto coefficient equal to ρC = 3.1, with

a lower and an upper bound equal to 2.87 and 3.47, respectively. We further show that the gap

between the two tails is statistically significant and robust across numerous specifications, formal

tests, and alternative data sets. These results are also consistent with those obtained by Buda

12The permanent income hypothesis suggests that it is preferable to use consumption rather than income data to
calibrate the Pareto coefficient ρY in the static Mirrlees setting, since annual consumption may be a better predictor
of permanent income than annual income. While this only reinforces the critique we raised in the first section of
this paper, according to which one could (and perhaps should) use consumption rather than income inequality data
to evaluate optimal taxes in the static framework, this is not the main point of our paper. Instead, our argument
is that, to the extent that (lifetime) income and consumption inequality measures do not coincide, they both matter
independently for optimal taxes.
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Figure 1: Pareto coefficient of consumption
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et al. (2022) using a rich dataset of credit card transactions in Spain. In light of these findings,

there is little doubt that the relevant empirical scenario is Case 3, in which consumption has a

substantially thinner tail than labor income, ρC > ρY . In turn, this implies that the consumption

share of income sC converges to 0 as r → 1.13

Note, however, that our model imposes perfect co-monotonicity between labor income and con-

sumption. To make our quantitative analysis consistent with our model, we compute the mean

log-consumption of workers within each labor income quantile: By averaging, we remove the varia-

tion of consumption conditional on labor income rank. Each graph of Figure 2 plots the following

quantiles: 70; 70.5; 71; . . . ; 99; 99.5. If the tail of labor income is indeed Pareto distributed, the

fact that the data align along a straight line confirms that consumption is also Pareto-distributed.

Moreover, the slope of the relationship yields an estimate of the ratio of Pareto coefficients ρY /ρC

between 0.55 and 0.71, with an average estimate of 0.66. In our quantitative exercise, we use

13Recall moreover that ρY = ρS in our model. While this might appear counterfactual, note that ρS is the Pareto
coefficient for savings, not wealth. As we show in Section 5.1, our model nests the case where asset returns are
increasing in savings, implying that the wealth tail is strictly thicker than the savings—and hence the income—tail.
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Figure 2: Ratio of Pareto Coefficients: Consumption vs. Income
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Log−log: Consumption −− Labor income

these values as our lower bound, upper bound, and baseline estimate, respectively. Using our

preferred estimate of ρY = 2.13, these correspond to Pareto coefficients for consumption equal to

ρC ∈ {3.0, 3.22, 3.87}.

Labor Supply Elasticities (ζH
Y , ζ

I
Y ). When sC = 0, equation (12) establishes a one-to-one map

between the substitution and income effects on labor supply (ζH
Y , ζ

I
Y ) and the preference elasticities

(ζY , ζS). A vast literature estimates the elasticities of taxable income with respect to marginal tax

rates and lump-sum transfers. The meta-analysis of Chetty (2012) yields a preferred estimate of the

Hicksian elasticity of ζH
Y = 0.33, while Gruber and Saez (2002) estimate a value of ζH

Y = 0.5 for top

income earners. Empirical evidence about the size of the income effects ζI
Y is mixed (see, e.g., Keane

22



2011). Gruber and Saez (2002) find negligible income effects, while Golosov, Graber, et al. (2021)

estimate that $1 of additional unearned income reduces the pre-tax income by 67 cents in the highest

income quartile, which for a top marginal tax rate of 50% translates into an income effect of 0.33.

For our baseline calibration, we choose ζH
Y = 0.33 for the Hicksian elasticity and an intermediate

value ζI
Y = 0.25 for the income effect. These values imply ζ̃Y = ζY = (1 − ζI

Y )/ζH
Y = 2.27 and

ζ̃M = ζS = ζI
Y /ζ

H
Y = 0.76, reasonable values for the inverse Frisch elasticity of labor supply and

the relative risk aversion of top earners; in particular, the latter is consistent with the estimates of

Chetty (2006). We evaluate the robustness of our quantitative results to the alternative parameter

values ζH
Y = 0.5 and ζI

Y = 0.33.

Preference Complementarity (ζCY ). Chetty (2006) shows that ζ̃MY can be bounded as a func-

tion of the coefficient of relative risk aversion ζ̃M by ζ̃MY /ζ̃M ≤ ∆ lnC/∆ lnL, where ∆ lnC/∆ lnL

is the change in consumption that results from an exogenous variation in labor supply across var-

ious states, e.g., due to job loss or disability. This empirical moment turns out to be small, with

ζ̃MY /ζ̃M ≤ 0.15 representing a very conservative upper bound. While this finding is perfectly con-

sistent with Case 3 (sC = 0), under which ζ̃MY should converge to 0 for top earners (see equation

(29) in the Appendix), it does not inform us about the underlying value of the preference comple-

mentarity ζCY . For our baseline calibration, we use the value ζCY = 0 (separable utility), which is

both a natural benchmark and consistent with the baseline estimate of the Marshallian elasticity

of consumption with respect to permanent before-tax wage changes for men in Blundell, Pistaferri,

and Saporta-Eksten (2016). We evaluate the robustness of our quantitative results to a wide range

of values of the complementarity.

Elasticity of Intertemporal Substitution (ζIS). When sC = 0, the preference elasticity ζC

is related to the elasticity of intertemporal substitution ζIS through the relationship ζC = 1/ζIS .

To calibrate the EIS, we use Jakobsen et al. (2020) who focus specifically on the behavior of the

wealthiest households. Through the lens of a life-cycle model similar to ours, they show that an EIS

as large as 2.6, and even higher for the very wealthy, is necessary to replicate the quasi-experimental

evidence on the effects of a large wealth tax reform in Denmark on wealth accumulation. This

value is consistent with that of Holm et al. (2024), who estimate an EIS of 2 by evaluating the

spending response to a dividend tax news shock. Our baseline calibration thus uses ζIS = 2,

which in turn leads to ζC = 0.5. As an alternative to the EIS, we could also use direct empirical

estimates of the consumption response to a permanent wage shock to calibrate ζC . Attanasio and

Davis (1996) estimate that between 60% and 80% of relative wage changes among birth cohorts and
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education groups are passed through to relative consumption changes. Using these estimates for the

Marshallian (uncompensated) elasticity ζH
C + ζI

C , and the relationship ζI
C/ζ

H
C = ζY when ζCY = 0,

we obtain a range of values ζC = ζI
Y /ζ

H
C ∈ (1.02, 1.36) in our baseline calibration, corresponding to

an EIS in (0.73, 0.98). We thus evaluate the robustness of our results to a wide range of values for

the EIS.

A Cautionary Note. Our identification does not rely on any specific functional-form assump-

tion on preferences. Instead, we infer the relevant preference elasticities directly from behavioral

responses to income and tax changes. In particular, we do not calibrate our elasticity parameters

using empirical estimates obtained by estimating structural models that rely on a particular choice

of utility function if the latter is not flexible enough to accommodate the ordering of Pareto tails

and the value of sC to which we calibrate our model. By contrast, many papers impose strong

a priori assumptions on the utility function to structurally estimate preference parameters. As

emphasized by Chetty (2009), a potential pitfall of using these structural estimates to discipline

behavioral elasticities and evaluate tax policies is that the structural model on which these empiri-

cal estimates are based may not be compatible with restrictions imposed by the underlying model

that led to the optimal tax formula. For instance, suppose that we derived optimal taxes under the

assumption that preferences take the form U = u (g (C) − v (Y/θ (r))) for some concave constant-

elasticity functions u and g and convex function v. While this utility function implies UCY ≥ 0

and appears to have sufficient flexibility to parametrize ζC , ζY and ζCY via the functions u, g, and

v, we can show that optimal consumption choices resulting from this functional form impose that

sC is bounded away from zero at the top; it can therefore not be consistent with the empirically

relevant scenario of Case 3. A similar comment applies to the widely used estimates of French

(2005), whose preference structure is compatible with sC converging to zero only if labor supply is

completely inelastic (ζY → ∞) at the very top, contradicting empirical evidence on labor supply

elasticities. One could make these preferences consistent with Case 3 by incorporating additional

preference heterogeneity—for example by making g rank-dependent. But by doing so, we would

mechanically attribute the discrepancy between income and consumption Pareto tails to preference

heterogeneity, and therefore hardwire into our preference assumptions the conclusion that it is op-

timal to tax savings, rather than letting the data identify how much of this gap is attributable to

preference heterogeneity rather than income elasticities.
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Table 1: Optimal top labor income and savings taxes
ρY /ρC = 0.55 ρY /ρC = 0.66 ρY /ρC = 0.71

τY
τS

1+τS
τY

τS
1+τS

τY
τS

1+τS
τSaez

Y

Baseline values∗ 58% 26% 59% 24% 60% 23% 69%
ζH

Y = 0.5 49% 12% 50% 9% 51% 8% 55%
ζI

Y = 0.33 55% 39% 57% 37% 57% 36% 73%
ζIS = 0.75 68% 2% 72% −10% 73% −16% 69%
ζCY = 0.5 47% 42% 48% 40% 48% 40% 69%

∗Baseline values: ρY = 2.13, ζH
Y = 0.33, ζI

Y = 0.25, ζIS = 2, ζCY = 0.

3.2 Results

Table 1 below summarizes our quantitative results for the optimal top tax rates on labor income

and savings. While τY represents a marginal labor income tax on gross income, τS represents the

savings wedge as a proportion of net savings S. For constant top savings wedges, this translates

into a top marginal tax on gross savings equal to τS/(1 + τS); this is the variable we report in the

table. We also report the static optimum τSaez
Y . The first row gives the results for our baseline

parameter values ρY = 2.13, ζH
Y = 0.33, ζI

Y = 0.25, ζCY = 0, ζIS = 2, and for three values of

the ratio of Pareto coefficients of labor income and consumption: ρY /ρC ∈ {0.55, 0.66, 0.71}. The

remaining rows of the table vary one parameter of our baseline calibration at a time.

Our preferred calibration yields a combined wedge τSaez
Y of 69%, split between a top labor

income tax rate of 59% and a top savings tax rate of 24%. To interpret the values of the savings

wedge, it is useful to translate them into a tax on annualized returns. In our model, the first period

represents a 30-year gap between the beginning of the working period and retirement. If the annual

return on savings is 5% (resp., 3%), a savings tax of τS/(1 + τS) = 24% corresponds to a 0.9%

annual tax on accumulated wealth, or a 19% (resp., 31%) capital income tax. Alternatively, if we

interpret our model as one of retirement savings, a wedge of 24% means that top income earners

will receive a present value of $0.81 of additional pension payments for each additional dollar in

social security contributions.

Higher values of the compensated elasticity of taxable income ζH
Y reduce the combined wedge

on labor income and savings τSaez
Y , but also shift the distortions away from savings and towards

labor income. Intuitively, a higher compensated income elasticity reduces the pass-through from

income to consumption inequality, which in turn reduces the role of heterogeneity in preferences

in accounting for the observed gap between the Pareto coefficients of income and consumption,

and thus reduces the scope for savings taxes. Conversely, higher values of the income effect on

labor supply ζI
Y raise the combined wedge, but also shift distortions from income towards savings:

25



Figure 3: Optimal Income and Savings Tax Rates

a higher ζI
Y maps one-for-one to higher risk aversion over after-tax income and thus a stronger

redistribution motive, making both the under-lying tax distortions and the shift from income to

savings taxes more salient. As a result, a higher ζI
Y slightly reduces the optimal income tax but

significantly increases optimal savings taxes.

Changes to the elasticity of inter-temporal substitution ζIS and the complementarity between

consumption and labor income ζCY leave the combined labor and savings wedge unchanged, but

shift the break-down between labor and savings taxes. Equation (15) in Theorem 2 implies that

savings should be taxed whenever the elasticity of intertemporal substitution ζIS is larger than

(ρY /ρC)(ζH
Y /ζ

I
Y ) = 0.87 in our baseline calibration. The large EIS estimated by Jakobsen et al.

(2020) and Holm et al. (2024) thus suggest that savings should optimally be taxed—and, corre-

spondingly, labor income should be taxed at a strictly lower rate than the static optimum τSaez
Y .

Nevertheless, lower values of the EIS, along with more unequal distributions of consumption, may

lead to optimal savings subsidies, as shown in the fourth row of Table 1 for the case ζIS = 0.75.

The Corlett-Hague rule implies that the planner should reduce the tax rate on labor income

and raise the tax rate on savings when income and consumption are complements (ζCY > 0).

Quantitatively, a value of ζCY equal to 0.5 rather than 0 adds around 15 percentage points to the

optimal savings tax rate while reducing the labor income tax by another 11 percentage points.

Figure 3 gives the values of the labor income and savings tax rates for a wide range of values

of the EIS ζIS and complementarity ζCY around our baseline calibration.
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4 Proof of Theorem 1

Before turning to generalizations of our baseline results, we provide a sketch of the proof of our

main result, Theorem 1. We also give an alternative representation of the optimum, based on the

idea of redistributional arbitrage, that formalizes the tradeoff between different tax distortions.

4.1 Step 1: Sufficient Conditions for Incentive Compatibility

We characterize the solution to the planner’s problem of maximizing (6) subject to (7) and (8)

in several steps using standard tools from mechanism design. First, we replace the set of global

incentive compatibility conditions (7) by the local incentive compatibility or envelope condition

W ′ (r) = Ur (C (r) , Y (r) ; r) + Vr (S (r) ; r) (17)

where W (r) ≡ U (C (r) , Y (r) ; r) + V (S (r) ; r), and a co-monotonicity condition on allocations:

Proposition 1 (Sufficient Condition for Global Incentive Compatibility). Suppose that

Assumption 1 is satisfied. Then an allocation {C (r) , Y (r) , S (r)} satisfies incentive compatibility

(7) whenever it satisfies (i) local incentive compatibility (17); (ii) monotonicity of income: Y (·)

is non-decreasing in r; and (iii) monotonicity of either savings or consumption, depending on the

sign of VSr/VS −UCr/UC , namely: S (·) is non-decreasing in r if this term is strictly positive, and

C (·) is non-decreasing in r if it is strictly negative. Conversely, an allocation {C (r) , Y (r) , S (r)}

that violates both (ii) and (iii) over some open interval of ranks (r1, r2) ⊂ (0, 1) violates incentive

compatibility (7).

Proposition 1 shows that local incentive compatibility combined with co-monotonicity of in-

come and either consumption or savings is sufficient for global incentive compatibility (7). These

conditions are weaker than the co-monotonicity condition of Theorem 1. If VSr/VS = UCr/UC for

all r, condition (iii) holds automatically, and the monotonicity of Y (·) and local incentive compat-

ibility are both necessary and sufficient for incentive compatibility—analogous to the well-known

necessary and sufficient conditions in mechanism design problems with a single decision margin. If

VSr/VS ̸= UCr/UC for some r, conditions (ii) and (iii) together are sufficient, but not necessary,

for incentive compatibility. With two decision margins (labor supply and consumption-savings),

incentive compatibility (7) holds if, for any pair of types, the sum of information rents across both

margins is non-negative. Condition (ii) guarantees that information rents along the labor supply

margin are always non-negative, while condition (iii) guarantees that the same holds along the
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consumption-savings margin. However, (7) may still hold if information rents are positive along

only one of the two margins, i.e., if one of the two conditions is violated. The partial converse then

says that incentive compatibility must be violated if both conditions are violated over some interval

of types, that is, if information rents are negative along both margins.

4.2 Step 2: Solution to the Relaxed Planner’s Problem

Next, we analyze the “relaxed” planner’s problem of maximizing (6) subject to (8) and (17). We

derive a representation of optimal income and savings wedges in terms of the model primitives,

i.e., the agent’s preferences. Proposition 2 provides a characterization of optimal labor and savings

wedges akin to the well-known “ABC” formula (Diamond 1998). We derive it using a perturbation-

based argument, and give a formal proof in the Appendix.

Proposition 2 (Optimal Tax System). The optimal labor and savings wedges satisfy

τY (r)
1 − τY (r) = (1 − r)

(
UCr (r)
UC (r) − UY r (r)

UY (r)

)
UC (r) γ (r) (18)

and
τS (r)

1 + τS (r) = (1 − r)
(
VSr (r)
VS (r) − UCr (r)

UC (r)

)
UC (r) γ (r) (19)

where

γ (r) = E
[

1
UC (r′) exp

(� r′

r

UCr (r′′)
UC (r′′) dr

′′
)∣∣∣∣∣ r′ ≥ r

]
. (20)

Thus, Assumption 1 implies that τY (r) > 0 for all r, and τS (r) ≶ 0 depending on the sign of (5).14

Equations (18) and (19) state that the optimal labor and savings wedges equalize the marginal

resource gain from reducing labor or savings distortions at rank r, to the marginal resource cost

from raising the information rent at rank r, thus hindering redistribution from ranks r′ ≥ r to lower-

ranked agents. More specifically, fix r ∈ (0, 1) and consider the following (infinitesimal) perturba-

tion: simultaneously raise the consumption and the earnings (i.e., reduce the leisure) of rank r while

keeping her utility unchanged, so that UC (r) ∆C (r) = −UY (r) ∆Y (r). On the one hand, the net

resource gain associated with this perturbation is ∆Y (r) − ∆C (r) = (τY (r) / (1 − τY (r))) ∆C (r),

corresponding to the left-hand side of equation (18). On the other hand, this perturbation makes

it strictly more attractive for ranks r′ > r to mimick rank r, since by Assumption 1 they are

14We use Assumption 1 only to guarantee that local incentive compatibility and monotonicity are sufficient for
global incentive compatibility. The result that τS inherits the sign of VSr/VS − UCr/UC for each r applies even
without Assumption 1 provided that incentive compatibility is satisfied.
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more inclined than rank r to give up a given amount of leisure for an extra unit of consump-

tion. Formally, the information rent W ′ (r) at rank r (i.e., the additional utility that must be

awarded to agents with rank slightly above r to deter them from mimicking rank r) increases

by ∆W ′ (r) = UCr (r) ∆C (r) + UY r (r) ∆Y (r) = [UCr (r) /UC (r) − UY r (r) /UY (r)]UC (r) ∆C (r).

The planner’s marginal resource cost of ceding these additional information rents is then obtained

by multiplying ∆W ′ (r) with the “shadow value of redistribution”, derived in the next paragraph,

(1 − r) γ (r). Equating the marginal benefit and cost of the perturbation yields equation (18). A

similar perturbation of {∆C (r) ,∆S (r)} of consumption and savings delivers equation (19).

It remains to validate the interpretation of (1 − r) γ (r) as the shadow value of redistribution

at rank r. Consider a perturbation {∆C (r′)} that raises the consumption of ranks r′ > r while

preserving local incentive compatibility. Let ∆W (r′) = UC (r′) ∆C (r′) denote the associated

increase in welfare for types r′ > r, and ∆W ′ (r′) = UCr (r′) ∆C (r′) the increase in information

rent at r′. Therefore, we have ∆W ′ (r′) = (UCr (r′) /UC (r′)) ∆W (r′). That is, the change in

utility at rank r′ causes a change in information rents that must be passed on to the utility of all

higher ranks r′′, thus further changing information rents, etc. Integrating up this ODE yields the

cumulative utility changes for higher ranks that are required as a result of preserving local incentive

compatibility at all lower ranks:15 ∆W (r′) = ∆W (r) · exp
� r′

r [UCr(r′′)/UC(r′′)]dr′′. To interpret

this expression, suppose that higher ranks have lower consumption needs, i.e., UCr < 0. Then the

utility of higher ranks does not need to increase by as much as that of lower ranks to maintain

incentive compatibility, because the higher level of consumption at rank r is not so attractive for

higher ranks r′ > r; in this case, a smaller increase in utility at r′ is sufficient to deter them from

mimicking lower ranks. Finally, this expression allows us to compute ∆C (r′) = ∆W (r′) /UC (r′)

and hence the resource cost of the perturbation, (1 − r)E [∆C (r′) |r′ ≥ r ] = (1 − r) γ (r) ∆W (r).

This concludes the proof.

4.3 Step 3: Identification

Our third and final step consists of mapping the model primitives that appear on the right-hand

sides of equations (18) and (19) to empirically observable sufficient statistics—standard elasticities,

Pareto coefficients, and measures of tax progressivity. We do so in Proposition 3, which generalizes

Lemma 1 in Saez (2001) to our economy. We discussed its interpretation—in particular, the role

15In the special case where UCr = 0, i.e., consumption utilities are independent of type, the perturbation raises the
utility of ranks r′ > r uniformly by ∆W (r′) = ∆W (r) > 0. It is well known that this perturbation of consumption
preserves incentive compatibility for all r′ > r. That is, the increase in the consumption of rank r′ does not modify
Ur (r′), and hence does not require any additional change in utility for types above r′. By contrast, with general
non-separable preferences UCr ̸= 0, a uniform increase in utility no longer preserves local incentive compatibility.
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that the Pareto coefficients and preference elasticities play in the identification of the intra- and

inter-temporal MRS—in the text following the statement of Theorem 1.

We can then easily complete the proof of Theorem 1 by substituting these expressions into those

of Proposition 2, taking the limit as r → 1, and invoking the assumption that the relevant sufficient

statistics all converge to finite limits.

Proposition 3 (Identification). For any given (observed) system of tax distortions {τ̂Y (r) , τ̂S (r)},

the variables UCr/UC − UY r/UY and VSr/VS − UCr/UC can be expressed as

(1 − r)
(
UCr (r)
UC (r) − UY r (r)

UY (r)

)
= ζC (r)
ρC (r) + ζY (r)

ρY (r) − ζCY (r)
ρY (r)

(
1 + sC (r) ρY (r)

ρC (r)

)
+ d ln (1 − τ̂Y (r))

d ln (1 − r)
(21)

and

(1 − r)
(
VSr (r)
VS (r) − UCr (r)

UC (r)

)
= ζS (r)

ρS (r) − ζC (r)
ρC (r) + ζCY (r)

ρY (r) − d ln (1 + τ̂S (r))
d ln (1 − r) . (22)

Moreover, the shadow value of redistribution can be expressed as:

UC (r) γ (r) = E
[

exp
(� r′

r

{
ζC (r′′)
ρC (r′′) − ζCY (r′′)

ρY (r′′)

} 1
1 − r′′dr

′′
)∣∣∣∣∣ r′ ≥ r

]
. (23)

Equations (21), (22), and (23) follow by totally differentiating 1 − τ̂Y (r) = −UY (r) /UC (r),

1+ τ̂S (r) = VS (r) /UC (r), and UC (r), respectively, and noting that in each case the differentiation

can be decomposed into a component that captures the rank-dependence of preferences for a given

allocation, and a component that captures the variation in allocations at a given rank. The latter

is fully identified from preference elasticities and local Pareto tail coefficients, and can thus be used

to identify the former, which is given by the left-hand side of (21) to (23).

4.4 Redistributional Arbitrage

Equation (20) expresses the shadow value of redistribution (1 − r) γ (r) in terms of redistributing

consumption from agents ranked r′ > r towards lower-ranked ones. Applying analogous pertur-

bation arguments as above, we obtain two additional, equivalent representations of γ (r) based on

redistributing earnings (or leisure, that is, asking the top-ranked agents to work more) or savings

from higher to lower ranks:

γ (r) = E
[

1
−UY (r′) exp

(� r′

r

UY r (r′′)
UY (r′′) dr

′′
)∣∣∣∣∣ r′ ≥ r

]
= E

[
1

VS (r′) exp
(� r′

r

VSr (r′′)
VS (r′′) dr

′′
)∣∣∣∣∣ r′ ≥ r

]
.
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Combined with equation (20), these representations articulate the presence of three margins of

redistribution: consumption, earnings (or leisure), and savings. The optimal allocation must then

obey a principle of “no redistributional arbitrage”, according to which there are no gains from

shifting redistribution from one margin (say, consumption) to a different one (say, leisure or savings).

Taking ratios of −UY (r) γ (r), VS (r) γ (r), and UC (r) γ (r), we obtain the following alternative, yet

equivalent, representation of optimal labor and savings taxes:

1 − τY (r) = BY (r)
BC (r) ≡

E
[

UY (r)
UY (r′) exp

(� r′

r
UY r(r′′)
UY (r′′) dr

′′
)

| r′ ≥ r
]

E
[

UC(r)
UC(r′) exp

(� r′

r
UCr(r′′)
UC(r′′) dr

′′
)

| r′ ≥ r
] (24)

and

1 + τS (r) = BS (r)
BC (r) ≡

E
[

VS(r)
VS(r′) exp

(� r′

r
VSr(r′′)
VS(r′′) dr

′′
)

| r′ ≥ r
]

E
[

UC(r)
UC(r′) exp

(� r′

r
UCr(r′′)
UC(r′′) dr

′′
)

| r′ ≥ r
] . (25)

These optimal tax formulas formalize the idea that, at the optimal allocation, the planner is indif-

ferent between redistributing slightly less along one margin of inequality—consumption, leisure, or

wealth—and slightly more along another. The variables BC , BY and BS represent the marginal

(resource) benefits of reducing the consumption, leisure, and savings of agents with rank above

r, respectively. Thus, the ratio BY /BC describes the trade-off between redistributing resources

from the top via income or via consumption—or in other words, how the social planner maximizes

the extraction of resources from top earners by asking them to work more versus reducing their

consumption. Similarly, the ratio BS/BC describes the trade-off between redistributing consump-

tion or savings. Comparing equations (24) and (25) with the individual’s first-order conditions

1 − τY = −UY /UC and 1 + τS = VS/UC then leads to the following interpretation of optimal

taxes: The optimal income (resp., savings) wedge equalizes the agent’s private trade-off between

consumption and leisure (resp., savings), to the social trade-off in redistributing from the top via

consumption or leisure (resp., savings). Sufficient statistics representation of these expressions can

then be obtained as in Proposition 3, which would then lead us to recover the formulas given

in Theorem 1.16 The interpretation of optimal top income and savings taxes as equalizing the

shadow values of redistributing leisure, savings, and consumption clarifies why all of these margins

of inequality matter independently for the design of redistributive policies.

16It is straight-forward to check that −UY (r) γ (r) = Er′≥r[exp
� r′

r
{− ζY (r′′)

ρY (r′′) + sC (r′′) ζCY (r′′)
ρC (r′′) } dr′′

1−r′′ ] and

VS (r) γ (r) = Er′≥r[exp
� r′

r

ζS(r′′)
ρS(r′′)

dr′′

1−r′′ ]. Therefore, limr→1 BY (r) = [1 + ζY /ρY − sCζCY /ρC ]−1, limr→1 BS (r) =
[1 − ζS/ρS ]−1, and limr→1 BC (r) = [1 − ζC/ρC + ζCY /ρY ]−1.
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5 Extensions

In this last section of our paper, we show that our baseline results can be easily extended to

much richer settings, including heterogeneous rates of return, multiple-period, multiple-good, life-

cycle, and dynamic stochastic economies. We provide formal derivations and study an additional

extension (heterogeneous initial capital) in the Appendix.

5.1 Return Heterogeneity

Recent empirical evidence suggests that heterogeneous rates of return, whereby wealthier agents

earn higher returns on their savings, are an important component of the observed concentration of

wealth at the top; see, e.g., Bach, Calvet, and Sodini (2020), Fagereng et al. (2020), and Gaillard

et al. (2023). There are two potential sources of such heterogeneity: scale-dependence (returns

increase with wealth, regardless of an individual’s rank r) and type-dependence (returns increase

with an individual’s exogenous rank r, for any level of wealth). In the Appendix, we show that

the generic utility function V (S; r) introduced in our baseline framework of Section 2 nests both

cases. To see this, interpret V (·; r) as an indirect utility function over initial savings, rather than

over second-period consumption. Specifically, define V (S, r) = β (r) v (R (S; r)S), where R (S; r)

denotes the returns on savings, which can be scale-dependent through their dependence on S

or type-dependent through their dependence on r. Second-period consumption is then given by

C2 (r) = R (S; r)S (r).

This argument implies that our optimal tax formulas continue to hold, except that the relevant

savings elasticity ζS and Pareto coefficient ρS should be those of initial savings. In particular, as

explained in Section 2.3, we have ρS = ρY by construction. Since 1/ρC2 = 1/ρS + 1/ρR, where

ρC2 and ρR denote respectively the Pareto coefficients on second-period consumption and rates

of return, we obtain that wealth has a strictly thicker tail than labor income—as is the case in

the data. Note finally an important advantage of the calibration in Section 3 of top income and

savings taxes: It identifies the sufficient statistic ζS directly from income and substitution effects

on labor supply, without taking a stand on return heterogeneity. That is, conditional on the usual

labor supply elasticities ζH
Y , ζ

I
Y , the expressions for optimal taxes we derived above hold for any

underlying heterogeneity in rates of return, and any combination of type- and scale-dependence.17

17Return heterogeneity would instead enter the characterization of ζS in terms of primitives. It is straightforward
to check that ζS = ζC2 − η(1 − ζC2 ), where ζC2 = −C2v′′ (C2) /v′ (C2) and η = SRS (S; r) /R (S; r) is the scale-
dependence parameter. Hence, scale dependence of returns affects the savings elasticity ζS through the parameter η
whenever ζC2 ̸= 1. Increasing returns to savings (η > 0) lower ζS and thus optimal savings taxes when ζC2 < 1, and
increase ζS and optimal savings taxes when ζC2 > 1. The opposite result holds if savings have decreasing returns
(η < 0). Note finally that our optimal tax formulas use the Pareto coefficient of savings ρS = ρY as a sufficient
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5.2 General Preferences and Multiple Commodities

In our baseline model of Section 2, we assumed that preferences were additively separable between

“savings”, on the one hand, and “consumption” and “labor income”, on the other hand. We now

extend Theorem 1 to general preferences U (C1, . . . , CN , Y ; r) over efficiency units of labor Y and

an arbitrary set of consumption goods C1, . . . , CN , nesting our baseline model as a special case

with two consumption goods. The separability assumption imposed some structure on income and

substitution effects of the different commodities, which simplified the identification of sufficient

statistics leading to Theorem 1: The computation of the top income and savings taxes required

estimates of four preference parameters—three elasticities and an adjustment for complementarity

between consumption and income.

Suppose that agents’ preferences are defined as U (C, Y ; r), where C is an N -dimensional com-

modity vector and r ∈ [0, 1]. Let Un ≡ ∂U/∂Cn and Urn ≡ ∂Ur/∂Cn and assume that Urn/Un

is increasing in n. Hence, Um/Un is increasing in r whenever m > n. As before, suppose that

UY ≡ ∂U/∂Y < 0, and UrY /UY < Urn/Un for all n = 1, ..., N . It will be convenient write

Ur0 ≡ UrY and U0 ≡ UY , i.e., to index efficiency units of labor as the lowest-indexed good 0.

The planner can produce good n at a constant marginal cost of pn efficiency units of labor. We

consider a general social welfare objective, with rank-dependent Pareto weights ω (·) and a concave

Bergson-Samuelson function G (·) that captures the planner’s aversion to inequality. The planner’s

problem reads

max
C(·),Y (·)

� 1

0

[
ω (r)G (U (C (r) , Y (r) ; r)) + Y (r) −

N∑
n=1

pnCn (r)
]
dr

subject to the agents’ incentive compatibility constraints. Let ω̂ (r) ≡ ω (r)G′ (U (r)) denote the

marginal social welfare weight on rank r. The optimal wedge of any good between any pair of

goods m and n (including labor, n = 0) is defined by 1 + τm,n (r) = (Um (r) /pm) / (Un (r) /pn) and

takes the form

1 + τm,n (r) = Bm (r)
Bn (r) =

E
[{

1 − p−1
m Um (r′) ω̂ (r′)

} Um(r)
Um(r′) exp

(� r′

r
Umr(r′′)
Um(r′′) dr

′′
)∣∣∣ r′ ≥ r

]
E
[{

1 − p−1
n Un (r′) ω̂ (r′)

}
Un(r)
Un(r′) exp

(� r′

r
Unr(r′′)
Un(r′′) dr

′′
)∣∣∣ r′ ≥ r

] . (26)

We further have that τm,n (r) > 0 whenever m > n. This characterization also applies to the

optimal wedge between efficiency units of labor and any consumption good n, for which we have

statistic. Since type dependence only affects the Pareto coefficient of ex-post wealth ρC2 (via ρR), it does not affect
optimal taxes. By contrast, optimal tax formulas expressed in terms of ex-post wealth ρC2 rather than savings ρS as
the relevant sufficient statistic, such as Schulz (2021), are explicitly affected by type-dependence.
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1 + τ0,n (r) = B0 (r) /Bn (r) < 1 and therefore τ0,n (r) < 0. That is, leisure should be subsidized

relative to other consumption goods, and correspondingly, labor income be taxed.

This expression has the same structure and interpretation as equations (24) and (25), except

that the welfare weight ω̂ (r′)Un (r′) modifies the expression of each Bn (r); this term account for

the fact that, when the planner is not Rawlsian, perturbing the allocation as described in Section 4

has a direct effect on social welfare in addition to the resource costs and benefits. As described in

Section 4.4, Bn (r) represents the marginal benefits of reducing the consumption of commodity n for

ranks above r while preserving incentive-compatibility for r′ ≥ r.18 Formula (26) thus characterizes

the optimal relative price distortions as arbitraging between redistribution through one commodity

vs. another.

We can then identify limr→1Bn (r) in terms of observables, following a similar proof as that of

Proposition 3. Assuming that the preference elasticities ζnk (r) ≡ Ck (r)Unk (r) /Un (r), ζn (r) ≡

−Cn (r)Unn (r) /Un (r), ζn0 (r) ≡ Y (r)UnY (r) /Un (r), and ζ0 (r) ≡ Y (r)UY Y (r) /UY (r), the

spending shares sn (r) ≡ Un (r)Cn (r) / (−UY (r)Y (r)) and the local tail coefficients ρk (r) ≡

−∂ lnCk (r) /∂ ln (1 − r) converge to constants ζnk, ζn, ζn0, ζ0, sn, and ρk > 1 as r → 1, we

obtain

lim
r→1

Bn (r) =
[
1 +

N∑
k=0

ζnk

ρk

]−1

and lim
r→1

B0 (r) =
[
1 + ζ0

ρ0
−

N∑
k=1

sk
ζk0
ρk

]−1

(27)

Although the terms Bn (r) are expressed in terms of cardinal preference elasticities, we show that

they only depend on ordinal preferences; that is, if Û is a monotone transformation of U , then

they generate the same marginal benefits of redistribution Bn (r). It follows that these terms

can be fully identified from the income and substitution effects of the various goods. Specifically,

with N + 1 different commodities (including efficiency units of labor in the count), we have N

independent income effects ζI
n and N (N + 1) /2 independent substitution effects ζH

n,k that can—in

principle—be estimated as behavioral responses to income, price or tax changes.19 On the other

hand, there are (N + 1)2 preference elasticities in {ζn, ζnk; ζ0, ζn0}, with (N + 1)2 − N (N + 1) /2

degrees of freedom, since the off-diagonal elements must satisfy snζnk = skζkn. Hence, income and

substitution effects {ζI
n; ζH

n,k} together identify the preference elasticities {ζn, ζnk; ζ0, ζn0} up to a

18Note that the Inada conditions ensure that the term in brackets converges to 1 at the top of the type distribution:
If limr→1 ω̂ (r) Un (r) = 0 for any n, we recover the Rawlsian representation of Section 4.4. In the Appendix, we show
that the relative price of goods m and n should be undistorted everywhere, i.e., it is optimal to tax the two goods
uniformly, if and only if the marginal rate of substitution Um (r) /Un (r) is uniform across preference ranks r. More
generally, it is optimal to tax good m at a higher rate than good n, so that τm,n (r) > 0 for all r, whenever
Um (r) /Un (r) increases with r.

19The Slutsky matrix has (N + 1)2 entries, but symmetry of the off-diagonal elements imposes N (N + 1) /2 re-
strictions and the usual adding-up constraint on substitution effects for a given price change another N +1 restrictions,
leaving us with N (N + 1) /2 degrees of freedom.
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single degree of freedom, which accounts for the fact that marginal benefits of redistribution and

optimal wedges at the top are invariant to monotone transformations of cardinal utilities and only

depend on ordinal preferences.

Finally, we extend Theorem 2 to the case of arbitrarily non-separable preferences over three

goods C, Y, S. The proof in Appendix A.3 shows that our previous results all go through with

minor adjustments to the sufficient statistics representations. Specifically, equations (35) and (36)

generalize to the case of arbitrary preferences the expressions for the income and savings taxes that

we derived in Corollary 1. These results imply that the optimal top income tax rate is equal to

τSaez
Y , and the optimal top savings tax rate is equal to 0, if and only if ρCζ

H
C = ρY ζ

H
Y . Away from

this benchmark, it is optimal to reduce τY below τSaez
Y and to raise τS above 0 iff ζH

C ρC > ζH
S ρS . In

the opposite case, it is optimal to raise the income tax above the static optimum and to subsidize

savings.

5.3 Income and Savings Taxes over the Life Cycle

As an application of the general framework of the previous section, we now study how income and

savings taxes should vary over the life cycle. Consider a Mirrleesian economy in which households

work and consume over a fixed number of periods, indexed by t = 1, ..., T . Their initial preference

rank is drawn prior to date t = 1, and is their private information. The households’ preferences

are given by
∑T

t=1 β
tUt (Ct, Yt; r), where the within-period utility function is allowed to vary deter-

ministically over time (for example to capture age-dependence of preferences over consumption or

work productivity), but otherwise satisfies the same restrictions as in our baseline economy. The

age-dependent labor and savings taxes on top earners are then given by:

τY (t) = ζYt/ρYt + ζCt/ρCt − ζCtYt/ρYt(1 + sCtρYt/ρCt)
1 + ζYt/ρYt − sCtζCtYt/ρCt

and

τS (t) =
ζCt+1/ρCt+1 − ζCt/ρCt − (ζCt+1Yt+1/ρYt+1 − ζCtYt/ρYt)

1 − ζCt+1/ρCt+1 + ζCt+1Yt+1/ρYt+1
.

These formulas are analogous to those found in the two-period environment, but they are now

based on age-specific rather than unconditional preference elasticities and Pareto tail coefficients.

Following the same procedure as described in Section 3.1, we compute the age-specific Pareto

coefficients for consumption and income, as well as their ratio, by birth cohort from different PSID

waves, and then plot them against age in Figure 4. The decline of these estimates with age until
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Figure 4: Pareto Coefficients conditional on Age
[1900:1949] [1950:1959] [1960:1969] [1970:1979] [1980:2000]
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retirement illustrate the growth of income and consumption inequality over the first half of the life

cycle. Their ratio is remarkably stable across ages, with values between 0.75 and 0.8.20

What do these age-specific Pareto coefficients imply for the evolution of income and savings

taxes? Assuming that the preference parameters do not vary too much with age, the rising income

inequality over the life cycle suggests that income taxes should be increasing with age. At the same

time, the fact that age-specific Pareto coefficients are uniformly lower than their unconditional

counterpart also results in uniformly lower income taxes. Using ζ−1
Yt

= 0.44, ζCt = 0.75, ζCtYt = 0,

along with ρCt/ρYt = 0.75 for all t yields top optimal labor income taxes that increase from

τ̄Y (t) = 60.5% at age 20 to 68.5% for ages 50 and above. Moreover, the gradual increase in

consumption inequality introduces a rationale for back-loading redistribution, or taxing savings.

The previous calibration implies a cumulative savings tax between ages 20 and 50 of 7.7%, or

equivalently about 0.25% per annum, before dropping to 0 beyond age 50. These estimates are

smaller than in our baseline economy, but stem from an entirely different channel, namely the growth

in income and consumption inequality with age, rather than the difference between consumption

and income inequality in the cross-section.

5.4 Inverse Euler Equation

We can finally link our results to the “Inverse Euler Equation” that emerges in dynamic Mirrleesian

economies with stochastically evolving types (Golosov, Kocherlakota, and Tsyvinski 2003; Farhi

and Werning 2013; Golosov, Troshkin, and Tsyvinski 2016) by re-interpreting the second-period

20Our estimates of the Pareto coefficients for income by age are consistent with those found by Karahan, Ozkan,
and Song (2022).
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utility function V in our model. Except for Hellwig (2021), this literature abstracts from both

heterogeneity in preferences for savings and complementarities between consumption and labor,

which are the two key channels that drive savings taxes in our setting.

Suppose that agents’ preferences over second-period consumption C2 and second-period income

Y2 are given by βv (C2, Y2; r2), where the second period rank r2 ∈ [0, 1] is uniform and i.i.d. across

agents and independent of the first period rank r. First-period savings S generate a return R > 0.

The social planner then sets second-period allocations {C2 (·) , Y2 (·)} to maximize

V (S) ≡ β

� 1

0
v (C2 (r2) , Y2 (r2) ; r2) dr2

subject to the break-even constraint

RS ≥
�

(C2 (r2) − Y2 (r2)) dr2

and incentive-compatibility constraints

v (C2 (r2) , Y2 (r2) , r2) ≥ v
(
C2
(
r′

2
)
, Y2

(
r′

2
)
, r2
)

for all r2, r
′
2 ∈ [0, 1]. That is, our second-period utility function V (S) simply stands for the expected

present value of future utility. We can then characterize exactly as in our baseline model the optimal

labor distortions in both periods (equation (24)), and the wedge between first-period consumption

and savings, τS (r) (equation (25)). In addition, a perturbation argument analogous to that of

Section 4 implies that

1
(1 + τS (r))UC (r) ≡ 1

VS (S) = E
[

1
βRvC2 (r2) ·

exp
(� r2

0 {vC2r (r′) /vC2 (r′)}dr′)
E
[
exp

(� r2
0 {vC2r (r′) /vC2 (r′)}dr′)]

]
. (28)

Thus, the inverse marginal utility of savings 1/VS (S) is equal to an expected inverse marginal

utility of second-period consumption, weighted by an adjustment factor that accounts for the non-

separability of preferences and is analogous to that derived in Proposition 2. Combining this

expression for VS (S) with our characterization of the savings wedge 1 − τS (r) = BS (r) /BC (r)

thus yields a generalization of the Inverse Euler Equation.

In other words, our characterization of optimal savings wedges naturally extends to a dynamic

Mirrleesian economy, which now combines two separate rationales for taxing savings: the het-

erogeneity in inter-temporal marginal rates of substitution or departure from uniform commodity

taxation that is captured by τS (r), and the adverse incentive effect of savings that the Inverse Eu-
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ler equation emphasizes by characterizing the marginal value of savings as a harmonic expectation

of second-period marginal utilities. Specifically, to preserve incentive compatibility in the second

period, returns to savings are reweighted by an adjustment factor that is proportional to inverse

marginal utilities 1/vC2 , and a further adjustment to factor in non-separability of preferences akin

to the adjustment factors in the static marginal benefits of redistribution formulas (24)-(25).21

That said, recall that, as for the extension in Section 5.1, ζS is identified directly from income and

substitution effects on labor supply in period 1, without taking a stand on preferences and labor

productivities in period 2. Conditional on ζH
Y , ζ

I
Y , the expressions for optimal taxes we derived in

Section 2 therefore continue to apply.

The present discussion was kept deliberately simple by assuming that ranks were i.i.d. across

time and across agents. Hellwig (2021) analyzes a dynamic Mirrleesian economy with arbitrary

Markovian shock processes and non-separable preferences that integrates motives for savings taxes

due to preference heterogeneity with adverse incentive effects of savings.22 The key difference with

the representation of Theorem 1 is that the sufficient statistics required to compute optimal taxes

are now based on the Pareto coefficients of income, consumption and savings conditional on the

entire prior sequence of types, or equivalently the entire earnings history. Just as age-dependence

alters the level of Pareto coefficients in Section 5.3, conditioning on past income histories further

refines and reduces the within-cohort measures of inequality, thus resulting in lower levels of optimal

income and savings taxes at the top.

Conclusion

This paper argues that labor income and savings taxes cannot be studied in isolation; they form

instead an optimal policy mix that must be characterized jointly. Doing so leads to a stark tradeoff

between raising one tax instrument versus the other. If the marginal rate of substitution between

consumption and saving is homogeneous across agents, it is optimal to leave savings undistorted, as

is well known since Atkinson and Stiglitz (1976), but also to set the level of the labor income tax rate

at the static optimum given by Saez (2001). Away from this joint benchmark, it is optimal to raise

(resp., lower) the savings tax rate above zero and simultaneously reduce (resp., increase) the labor

21Equation (5.4) can equivalently be written as UC (r) = {βR/ (1 + τS (r))}E[vC2 (r2) · M (r2)]/E[M (r2)], where
M (r2) = (1/vC2 (r2)) · exp(

� r2
0 (vC2r (r′) /vC2 (r′))dr′). In this representation, M (r2) represents the type-contingent

returns to savings that are required to preserve incentive compatibility of a small perturbation to consumption-savings
decisions.

22Brendon, Hellwig, and Maideu Morera (2024) extend the present analysis to persistent productivity shocks and
arbitrary, exogenous, returns to savings and show that if shocks are persistent and agents have precautionary savings
incentives, then it is optimal to subsidize savings.
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income tax rate below the static optimum, if and only if more productive agents have a higher taste

for saving relative to current consumption. The central message of our paper is that consumption

data naturally determine the direction and the magnitude of the income and savings taxes away

from the Saez (2001) and Atkinson and Stiglitz (1976) benchmark. Our novel optimal tax formulas,

expressed in terms of the Pareto coefficients and elasticities of income and consumption, suggest

that it is optimal to shift a significant share of the burden of taxes from income to savings. Given

such crucial importance of measures of inequality and behavioral responses of consumption for

optimal taxes, we believe empirical research should devote as much attention estimating them as

has been given to their income counterparts.
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Online Appendix for
“Using Consumption Data to Derive Optimal Income and Capital Tax Rates”

Christian Hellwig and Nicolas Werquin

A Proofs and Additional Theoretical Results

A.1 Proof of Theorem 1

Proof of Proposition 1. Consider an economy with a utility function U overN goodsX1, . . . , XN ,

and suppose that for all n,

∂ ln(Un/Un+1)
∂r

≡ Unr

Un
− Un+1,r

Un+1
≤ 0.

In our baseline economy, we have N = 3, and the goods are ordered as follows: Y is indexed

by n = 1, and C (respectively, S) is indexed by n = 2 if VSr/VS − UCr/UC is positive (resp.,

negative). Consider an allocation X (r) = {Xn (r)}1≤n≤N that is locally incentive compatible and

continuously differentiable at every r. We then have

U (X (r) ; r) − U
(
X
(
r′) ; r

)
=

N∑
n=1

� r

r′
Un
(
X
(
r′′) ; r

)
X ′

n

(
r′′) dr′′

=
N∑

n=1

� r

r′

Un (X (r′′) ; r)
Un (X (r′′) ; r′′)Un

(
X
(
r′′) ; r′′)X ′

n

(
r′′) dr′′

This expression can be rewritten as

N∑
n=2

� r

r′

[ Un (X (r′′) ; r)
Un (X (r′′) ; r′′) − Un−1 (X (r′′) ; r)

Un−1 (X (r′′) ; r′′)

] N∑
k=n

Uk

(
X
(
r′′) ; r′′)X ′

k

(
r′′) dr′′

+
� r

r′

U1 (X (r′′) ; r)
U1 (X (r′′) ; r′′)

N∑
k=1

Uk

(
X
(
r′′) ; r′′)X ′

k

(
r′′) dr′′.

The single-crossing conditions imply that the term in square brackets of the last expression is

positive (respectively, negative) when r > r′′ (resp., r < r′′). Therefore, we have U (X (r)) −

U (X (r′) ; r) ≥ 0 whenever
∑N

k=n Uk (X (r′′) ; r′′)X ′
k (r′′) ≥ 0 for all n. Moreover, the local incentive

compatibility implies that
∑N

k=1 Uk (X (r′′) ; r′′)X ′
k (r′′) = 0, and therefore the above condition au-

tomatically holds for n = 1, and these conditions are all equivalent to
∑n

k=1 Uk (X (r′′) ; r′′)X ′
k (r′′) ≤

0 for all n = 1, 2, ..., N − 1. In our baseline economy, assuming wlog that VSr/VS − UCr/UC > 0,

these conditions boil down to: (i) UY (r′′)Y ′ (r′′) ≤ 0, so that Y is weakly increasing ; and (ii)
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UY (r′′)Y ′ (r′′) + UC (r′′)C ′ (r′′) ≤ 0, or equivalently −US (r′′)S′ (r′′) ≤ 0, so that S is weakly in-

creasing. (If instead if VSr/VS −UCr/UC < 0, so that good n = 2 is savings, condition (ii) becomes

(ii′) −UC (r′′)C ′ (r′′) ≤ 0, i.e., C is weakly increasing.)

Conversely, suppose that there exists an interval (r1, r2) ⊂ (0, 1) in which both Y (·) and S (·)

are strictly decreasing, and assume again wlog that VSr/VS −UCr/UC > 0. Then the same sequence

of equalities as above, combined with local incentive compatibility UC (r′′)C ′ (r′′)+VS (r′′)S′ (r′′) =

−UY (r′′)Y ′ (r′′), implies that

U (X (r2) ; r2) − U (X (r1) ; r2) =
� r2

r1

[
UC (X (r′′) ; r2)
UC (X (r′′) ; r′′) − UY (X (r′′) ; r2)

UY (X (r′′) ; r′′)

] {
−UY

(
r′′)Y ′ (r′′)} dr′′

+
� r2

r1

[
VS (X (r′′) ; r2)
VS (X (r′′) ; r′′) − UC (X (r′′) ; r2)

UC (X (r′′) ; r′′)

]
VS

(
r′′)S′ (r′′) dr′′

is strictly negative, contradicting global incentive compatibility.

Proof (and Generalization) of Proposition 2. Consider a general weighted-utilitarian social

welfare objective, with Pareto weights ω (r) ≥ 0 assigned to ranks r that satisfy E [ω] = 1. The

social planner minimizes the net present value of transfers:

K (v0) = min
{C(r),Y (r),S(r)}

� 1

0
[C (r) − Y (r) + S (r)] dr

subject to the ex-ante promise-keeping constraint

� 1

0
ω (r)W (r) dr ≥ v0

the promise-keeping constraint

W (r) = U (C (r) , Y (r) ; r) + V (S (r) ; r)

and the local incentive compatibility constraint

W ′ (r) = Ur (C (r) , Y (r) ; r) + Vr (S (r) ; r) .

If the utility promise v0 is chosen so that the net present value of transfers at the optimum equals

0, the solution to the problem corresponds to the allocation that maximizes the expected utility

of agents, subject to satisfying an aggregate break-even condition. (The problem studied in the

main body of the paper is a special case of this general formulation with ω (r) = 0 for all r > 0.)
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This is an optimal control problem with W (·) as the state variable, and C (·), Y (·), and S (·)

as controls. Defining λ, ψ (r), and ϕ (r) as the multipliers on, respectively, the ex-ante promise-

keeping constraint and the promise-keeping and local incentive compatibility constraints given r,

the Hamiltonian for this problem is given by:

H = {C (r) − Y (r) + S (r) + λ (v0 −W (r))ω (r)}

+ψ (r) {W (r) − U (C (r) , Y (r) ; r) − V (S (r) ; r)}

+ϕ (r) {Ur (C (r) , Y (r) ; r) + Vr (S (r) ; r)} .

The first-order conditions with respect to the allocations C (·), Y (·), and S (·) yield:

ψ (r) = 1
UC (r) + ϕ (r) UCr (r)

UC (r) = 1
−UY (r) + ϕ (r) UY r (r)

UY (r) = 1
VS (r) + ϕ (r) VSr (r)

VS (r) .

The first-order conditions for C (·), Y (·), and S (·) define a shadow cost of utility of agents with

rank r, ψ (r), which consists of a direct shadow cost 1/UC (r), 1/(−UY (r)), or 1/VS (r) of increasing

rank r utility through higher consumption, lower income or higher savings, and a second term that

measures how such a consumption or income increase affects Ur (r) and Vr (r) and thereby tightens

or relaxes the local incentive compatibility constraint at r by UCr(r)
UC(r) , UY r(r)

UY (r) , or VSr(r)
VS(r) . The latter

is weighted by the multiplier ϕ (r) and added to the former.

Now define

mC (r) = exp
(

−
� 1

r

UCr (r′)
UC (r′) dr

′
)
, mY (r) = exp

(
−
� 1

r

UY r (r′)
UY (r′) dr

′
)
, mS (r) = exp

(
−
� 1

r

VSr (r′)
VS (r′) dr

′
)

so that UCr (r) /UC (r) = m′
C (r) /mC (r), and analogous expressions for the other variables. Com-

bining the first two first-order conditions and rearranging terms then yields the following static

optimality condition:

1
UC (r)

τY (r)
1 − τY (r) = 1

−UY (r) − 1
UC (r) =

(
UCr (r)
UC (r) − UY r (r)

UY (r)

)
ϕ (r) ≡ A (r)ϕ (r) .

The multipliers ϕ (·) and λ are derived by solving the linear ODE ϕ′ (r) = −∂H/∂W , after substi-

tuting out ψ (r) using the first first-order condition:

ϕ′ (r) = − ∂H

∂W
= λω (r) − ψ (r) = λω (r) − 1

UC (r) − ϕ (r) UCr (r)
UC (r) ,

along with the boundary conditions ϕ (0) = ϕ (1) = 0. Substituting into the previous ODE and
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integrating out yields

ϕ (1)mC (1) − ϕ (r)mC (r) =
� 1

r

(
λω
(
r′)− 1

UC (r′)

)
mC

(
r′) dr′,

or

ϕ (r) = 1 − r

mC (r)

{
E
[ 1
UC (r′)mC

(
r′)∣∣∣∣ r′ ≥ r

]
− λE

[
ω
(
r′)mC

(
r′)∣∣ r′ ≥ r

]}
.

The boundary condition ϕ (0) = 0 then gives λ = E[mCU
−1
C ]/E [mC ω]. Therefore,

ϕ (r)
1 − r

= E
[ 1
UC (r′)

mC (r′)
mC (r)

∣∣∣∣ r′ ≥ r

]
−

E
[

1
UC(r′)

mC(r′)
mC(r)

]
E
[
ω (r′) mC(r′)

mC(r)

]E [ω (r′) mC (r′)
mC (r)

∣∣∣∣ r′ ≥ r

]
≡ BC (r)

UC (r) .

Substituting this expression into the static optimality condition then yields the first intra-temporal

optimality condition (“ABC”) τY (r)
1−τY (r) = A (r) ·BC (r).

The first-order condition for income yields an analogous ODE,

ϕ′ (r) = λω (r) − 1
−UY (r) − ϕ (r) UY r (r)

UY (r) .

Apply the same steps as above to get

ϕ (r)
1 − r

= E
[ 1

−UY (r′)
mY (r′)
mY (r)

∣∣∣∣ r′ ≥ r

]
−

E
[

1
−UY (r′)

mY (r′)
mY (r)

]
E
[
ω (r′) mY (r′)

mY (r)

] E
[
ω
(
r′) mY (r′)

mY (r)

∣∣∣∣ r′ ≥ r

]
≡ BY (r)

−UY (r) ,

and λ = E[mY (−U−1
Y )]/E [mY ω]. We obtain the second intra-temporal optimality condition

(“ABC”) τY (r) = A (r) · BY (r), and setting BY (r) / (−UY (r)) equal to BC (r) /UC (r), the re-

distributional arbitrage condition (equation (24)):

1 − τY (r) = BY (r)
BC (r) .

Finally, we solve for the inter-temporal optimality condition. Combining the ODE ϕ′ (r) =

−∂H/∂W = λω (r) − ψ (r) with the first-order condition for savings yields

ϕ′ (r) = λω (r) − 1
VS (r) − ϕ (r) VSr (r)

VS (r) .
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The previous ODE can be integrated and solved along the same lines as above to find

ϕ (r)
1 − r

= E
[ 1
VS (r′)

mS (r′)
mS (r)

∣∣∣∣ r′ ≥ r

]
−

E
[

1
VS(r′)

mS(r′)
mS(r)

]
E
[
ω (r′) mS(r′)

mS(r)

]E [ω (r′) mS (r′)
mS (r)

∣∣∣∣ r′ ≥ r

]
≡ BS (r)

VS (r) ,

with λ = E[mS/VS ]/E [mS ω]. Equating this last expression to BC (r) /UC (r) then yields the

arbitrage representation for the savings wedge (equation (25)):

1 + τS (r) ≡ VS (r)
UC (r) = BS (r)

BC (r) .

We finally show that if savings are unbounded above and limr→1 τY (r) < 1, then optimal allo-

cations satisfy the Inada condition limr→1 UC (r) = limr→1 (−UY (r)) = limr→1 VS (r) = 0. The last

equality follows from the Inada condition on V . Moreover, limr→1 (−UY (r)) = limr→1
BY (r)
BS(r)VS (r).

It is easy to check that limr→1BS (r) ≥ 1 and limr→1BY (r) ≤ 1, and hence limr→1 (−UY (r)) ≤

limr→1 VS (r) = 0. Finally, limr→1 UC (r) = limr→1
(−UY (r))
1−τY (r) = 0.

Proof of the Atkinson and Stiglitz (1976) Theorem. The theorem of Atkinson and Stiglitz

(1976) and its converse follow easily from the previous proof: The optimal savings wedge is τS (r)

is positive (resp., negative) for all r if and only if VSr (r) /VS (r) −UCr (r) /UC (r) is positive (resp.,

negative) for all r. To see this, recall that

1
VS (r) + ϕ (r) VSr (r)

VS (r) = 1
UC (r) + ϕ (r) UCr (r)

UC (r) ,

with ϕ (r) > 0 for all r. Since UCr (r) /UC (r) −VSr (r) /VS (r) has a constant sign, we get UC (r) ⋚

VS (r), or τS (r) ⋛ 0 for all r, if and only if UCr (r) /UC (r) − VSr (r) /VS (r) ⋚ 0 for all r. More

generally, consider a framework with multiple goods as in Section 5.2. For any two goods m < n,

suppose that the marginal rate of substitution Um (r) /Un (r) is weakly increasing in r, so that

Un (r) /Un (r′) ≥ Um (r) /Um (r′) for all r′ > r. Equivalently, Umr (r) /Um (r) ≥ Unr (r) /Un (r) for

all r. The first-order conditions of the planner’s problem read

pm

Um (r) = pn

Un (r) + ϕ (r)
(
Unr (r)
Un (r) − Umr (r)

Um (r)

)
,

with ϕ (r) > 0 is the Lagrange multiplier on the local incentive constraint. We immediately obtain

that τm,n (r) = 0 for all r if and only if the MRS Um (r) /Un (r) is uniform across types. More

generally, we have Um (r) /Un (r) < pm/pn, so that τm,n (r) > 0 iff Unr (r) /Un (r) > Umr (r) /Um (r).
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Proof of Proposition 3. We now rewrite the optimality conditions derived above in terms of

sufficient statistics. Totally differentiating UC (r), −UY (r), and VS (r) yields respectively

d
drUC (r)
UC (r) = UCC (r)

UC (r) C
′ (r) + UCY (r)

UC (r) Y
′ (r) + UCr (r)

UC (r) ,

d
dr (−UY (r))

−UY (r) = UCY (r)
UY (r) C

′ (r) + UY Y (r)
UY (r) Y

′ (r) + UY r (r)
UY (r) ,

d
drVS (r)
VS (r) = VSS (r)

VS (r) S
′ (r) + VSr (r)

VS (r) .

Using the two first-order conditions −UY /UC = 1 − τY and VS/UC = 1 + τS , and noting that

CUCY / (−UY ) = sCζCY , we obtain that these three equations can be rewritten in terms of our

elasticities and Pareto coefficients as follows:

−
d ln UC(r)
d ln(1−r)
1 − r

= − ζC (r)
(1 − r) ρC (r) + ζCY (r)

(1 − r) ρY (r) + UCr (r)
UC (r) ,

−
d ln(1−τY (r))

d ln(1−r) + d ln UC(r)
d ln(1−r)

1 − r
= −sC (r) ζCY (r)

(1 − r) ρC (r) + ζY (r)
(1 − r) ρY (r) + UY r (r)

UY (r) ,

−
d ln(1+τS(r))

d ln(1−r) + d ln UC(r)
d ln(1−r)

1 − r
= − ζS (r)

(1 − r) ρS (r) + VSr (r)
VS (r) .

It follows that

UY r

UY
− UCr

UC
= − ζC

(1 − r) ρC
− ζY

(1 − r) ρY
+
(

1 + sCρY

ρC

)
ζCY

(1 − r) ρY
− τ ′

Y

1 − τY

VSr

VS
− UCr

UC
= − ζC

(1 − r) ρC
+ ζS

(1 − r) ρS
+ ζCY

(1 − r) ρY
+ τ ′

S

1 + τS
.

Moreover, let

MC (r) = 1
UC (r)e

−
� 1

r

UCr(r′)
UC(r′) dr′

, MY (r) = 1
−UY (r)e

−
� 1

r

UY r(r′)
UY (r′) dr′

, MS (r) = 1
VS (r)e

−
� 1

r

VSr(r′)
VS(r′) dr′

.

48



We have

MC (r) = 1
UC (r)e

−
� 1

r

d
dr

UC(r′)
UC(r′) dr′

e

� 1
r

{
−ζC(r′) C′(r′)

C(r′) +ζCY (r′) Y ′(r′)
Y (r′)

}
dr′

= e

� 1
r

{
− ζC(r′)

ρC(r′) + ζCY (r′)
ρY (r′)

}
dr′

1−r′
,

MY (r) = 1
−UY (r)e

−
� 1

r

d
dr (−UY (r′))

−UY (r′) dr′

e

� 1
r

{
ζY (r′) Y ′(r′)

Y (r′) −sC(r′)ζCY (r′) C′(r′)
C(r′)

}
dr′

= e

� 1
r

{
ζY (r′)
ρY (r′) − sC(r′)ζCY (r′)

ρC(r′)

}
dr′

1−r′
,

MS (r) = 1
VS (r)e

−
� 1

r

d
dr

VS(r′)
VS(r′) dr′

e
−

� 1
r ζS(r′) S′(r′)

S(r′) dr′

= e
−

� 1
r

ζS(r′)
ρS(r′)

dr′
1−r′

.

This leads to equation (23), along with the corresponding expressions in Section 4.4.

Finally, we have limr→1
1−r

UC(r) = 0 from the boundary condition for tax distortions at the

top. This leaves two possibilities. First, if limr→1
dUC(r)
d(1−r) < ∞, then limr→1

d ln UC(r)
d ln(1−r) = 0, i.e.,

the inverse marginal utilities necessarily have a thin upper tail. Second, if limr→1
dUC(r)
d(1−r) = ∞,

there exists a sequence {rn} −→
n→∞

1, such that UC (rn) > UC (1) + (1 − rn) dUC(r)
d(1−r)

∣∣∣
r=rn

, where

UC (1) = limr→1 UC (r). Dividing by UC (rn) and taking the limit as n → ∞ implies that

lim
r→1

d lnUC (r)
d ln (1 − r) ≤ 1 − lim

r→1

UC (1)
UC (rn) .

Hence if UC (1) > 0, we obtain limr→1
d ln UC(r)
d ln(1−r) = 0, whereas if UC (1) = 0, limr→1

d ln UC(r)
d ln(1−r) ≤ 1.

Furthermore, if it were the case that limr→1
d ln UC(r)
d ln(1−r) = 1, then there would exist A ̸= 0, such that

UC (r) = A (1 − r) + o
(
(1 − r)2

)
. But then limr→1

1−r
UC(r) = 1

A ̸= 0, which would violate the bound-

ary condition. To summarize, limr→1
d ln UC(r)
d ln(1−r) is bounded above by 1 (imposing a lower bound on the

Pareto tail coefficient of inverse marginal utilities) whenever UC (1) = 0, and limr→1
d ln UC(r)
d ln(1−r) = 0

(implying that inverse marginal utilities are thin-tailed), whenever UC (1) > 0.

Proof of Theorem 1. Using the expressions derived in the previous proof, we can write

lim
r→1

τY (r) = 1 − lim
r→1

E
[

MY (r′)
MY (r)

∣∣∣ r′ ≥ r
]

E
[

MC(r′)
MC(r)

∣∣∣ r′ ≥ r
] = 1 − lim

r→1

E
[
e

−
� r′

r ζY
Y ′(r′′)
Y (r′′) dr′′+

� r′
r sCζCY

C′(r′′)
C(r′′) dr′′

∣∣∣∣∣ r′ ≥ r

]

E
[
e

� r′
r ζC

C′(r′′)
C(r′′) dr′′−

� r′
r ζCY

Y ′(r′′)
Y (r′′) dr′′

∣∣∣∣∣ r′ ≥ r

]

= 1 − lim
r→1

E
[(

Y (r′)
Y (r)

)−ζY
(

C(r′)
C(r)

)sCζCY

∣∣∣∣ r′ ≥ r

]
E
[(

C(r′)
C(r)

)ζC
(

Y (r′)
Y (r)

)−ζCY

∣∣∣∣ r′ ≥ r

] .

For the numerator, defineX (r) ≡ (Y (r))−ζY (C (r))sCζCY . We wish to compute E [X (r′) /X (r) |r′ ≥ r],

given that C (r), Y (r), and X (r) are perfectly co-monotonic and C and Y are distributed according
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to a Pareto distribution with tail coefficients ρC and ρY . We get

− d lnX (r)
d ln (1 − r) = (1 − r) X

′ (r)
X (r) = −ζY (1 − r) Y

′ (r)
Y (r) + sCζCY (1 − r) C

′ (r)
C (r) = − ζY

ρY
+ sCζCY

ρC
,

so that X (r) follows a Pareto distribution with tail coefficient 1/[−ζY /ρY + sCζCY /ρC ]. This

implies

lim
r→1

E
[(

Y (r′)
Y (r)

)−ζY
(
C (r′)
C (r)

)sCζCY
∣∣∣∣∣ r′ ≥ r

]
=

[
1 + ζY

ρY
− sCζCY

ρC

]−1

Along the same lines,

lim
r→1

E
[(

C (r′)
C (r)

)ζC
(
Y (r′)
Y (r)

)−ζCY
∣∣∣∣∣ r′ ≥ r

]
=

[
1 − ζC

ρC
+ ζCY

ρY

]−1

and therefore

lim
r→1

τY (r) = 1 −
1 − ζC

ρC
+ ζCY

ρY

1 + ζY
ρY

− sCζCY
ρC

.

At the optimal allocation, we must have ζC/ρC < 1 + ζCY /ρY . It then follows automatically that

limr→1 τY (r) < 1. To prove the second part of Theorem 1, follow analogous steps as above to get

lim
r→1

BS (r) ≡ lim
r→1

E
[
MS (r′)
MS (r)

∣∣∣∣ r′ ≥ r

]
= lim

r→1
E
[
e

� r′
r ζS

S′(r′′)
S(r′′) dr′′

∣∣∣∣∣ r′ ≥ r

]

= lim
r→1

E
[(

S (r′)
S (r)

)ζS
∣∣∣∣∣ r′ ≥ r

]
=
[
1 − ζS

ρS

]−1

for ζS/ρS < 1. Combining this result with the previous expressions, we get

lim
r→1

τS (r) =
1 − ζC

ρC
+ ζCY

ρY

1 − ζS
ρS

− 1.

This concludes the proof.

A.2 Proof of Corollary 1

Relationship between Preference and Behavioral Elasticities. Consider a labor income tax

schedule TY (Y ) and a savings tax schedule TS (S). For ease of notation, assume that the tax sched-

ules are locally linear in the top bracket, T ′′
Y (Y ) = T ′′

S (S) = 0. A perturbation of the total tax

payment by ∂TY and the marginal tax rate by ∂T ′
Y leads to behavioral responses (∂Y, ∂C, ∂S) that
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satisfy the perturbed first-order conditions

−UY [C + ∂C, Y + ∂Y ; r]
UC [C + ∂C, Y + ∂Y ; r] = 1 − T ′

Y (Y ) − ∂T ′
Y

and
V ′ [S + ∂S]

UC [C + ∂C, Y + ∂Y, r] = 1 + T ′
S (S)

with

∂C +
(
1 + T ′

S (S)
)
∂S =

(
1 − T ′

Y (Y )
)
∂Y − ∂TY .

We obtain the responses of income, consumption and savings by taking first-order Taylor expansions

of the two perturbed FOCs around 0:

ζ̂Y
∂Y

Y
+ ζ̂C

∂C

C
= − ∂T ′

Y

1 − T ′
Y

and

ζ̂S
∂Y

Y
−
[
sS ζ̂C + sC ζ̂S

] ∂C
C

= ζS
∂TY

(1 − T ′
Y )Y

where we let ζ̂C = ζC − sCζCY , ζ̂Y = ζY − ζCY , ζ̂S = ζS + sSζCY and sC = C/ (1 − T ′
Y )Y ,

sS = (1 + T ′
S)S/ ((1 − T ′

Y )Y ). Note that as r → 1, so that Y, S → ∞ and T ′
Y , T

′
S converge to

constants, we have sC + sS → 1. Solving this system leads to

∂Y

Y
= −ζH

Y

∂T ′
Y

1 − T ′
Y

+ ζI
Y

∂TY

(1 − T ′
Y )Y ,

∂C

C
= −ζH

C

∂T ′
Y

1 − T ′
Y

− ζI
C

∂TY

(1 − T ′
Y )Y ,

∂S

S
= −ζH

S

∂T ′
Y

1 − T ′
Y

− ζI
S

∂TY

(1 − T ′
Y )Y ,

with

ζH
Y = 1

ζ̂Y + ζ̂C ζ̂S

sS ζ̂C+sC ζ̂S

, ζI
Y =

ζ̂CζS

sS ζ̂C+sC ζ̂S

ζ̂Y + ζ̂C ζ̂S

sS ζ̂C+sC ζ̂S

,

and

ζH
C =

ζ̂S

sS ζ̂C+sC ζ̂S

ζ̂Y + ζ̂C ζ̂S

sS ζ̂C+sC ζ̂S

, ζI
C =

ζ̂Y ζS

sS ζ̂C+sC ζ̂S

ζ̂Y + ζ̂C ζ̂S

sS ζ̂C+sC ζ̂S

.

In particular, when sC → 1 and sS → 0, we have ζH
Y = ζH

C = 1/
(
ζ̂Y + ζ̂C

)
, and ζI

Y = 1 − ζI
C =

ζ̂C/
(
ζ̂Y + ζ̂C

)
. When sC → 0 and sS → 1, we have ζH

Y = 1
ζY +ζS

, ζI
Y = ζS

ζY +ζS
, ζH

C = ζS+ζCY
ζC

ζH
Y ,
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and ζI
C = ζY −ζCY

ζC
ζI

Y . Moreover, the budget constraint C + S + TS (S) = Y − TY (Y ) implies that:

sCζ
H
C + (1 − sC) ζH

S = ζH
Y

and

1 − sCζ
I
C − (1 − sC) ζI

S = ζI
Y .

Conversely, the primitive elasticities ζ̂C , ζ̂Y , ζCY , ζS are given in terms of the behavioral responses

ζH
Y , ζ

I
Y , ζ

H
C , ζ

I
C via

ζ̂Y = 1
ζH

Y + ζI
Y ζ

H
C /ζ

I
C

, ζ̂C = ζI
Y

ζI
C

ζ̂Y , ζCY = ζH
C ζ̂C − ζI

Y

ζH
Y − sCζH

C

, ζS = (1 − sC) ζI
Y

ζH
Y − sCζH

C

.

Finally, the Slutsky equations read

∂Y

∂ (1 − T ′
Y ) = ∂Y

∂ (1 − T ′
Y )

∣∣∣∣∣
U

− ∂Y

∂TY
Y,

∂C

∂ (1 − T ′
Y ) = ∂C

∂ (1 − T ′
Y )

∣∣∣∣∣
U

− ∂C

∂TY
Y.

Therefore, using the above definitions of the substitution and income effects ζH
C = ∂ lnC/∂ ln (1 − T ′

Y )|U ,

ζI
C = − (1/sC) ∂C/∂TY and denoting by ζM

Y , ζM
C the Marshallian (uncompensated) elasticities, we

have ζM
Y = ζH

Y − ζI
Y and ζM

C = ζH
C + ζI

C .

First-Stage and Second-Stage Elasticities. The FOC to the problem maxY U (Y − TY (Y ) , Y ; r)

reads (1 − τY ) UM + UY = 0. We can thus derive the impact of a tax reform (∂TY , ∂τY ) as follows:

UM∂τY = (1 − τY ) [((1 − τY ) UMM + UMY ) ∂Y − UMM∂TY ]

+ [((1 − τY ) UMY + UY Y ) ∂Y − UMY ∂TY ]

Rearranging terms leads to

∂Y

Y
= −UY /Y

(UY /UM )2 UMM − 2 (UY /UM ) UMY + UY Y

∂τY

1 − τY

+ (UY /UM )2 UMM − (UY /UM ) UMY

(UY /UM )2 UMM − 2 (UY /UM ) UMY + UY Y

∂TY

(1 − τY )Y .
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Thus, we obtain

ζH
Y = UY /Y

(UY /UM )2 UMM − 2 (UY /UM ) UMY + UY Y

= 1
−MUMM

UM

(1−τY )Y
Y −TY (Y ) − 2Y UMY

UM
+ Y UY Y

UY

ζI
Y = (UY /UM )2 UMM − (UY /UM ) UMY

(UY /UM )2 UMM − 2 (UY /UM ) UMY + UY Y

=
−MUMM

UM

(1−τY )Y
Y −TY (Y ) − Y UMY

UM

−MUMM
UM

(1−τY )Y
Y −TY (Y ) − 2Y UMY

UM
+ Y UY Y

UY

.

Hence, using the fact that, for top earners, Y UY
MUM

= (1−τY (Y ))Y
Y −TY (Y ) → 1 as the marginal tax rate τY (Y )

converges to a constant strictly below 1,

ζH
Y = 1

ζ̃M − 2ζ̃MY + ζ̃Y

, ζI
Y = ζ̃M − ζ̃MY

ζ̃M − 2ζ̃MY + ζ̃Y

.

Therefore,
1 − ζI

Y

ζH
Y

= ζ̃Y − ζ̃MY , and ζI
Y

ζH
Y

= ζ̃M − ζ̃MY .

Next, we have U (M,Y ; r) = U (M − S∗ − TS (S∗) , Y ; r)+V (S∗, r), where S∗ is the solution to the

first-order condition (1 + τS)UC (M − S∗ − TS (S∗) , Y ; r) = VS (S∗, r). By the envelope theorem,

we have

UM (M,Y ; r) = UC (C, Y ; r) ,

where C = M − S∗ − TS (S∗). Differentiating this expression leads to

UMM (M,Y ; r) =
[
1 − (1 + τS) ∂S

∗

∂M

]
UCC (C, Y ; r) ,

so that

MUMM

UM
=
[
1 − (1 + τS) ∂S

∗

∂M

]
Y − TY (Y )

C

CUCC

UC
= −

[
1 − (1 + τS) ∂S

∗

∂M

]
ζC

sC
.

Differentiating the FOC leads to (1 + τS)
[
1 − (1 + τS) ∂S∗

∂M

]
UCC = VSS

∂S∗

∂M , or

∂S∗

∂M
= UCC

(1 + τS)UCC + 1
(1+τS)VSS

= 1
1 + τS

·
(1+τS)S

C
CUCC

UC

(1+τS)S
C

CUCC
UC

+ SVSS
VS

= 1
1 + τS

·
1−sC

sC
ζC

1−sC
sC

ζC + ζS

.

Substituting into the previous expression gives

ζ̃M = ζS
1−sC

sC
ζC + ζS

ζC

sC
= 1

1−sC
ζS

+ sC
ζC

.
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Similar calculations easily lead to

1
ζ̃M

= sC

ζC
+ 1 − sC

ζS
, ζ̃Y = ζY −

(
1 − sC

ζ̃M

ζC

)
sC

ζC
ζ2

CY , ζ̃MY = sC
ζ̃M

ζC
ζCY . (29)

Note that, when sC = 1 (Case 1 ), the first-stage elasticities are equal to their primitive coun-

terparts, i.e., ζ̃M = ζC , ζ̃MY = ζCY , and ζ̃Y = ζY . Next, using the map derived above between

preference and behavioral elasticities, we have

ζI
Y

ζH
S

=
ζ̂CζS

sS ζ̂C+sC ζ̂S

ζ̂C

sS ζ̂C+sC ζ̂S

= ζS

and
ζH

Y

ζH
C

= sS ζ̂C + sC ζ̂S

ζ̂S

= (1 − sC) ζC + sCζS

ζS + (1 − sC) ζCY

so that, using the identity ζH
Y = sCζ

H
C + (1 − sC) ζH

S

ζC

ζS
= 1

1 − sC

ζH
Y

ζH
C

+ ζH
Y

ζH
C

ζCY

ζS
− sC

1 − sC
= ζH

S

ζH
C

+ ζH
Y

ζH
C

ζCY

ζS
,

or, alternatively,

ζC

ζS
=
[

sC

1 − sC
+ ζH

S

ζH
C

] [
1 + (1 − sC) ζCY

ζS

]
− sC

1 − sC
= ζH

S

ζH
C

[1 + (1 − sC) ζCY /ζS

1 − sCζCY /ζC

]
.

We can also write
ζC

ζS
= ζI

S

ζI
C

[
1 −

(
1 − sC

ζC
ζCY

)
ζF

Y ζCY

]
where ζF

Y is the Frisch elasticity of labor supply, which satisfies 1/ζF
Y = ζ̃Y − ζ̃2

MY /ζ̃M = ζY −

sCζ
2
CY /ζC . To summarize, we have shown that

ζS = ζI
Y

ζH
S

, and ζC = ζI
Y

ζH
C

+ ζH
Y

ζH
C

ζCY .

Finally, the elasticity of intertemporal substitution is defined by

ζIS ≡ − ∂ ln (S/C)
∂ ln (1 + τS)

∣∣∣∣
Y,U constant

.

The expenditure minimization problem minC,S C + (1 + τS)S s.t. U (C, Y ) + V (S) ≥ Ū yields the

optimality condition 1 + τS = VS/UC along with the constant utility constraint. Differentiating
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1 + τS = VS/UC leads to

∂ (1 + τS)
1 + τS

= −ζS
∂S

S
+ ζC

∂C

C

Differentiating U (C, Y ) + V (S) = Ū yields UC∂C = −VS∂S, and therefore

∂C

C
= −1 − sC

sC

∂S

S

Substituting the latter into the former yields

∂ (1 + τS)
1 + τS

= −∂S

S

1
sC

[(1 − sC) ζC + sCζS ] ,

and therefore

ζIS =
∂C
C − ∂S

S
∂(1+τS)

1+τS

∣∣∣∣∣∣
Y,U constant

= 1
(1 − sC) ζC + sCζS

,

which is the expression given in the text.

Proof (and Generalization) of equation (13). We can rewrite the income tax formula as

1 − τY = 1 − ζC/ρC + ζCY /ρY

1 + ζY /ρY − sCζCY /ρC
= (1 − ζS/ρS) (1 + τS)

1 + ζY /ρY − sCζCY /ρC
.

The previous proof, along with the equalities ζH
Y = sCζ

H
C + (1 − sC) ζH

S and ρS
ρY

= sC
ρS
ρC

+ 1 − sC ,

imply that the numerator equals

(
1 − ζS

ρS

)
(1 + τS) = 1 − ζI

Y

ρCζH
C

+
(

1 − ρSζ
H
S

ρCζH
C

)
(1 − sC) ζCY

ρS
.

Now, using (1 − sC) 1
ρS

= 1
ρY

−sC
1

ρC
and (1−sC)ζH

S

ρCζH
C

= ζH
Y

ρCζH
C

−sC
1

ρC
, we have that

(
1 − ρSζH

S

ρCζH
C

)
(1 − sC) ζCY

ρS
=

ζCY
ρY

(
1 − ρY ζH

Y

ρCζH
C

)
, and therefore

(
1 − ζS

ρS

)
(1 + τS) = 1

ρY ζH
Y

[
ρY ζ

H
Y − ζI

Y +
(
ζI

Y + ζH
Y ζCY

)(
1 − ρY ζ

H
Y

ρCζH
C

)]
.

For the denominator, we write

ζY = ζ̃Y + sC
ζ2

CY

ζC
− s2

C

ζ2
CY

ζ2
C

ζ̃M = 1 − ζI
Y

ζH
Y

+ sC
ζ2

CY

ζC
+ sC

ζCY

ζC

ζI
Y

ζH
Y
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so that

1 + ζY

ρY
− sC

ζCY

ρC
=1 + 1 − ζI

Y

ρY ζH
Y

+ sC
ζCY

ζC

(
ζI

Y + ζH
Y ζCY

ρY ζH
Y

− ζC

ρC

)

=1 + 1 − ζI
Y

ρY ζH
Y

+ sC
ζCY

ζC

ζI
Y + ζH

Y ζCY

ρY ζH
Y

(
1 − ρY ζ

H
Y

ρCζH
C

)
.

Combining these expressions and rearranging terms yields

τY =
1 −

(
1 − sC

ζCY
ζC

) (
ζI

Y + ζH
Y ζCY

)(
1 − ρY ζH

Y

ρCζH
C

)
1 + ρY ζH

Y − ζI
Y + sC

ζCY
ζC

(
ζI

Y + ζH
Y ζCY

) (
1 − ρY ζH

Y

ρCζH
C

) .

Using ζC =
(
ζI

Y + ζCY ζ
H
Y

)
/ζH

C to substitute for ζC in this expression, and the relationship ζH
Y −

sCζ
H
C = (1 − sC) ζH

S , we can rewrite this equation as

τY =
1 −

{
ζI

Y + (1 − sC) ζH
S ζCY

}(
1 − ρY ζH

Y

ρCζH
C

)
1 − ζI

Y + ρY ζH
Y + sCζH

C ζCY

(
1 − ρY ζH

Y

ρCζH
C

) . (30)

This expression generalizes equation (13) to the case ζCY ̸= 0. If sC = 1, then ρC = ρY and

ζH
C = ζH

Y and we recover τY = τSaez
Y . If sC = 0, then

τY = τSaez
Y

[
1 −

(
ζI

Y + ζH
Y ζCY

)(
1 − ρY ζ

H
Y

ρCζH
C

)]
, (31)

so that the last term serves as a downwards or upwards adjustment factor relative to τSaez
Y ; for

general sC , this adjustment factor represents a lower bound on the departure of τY from τSaez
Y .

Proof (and Generalization) of equation (14). Differentiating the budget constraint C (r) +

S (r)+TS (S (r)) = Y (r)−TY (Y (r)) yields C ′ (r)+S′ (r) (1 + τS (r))+Y ′ (r) (1 − τY (r)) or, after

dividing by Y (r) (1 − τY (r)):
1 − sC (r)
ρS (r) + sC (r)

ρC (r) = 1
ρY (r) .

We work with the limit as r → 1: (1 − sC) /ρS + sC/ρC = 1/ρY . Now, the optimal savings tax

formula reads

τS = ζS/ρS − ζC/ρC + ζCY /ρY

1 − ζS/ρS
= ζS/ρS

1 − ζS/ρS
·
[
ζS/ρS − ζC/ρC + ζCY /ρY

ζS/ρS

]
.
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But recall that

ζC

ζS
=ζH

S

ζH
C

+ ζH
Y

ζH
C

ζCY

ζS

and hence

τS = ζS/ρS

1 − ζS/ρS

[
1 − ρS

ρC

(
ζH

S

ζH
C

+ ζH
Y

ζH
C

ζCY

ζS

)
+ ζCY /ρY

ζS/ρS

]

= ζS/ρS

1 − ζS/ρS

[
1 − ρSζ

H
S

ρCζH
C

+ ζCY /ρY

ζS/ρS

(
1 − ρY ζ

H
Y

ρCζH
C

)]
.

Substituting ζH
Y = sCζ

H
C +(1 − sC) ζH

S and ρS
ρY

= sC
ρS
ρC

+1−sC yields ρS
ρY

− ρS
ρC

ζH
Y

ζH
C

= (1 − sC)
(

1 − ρSζH
S

ρCζH
C

)
and therefore, after substituting ζS = ζI

Y /ζ
H
S , we obtain

τS = ζI
Y

ρSζH
S − ζI

Y

(
1 − ρSζ

H
S

ρCζH
C

)[
1 + (1 − sC) ζCY

ζS

]
.

Using ζS = ζI
Y /ζ

H
S to substitute for ζS in this expression, we can rewrite this equation as

τS = ζI
Y + (1 − sC) ζCY ζ

H
S

ρSζH
S − ζI

Y

(
1 − ρSζ

H
S

ρCζH
C

)
. (32)

This expression generalizes equation (14) to the case ζCY ̸= 0.

Proof (and Generalization) of equation (15). We have shown that τS > 0 iff ζH
S /ζ

H
C <

ρC/ρS . If ζCY = 0, then we have ζH
S /ζ

H
C = ζC/ζS , so that the condition can be rewritten as

ζC

ζS
<
ρC

ρS
.

If in addition sC = 0, we can use the expressions ζC = 1/ζIS and ζS = ζI
Y /ζ

H
Y to rewrite this

condition as

ζIS >
ρY

ρC

ζH
Y

ζI
Y

.

Note that, in the other polar case sC = 1, we would get a lower bound on the EIS: we would now

have ζS = 1/ζIS and ζC = ζI
Y /ζ

H
Y , and hence ζIS < (ρY /ρS)

(
ζH

Y /ζ
I
Y

)
. More generally, consider

arbitrary ζCY and sC . Using the expressions ζS = ζI
Y /ζ

H
S and ζC = ζI

Y /ζ
H
C + (ζH

Y /ζ
H
C )ζCY , the
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condition ζH
S /ζ

H
C < ρC/ρS can be rewritten as

ζC − ζH
Y

ζH
C

ζCY <
ρC

ρS
ζS .

Now recall that the EIS is given by ζIS = 1/ [sCζS + (1 − sC) ζC ]. If sC < 1, we can substitute for

ζC in the previous expression to get the equivalent condition

1
(1 − sC)

[ 1
ζIS

− sCζS

]
<
ρC

ρS
ζS + ζH

Y

ζH
C

ζCY ,

which can be restated, using (1 − sC) 1
ρS

= 1
ρY

− sC
1

ρC
and ζS = ζI

Y /ζ
H
S , as

ζIS >

[
ρC

ρY

ζI
Y

ζH
S

+ (1 − sC) ζ
H
Y

ζH
C

ζCY

]−1

. (33)

Analogously, if sC > 0, we can substitute for ζS to get

ζC <
ρC

ρS

1
sC

[ 1
ζIS

− (1 − sC) ζC

]
+ ζH

Y

ζH
C

ζCY ,

which can be restated, using ζC = ζI
Y /ζ

H
C + (ζH

Y /ζ
H
C )ζCY , as

ζIS <

[
ρS

ρY

ζI
Y

ζH
C

+ (1 − sC) ζ
H
Y

ζH
C

ζCY

]−1

. (34)

Thus, if sC = 0, we obtain a lower bound on ζIS above which savings should be taxed; this condition

coincides with (15) if ζCY = 0, since we then have ζH
S = ζH

Y . If sC = 1, we obtain an upper bound

on ζIS that generalizes the expression obtained above. If sC ∈ (0, 1), both of these conditions are

equivalent and can be used interchangeably.

A.3 Proof and Generalization of Theorem 2

Proof of Theorem 2. Suppose that ζI
Y + ζH

Y ζCY is strictly positive (i.e., the first-period utility

function is not quasilinear in consumption). Then expression (31) implies that τY < τSaez
Y if and

only if ρY ζH
Y

ρCζH
C

< 1. Moreover, equation (32) implies that τS > 0 if and only if ρSζH
S

ρCζH
C

< 1. Now, recall

that sCζ
H
C +(1 − sC) ζH

S = ζH
Y and (1 − sC) /ρS +sC/ρC = 1/ρY . Therefore, we have ρSζ

H
S < ρCζ

H
C

if and only if
1

(1 − sC) 1
ρS

[
ζH

Y − sCζ
H
C

]
< ρCζ

H
C ,
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or ζH
Y − sCζ

H
C < ρCζ

H
C [1/ρY − sC/ρC ], which in turn reduces to ρY ζ

H
Y < ρCζ

H
C . This concludes

the proof.

Generalization of Corollary 1 and Theorem 2 to Non-Separable Preferences. Consider

first the outer problem: maxY U (M,Y ) s.t. M = Y − TY (Y ). Defining ζ̃Y , ζ̃M , ζ̃MY as before, we

obtain
ζI

Y

ζH
Y

= ζ̃M − ζ̃MY and 1 − ζI
Y

ζH
Y

= ζ̃Y − ζ̃MY .

Second, the problem minC,S C + S + TS (S) s.t. U (C, S, Y ) ≥ Ū yields the following expression for

the elasticity of intertemporal substitution:

ζIS = ∂ log (C/S)
∂ log (1 + τS)

∣∣∣∣
U(C,S,Y )=Ū

= 1
sC (ζS + ζCS) + (1 − sC) (ζC + ζSC)

where ζCS = UCSS/UC and ζSC = UCSC/US = ζCS · sC/ (1 − sC). Third, the inner problem

U (M,Y ) = maxC,S U (C, S, Y ) s.t. C + S + TS (S) = M leads to

ζ̃Y = ζY − sC (1 − sC) (ζCY − ζSY )2 ζIS

ζ̃M = (ζCζS − ζSCζCS) ζIS

ζ̃MY = ζCY − (1 − sC) (ζC + ζSC) (ζCY − ζSY ) ζIS .

Note that, as sC → 1, we have ζ̃Y → ζY , ζIS → ζ−1
S (it must be that ζCS → 0), ζ̃M → ζC and

ζ̃MY → ζCY . As sC → 0, we have ζ̃Y → ζY , ζIS → ζ−1
C (it must be that ζSC → 0), ζ̃M → ζS and

ζ̃MY → ζSY . Fourth, the Hicksian demand functions for Y , S, and C are defined by the first-order

conditions −UY = (1 − τY )UC and US = (1 + τS)UC and the equal utility constraint U (C, S, Y ) =

Ū . Let ζH
Y , ζH

C , and ζH
S represent the compensated elasticities of earnings, consumption, and savings

with respect to the retention rate 1−τY . Perturbing the income tax by ∂ (1 − τY ) yields the following

perturbations to the first-order conditions:

(C-Y FOC): 1 = (ζY − ζCY ) ζH
Y + (ζC − sCζCY ) ζH

C − (ζCS + (1 − sC) ζSY ) ζH
S

(C-S FOC): 0 = (ζSY − ζCY ) ζH
Y + (ζC + ζSC) ζH

C − (ζS + ζCS) ζH
S

(Equal Utility constraint): ζH
Y = sCζ

H
C + (1 − sC) ζH

S .

Combining the second and third conditions yields

ζH
C

ζH
Y

= (ζS + ζCS + (1 − sC) (ζCY − ζSY )) ζIS and ζH
S

ζH
Y

= (ζC + ζSC − sC (ζCY − ζSY )) ζIS .
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The equation ζI
Y /ζ

H
Y = ζ̃M − ζ̃MY can be written in the following two equivalent ways:

ζI
Y

ζH
Y

= ζCζS − ζSCζCS + (1 − sC) (ζC + ζSC) (ζCY − ζSY )
sC (ζS + ζCS) + (1 − sC) (ζC + ζSC) − ζCY

and ζI
Y

ζH
Y

= ζCζS − ζSCζCS − sC (ζS + ζCS) (ζCY − ζSY )
sC (ζS + ζCS) + (1 − sC) (ζC + ζSC) − ζSY .

Using the previous results to substitute for ζS in the first expression and for ζC in the second one

yields respectively

ζC = ζI
Y + ζCY ζ

H
Y + ζCSζ

H
S

ζH
C

and ζS = ζI
Y + ζSY ζ

H
Y + ζSCζ

H
C

ζH
S

.

In addition, using the definitions of ζ̃Y and ζ̃MY , we have

1 − ζI
Y

ζH
Y

= ζ̃Y − ζ̃MY = ζY − ζCY + (1 − sC) (ζCY − ζSY ) ζ
H
S

ζH
Y

,

or

ζY − ζCY = 1 − ζI
Y

ζH
Y

− (1 − sC) (ζCY − ζSY ) ζ
H
S

ζH
Y

.

Therefore the preference elasticities are identified from income and substitution effects on labor

supply and consumption, up to the complementarity parameters ζCS , ζCY and ζSY .

The optimal savings tax satisfies τS = BS/BC − 1 where B−1
S = 1 − ζS/ρS + ζSC/ρC + ζSY /ρY

and B−1
C = 1 − ζC/ρC + ζCS/ρS + ζCY /ρY . Therefore

τS = (ζS + ζCS) /ρS − (ζC + ζSC) /ρC + (ζCY − ζSY ) /ρY

1 − ζS/ρS + ζSC/ρC + ζSY /ρY
.

Recall that ρ−1
Y = sCρ

−1
C + (1 − sC) ρ−1

S , so this expression can be rewritten as

τS = (ζS + ζCS + (1 − sC) (ζCY − ζSY )) /ρS − (ζC + ζSC − sC (ζCY − ζSY )) /ρC

1 − ζS/ρS + ζSC/ρC + ζSY /ρY

= (ζS + ζCS + (1 − sC) (ζCY − ζSY )) /ρS

1 − ζS/ρS + ζSC/ρC + ζSY /ρY

(
1 − ζH

S ρS

ζH
C ρC

)
.

Substituting ζS =
(
ζI

Y + ζSY ζ
H
Y + ζSCζ

H
C

)
/ζH

S into the numerator and denominator then yields

τS = ζI
Y + ζH

C (ζSC + sCζSY ) + ζH
S (ζCS + (1 − sC) ζCY )

ζH
S ρS − ζI

Y − ζH
C (ζSC + sCζSY )

(
1 − ζH

S ρS

ζH
C ρC

) (
1 − ζH

S ρS

ζH
C ρC

)
. (35)
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It follows that τS ⋛ 0 if and only if ζH
C ρC ⋛ ζH

S ρS , and ceteris paribus τS is strictly increasing in

1 − ζH
S ρS

ζH
C ρC

.

The optimal static income tax τSaez
Y satisfies

(
τSaez

Y

)−1
= 1 − ζI

Y + ρY ζ
H
Y = ρY ζ

H
Y

(
1 + ζ̃Y − ζ̃MY

ρY

)

Using the expression derived above for ζ̃Y − ζ̃MY , we obtain

(
τSaez

Y

)−1
= ρY ζ

H
Y

(
1 + ζY − ζCY

ρY
+ (1 − sC) 1

ρS
(ζCY − ζSY ) ρSζ

H
S

ρY ζH
Y

)
.

The optimal income tax satisfies τY = 1−BY /BC where B−1
C = 1−ζC/ρC +ζCS/ρS +ζCY /ρY and

B−1
Y = 1 + ζY /ρY − sCζCY /ρC − (1 − sC) ζSY /ρS . Substituting ζC =

(
ζI

Y + ζCY ζ
H
Y + ζCSζ

H
S

)
/ζH

C ,

the former expression can be rewritten as

B−1
C = 1 − 1

ρCζH
C

(
ζI

Y + ζCY ζ
H
Y + ζCSζ

H
S

)
+ ζCY

ρY
+ ζCS

ρS

= 1 − ζI
Y

ρCζH
C

+ ζCY

ρY

(
1 − ρY ζ

H
Y

ρCζH
C

)
+ ζCS

ρS

(
1 − ρSζ

H
S

ρCζH
C

)

= 1 − ζI
Y

ρCζH
C

+
(

ζCS

1 − sC
+ ζCY

) 1
ρY

(
1 − ρY ζ

H
Y

ρCζH
C

)
,

where we used the fact that 1/ρS − ζH
S /

(
ρCζ

H
C

)
= 1/ ((1 − sC) ρY )

(
1 − ρY ζ

H
Y /ρCζ

H
C

)
. Analo-

gously, the latter expression can be rewritten as

B−1
Y = 1 + ζY − ζCY

ρY
+ (1 − sC) 1

ρS
(ζCY − ζSY )

= 1
ρY ζH

Y

((
τSaez

Y

)−1
+ (1 − sC) ζH

S (ζCY − ζSY )
(
ρY ζ

H
Y

ρSζH
S

− 1
))

= 1
ρY ζH

Y

(
1 − ζI

Y + ρY ζ
H
Y + sCζ

H
C (ζCY − ζSY )

(
1 − ρY ζ

H
Y

ρCζH
C

))
.

Therefore

B−1
Y −B−1

C = 1
ρY ζH

Y

[
1 −

{
ζI

Y − sCζ
H
C (ζCY − ζSY ) + ζH

Y

(
ζCS

1 − sC
+ ζCY

)}(
1 − ρY ζ

H
Y

ρCζH
C

)]

= 1
ρY ζH

Y

[
1 −

{
ζI

Y + ζH
C (ζSC + sCζSY ) + ζH

S (ζCS + (1 − sC) ζCY )
}(

1 − ρY ζ
H
Y

ρCζH
C

)]
,
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after substituting ζH
Y = sCζ

H
C + (1 − sC) ζH

S and using the fact that ζCS/ (1 − sC) = ζSC/sC .

Therefore, the optimal income tax satisfies

τY =
1 −

{
ζI

Y + ζH
C (ζSC + sCζSY ) + ζH

S [ζCS + (1 − sC) ζCY ]
}(

1 − ρY ζH
Y

ρCζH
C

)
1 − ζI

Y + ρY ζH
Y + sCζH

C (ζCY − ζSY )
(

1 − ρY ζH
Y

ρCζH
C

) . (36)

It is straight-forward to check that this expression is equal to τSaez
Y if and only if ρCζ

H
C = ρY ζ

H
Y ,

and it is strictly decreasing in 1 − ρY ζH
Y

ρCζH
C

.

B Relationship with the Previous Literature

B.1 Relationship to Ferey, Lockwood, and Taubinsky (2021)

Following Saez (2002) and Gerritsen et al. (2020), a recent paper by Ferey, Lockwood, and Taubin-

sky (2021, henceforth FLT) estimates optimal savings taxes emphasizing different sufficient statis-

tics, namely the cross-sectional variation of savings with income net of the causal effect of income

on savings. This sufficient statistic decomposes the cross-sectional variation in savings into a com-

ponent due to cross-sectional variation in income and a component due to cross-sectional variation

in preferences, and identifies the latter as the key driver of optimal savings taxes, in line with

Atkinson and Stiglitz (1976).

We derive below the precise relationship between our optimal tax formulas and this alternative

representation. We show that both representations are equivalent provided that sC (r) > 0, i.e.,

consumption takes up a non-negligible fraction of after-tax income. However, if—as we argued is the

empirically relevant case—consumption has a strictly thinner tail than savings and limr→1 sC (r) =

0, then the identification of FLT breaks down for top earners; that is, their additional sufficient

statistics lose their informational content. This is consistent with the observation that information

from savings remains informative only if sC (r) > 0, i.e., consumption is non-vanishing at the top

of the income distribution.

Hence, while FLT’s representation offers additional insight into the identification of preference

elasticities along the bulk of the tax schedule, their identification breaks down towards the top of

the income distribution and they cannot offer prescriptions on top savings taxes unless the equality

ρC = ρY holds empirically. By contrast, our result based on the Pareto tails of consumption offers

an alternative that identifies top income taxes even if limr→1 sC (r) = 0. Both papers are therefore

complementary, in the sense that we are able to offer prescriptions for income and savings taxes on
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top earners, on which their sufficient statistics are unable to shed light.

Proof. Formally, given the tax schedule, define S (Y, r) as the optimal savings of a household of

rank r given income Y , defined by solving the FOC for savings (1 + τS)UC = V ′ and the household

budget constraint C+S = Y −T (Y, S), where τS = ∂T (Y,S)
∂S and τY = ∂T (Y,S)

∂Y , for C and Y . Taking

derivatives, we decompose S′ (r) as follows:

S′ (r)
S (r) (1 − r) = ∂ lnS (Y, r)

∂ lnY
Y ′ (r)
Y (r) (1 − r) − ∂ lnS (Y, r)

∂ (1 − r) .

Rearranging terms and noting that S′(r)
S(r) (1 − r) = 1

ρS(r) and Y ′(r)
Y (r) (1 − r) = 1

ρY (r) we obtain

−∂ lnS (Y, r)
∂ ln (1 − r) = 1

ρS (r) − ∂ lnS (Y, r)
∂ lnY

1
ρY (r) .

Hence the elasticity ∂ ln S(Y,r)
∂ ln(1−r) captures the effect of preference heterogeneity on savings for a given

income and corresponds to s′
het·

(1−r)
S in FLT, while the elasticity ∂ ln S(Y,r)

∂ ln Y measures the causal effect

of income on savings and corresponds to s′
inc · Y

S in FLT. Also recall that sC (r) = C(r)
(1−τY (r))Y (r)

and define sS (r) ≡ (1+τS(r))S(r)
(1−τY (r))Y (r) . We characterize ∂ ln S(Y,r)

∂ ln Y and −∂ ln S(Y,r)
∂ ln(1−r) using perturbation

arguments:23

∂ lnS (Y, r)
∂ lnY =

ζC (r)
(
1 − sC (r) ζCY (r)

ζC(r)

)
sS (r) ζC (r) + sC (r) ζS (r)

and

−∂ lnS (Y, r)
∂ ln (1 − r) = sC (r)

sS (r) ζC (r) + sC (r) ζS (r)

(
ζS (r)
ρS (r) − ζC (r)

ρC (r) + ζCY (r)
ρY (r)

)
.

Hence, whenever sC (r) > 0, ∂ ln S(Y,r)
∂ ln Y is strictly decreasing in ζS(r)

ζC(r) and thus offers an additional

identifying moment for the preference elasticities. Likewise −∂ ln S(Y,r)
∂(1−r) is strictly increasing in

ζS(r)
ζC(r) , for given preferences, spending shares, and Pareto tails. However, if limr→1 sC (r) = 0 =

1 − limr→1 sS (r), then limr→1
∂ ln S(Y,r)

∂ ln Y = 1 and limr→1
(
−∂ ln S(Y,r)

∂ ln(1−r)

)
= 0, regardless of the other

parameters, which confirms that the identifying power of ∂ ln S(Y,r)
∂ ln Y vanishes when limr→1 sC (r) = 0

at the top of the income distribution.

The main representation of optimal savings taxes in FLT (equation (19)) can then be translated

23Consider a perturbation (∂C, ∂Y, ∂S) along the households’ FOC for savings, ζC
∂C
C

−ζCY
∂Y
Y

= ζS
∂S
S

, and budget
constraint sC

∂C
C

+ sS
∂S
S

= ∂Y
Y

. Solving these two equations for ∂S
S /∂Y

Y
yields ∂ ln S(Y,r)

∂ ln Y
. Totally differentiating the

FOC for savings (1 + τS) UC = V ′ and using Lemma ?? to substitute out ∂τS
1+τS

+ UCr
UC

yields the expression for
− ∂ ln S(Y,r)

∂ ln(1−r) .
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as follows into the notation of our model:

τS (r)
1 + τS (r) =

−∂ ln S(Y,r)
∂ ln(1−r)

− ∂ ln S(Y,r)
∂ ln(1+τS)

∣∣∣
Y,T (Y,S) constant

E
[
1 − ĝ

(
r′) |r′ ≥ r

]
.

Here, −∂ ln S(Y,r)
∂ ln(1−r) is as defined above, and − ∂ ln S(Y,r)

∂ ln(1+τS)

∣∣∣
Y,T (Y,S) constant

represents a compensated elas-

ticity of savings to savings taxes, holding constant the households income Y and total tax burden

T (Y, S). A simple perturbation argument shows that24

− ∂ lnS (Y, r)
∂ ln (1 + τS)

∣∣∣∣
Y,T (Y,S) constant

= sC (r)
sS (r) ζC (r) + sC (r) ζS (r)

where sS (r) ζC (r) + sC (r) ζS (r) represents the inverse of the inter-temporal elasticity of substitu-

tion. Therefore −∂ ln S(Y,r)
∂ ln(1−r) and − ∂ ln S(Y,r)

∂ ln(1+τS)

∣∣∣
Y,T (Y,S) constant

both converge to zero if limr→1 sC (r),

but their ratio converges to a finite constant ζS(r)
ρS(r) − ζC(r)

ρC(r) + ζCY (r)
ρY (r) , which is the same as BS(r)−BC(r)

BS(r)BC(r)

in our model when r → 1. By contrast, our representation implies τS(r)
1+τS(r) = BS(r)−BC(r)

BS(r) . The

two representations are therefore identical if the remaining term, E [1 − ĝ (r′) |r′ ≥ r], converges to

BC (r). The term E [1 − ĝ (r′) |r′ ≥ r] in FLT captures a mix of Pareto weights (which are vanishing

at the top) and changes in tax revenue in response to income tax changes, which do not have a

straight-forward mapping to our model. However, both the discussion in FLT and the equivalence

between the two models suggests that limr→1 E [1 − ĝ (r′) |r′ ≥ r] = limr→1BC (r). In addition, we

can rewrite equation (18) in FLT as

τY

1 − τY
=
{

1
ζH

Y

− ss
∂ lnS (Y, r)
∂ lnY

(
ρY

ρS
ζS − ζC

(
ρY

ρC
− ζCY

ζC

))} 1
ρY

E
[
1 − ĝ

(
r′) |r′ ≥ r

]
where the compensated income elasticity ζH

Y satisfies25

1
ζH

Y

= ζY − ζCY + (ζC − sCζCY ) ζS + sSζCY

sSζC + sCζS
.

Substituting ss
∂ ln S(Y,r)

∂ ln Y = sSζC(1−sCζCY /ζC)
sSζC+sCζS

then allows us to evaluate the above expression in

24Consider a perturbation (∂C, ∂S, ∂τS) along the households’ FOC for savings, ζC
∂C
C

+ ∂τS
1+τS

= ζS
∂S
S

, that keeps
household utility unchanged: UC∂C + βV ′∂S = 0, or sC

∂C
C

= −sS
∂S
S

. Solving these two equations for − ∂S
S / ∂τS

1+τS

yields − ∂ ln S(Y,r)
∂ ln(1+τS)

∣∣∣
Y,T (Y,S) constant

.
25Consider a perturbation (∂C, ∂Y, ∂S, ∂τY ) along the households’ FOCs for income − ∂τY

1−τY
= (ζY − ζCY ) ∂Y

Y
+

(ζC − sCζCY ) ∂C
C

, and savings ζC
∂C
C

− ζCY
∂Y
Y

= ζS
∂S
S

that keeps household utility unchanged: UC∂C + UY ∂Y +
βV ′∂S = 0, or sC

∂C
C

+ sS
∂S
S

= ∂Y
Y

. Solving these three equations for − ∂Y
Y / ∂τY

1−τY
yields ζH

Y .
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the limit as r → 1: If limr→1 sC = 1 (Case 1), it follows that 1
ζH

Y

= ζY − ζCY + ζC − ζCY and

ss
∂ ln S(Y,r)

∂ ln Y → 0, so

τY

1 − τY
= {ζY − ζCY + ζC − ζCY } 1

ρY
E
[
1 − ĝ

(
r′) |r′ ≥ r

]
.

If limr→1 sC = 0 (Case 2), it follows that 1
ζH

Y

= ζY + ζS and ss
∂ ln S(Y,r)

∂ ln Y → 1, so

τY

1 − τY
=
{
ζY + ζC

(
ρY

ρC
− ζCY

ζC

)} 1
ρY

E
[
1 − ĝ

(
r′) |r′ ≥ r

]
.

Finally, if limr→1 sC (r) ∈ (0, 1) (Case 3), ρY
ρS

= ρY
ρC

= 1, and 1
ζH

Y

−ss
∂ ln S(Y,r)

∂ ln Y

(
ρY
ρS
ζS − ζC

(
ρY
ρC

− ζCY
ζC

))
converges to ζY − ζCY + ζC − sCζCY . In all three cases, equation (18) in FLT yields

τY

1 − τY
= lim

r→1
A (r)E

[
1 − ĝ

(
r′) |r′ ≥ r

]
where A (r) = UCr

UC
− UY r

UY
as defined above, and again the expression for the top labor wedge is

equivalent to ours when limr→1 E [1 − ĝ (r′) |r′ ≥ r] = limr→1BC (r).

B.2 Relationship to Scheuer and Slemrod (2021)

We now study a special case of the general environment of Section 5.2 that allows for heterogeneous

initial capital holdings, and thus breaks the equality between the Pareto coefficients on income and

wealth that the budget constraint imposes in our baseline model. The setting is the same as in our

baseline model of Section 2, except that agents also receive an exogenous endowment Z (r) that

is strictly increasing in r. This framework nests that of Scheuer and Slemrod (2021), who assume

that preferences satisfy the restrictions of Atkinson and Stiglitz (1976), that is, separable between

consumption and income and homogeneous across consumers.

We show that if endowments have a strictly thinner tail than consumption and income, then

the top income and savings taxes are the same as in our baseline model. Intuitively, endowments

simply do not matter at the top of the distribution. When instead endowments have a thicker

upper tail than income, inequality is mostly driven by inherited wealth and labor income becomes

a negligible fraction of top earner’s incomes. If, as in Scheuer and Slemrod (2021), endowments

and consumption have an equal tail and preferences are separable, the solution for both labor and

savings taxes is interior. However, this result is “knife-edge”: As soon as consumption and income

are complementary, it is optimal to impose arbitrarily large labor wedges on top earners. In the

empirically plausible case where ρZ = ρS < ρY < ρC , optimal taxes are just as stark: since the labor
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income and consumption of top earners are negligible, redistribution from the top is implemented

through savings taxes that become arbitrarily large, and are accompanied by arbitrarily large

earnings subsidies.

To summarize, the model with endowments substantially changes implications for optimal labor

and savings taxes by shifting the burden of redistributive taxation from income to savings taxes

when endowments become the main source of income for the top income earners.

Proof. Consider the same setting as in our baseline model, but suppose in addition that agents

also receive an exogenous rank-specific endowment Z (r). Since income and savings are taxed and

hence observable, consumption is assumed to be unobserved. An agent with rank r then consumes

C (r, r′) = C (r′) + Z (r) − Z (r′) when announcing type r′. Define the indirect utility function

W (r) = U (C (r) , Y (r) ; r) + V (S (r)), where we assume for simplicity that the second-period

utility function is homogeneous across consumers. The planner’s problem is stated as follows:

K (v0) = min
{C(r),Y (r),S(r)}

� 1

0
(C (r) − Y (r) + S (r)) dr

subject to � 1

0
ω (r)W (r) dr ≥ v0

W (r) = U (C (r) , Y (r) ; r) + V (S (r))

W ′ (r) = UC (C (r) , Y (r) ; r)Z ′ (r) + Ur (C (r) , Y (r) ; r) .

Following analogous steps as in our baseline setting to solve this problem, we obtain the same

characterization of optimal labor and savings wedges as in Section 4.4, except that we must adjust

the definition of the incentive-adjustments and the marginal benefits of redistributing income,

consumption, and savings BY , BC , and BS as follows:

BC (r) = E
[
MC (r′)
MC (r) |r′ ≥ r

]
−

E
[

MC(r′)
MC(r)

]
E
[
ω (r′)UC (r′) MC(r′)

MC(r) |r′ ≥ r
]

E
[
ω (r′)UC (r′) MC(r′)

MC(r)

]
BY (r) = E

[
MY (r′)
MY (r) |r′ ≥ r

]
−

E
[

MY (r′)
MY (r)

]
E
[
ω (r′) (−UY (r′)) MY (r′)

MY (r) |r′ ≥ r
]

E
[
ω (r′) (−UY (r′)) MY (r′)

MY (r)

]
BS (r) = E

[
MS (r′)
MS (r) |r′ ≥ r

]
− E

[
MS (r′)
MS (r)

]
E
[
ω
(
r′) |r′ ≥ r

]
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with

MC (r) = 1
UC (r) exp

[
−
� 1

r

(
UCr (r′)
UC (r′) + UCC (r′)

UC (r′) Z
′ (r′)) dr′

]

MY (r) = 1
−UY (r) exp

[
−
� 1

r

(
UY r (r′)
UY (r′) + UCY (r′)

UY (r′) Z
′ (r′)) dr′

]

MS (r) = 1
V ′ (S (r)) .

These marginal benefits converge to

lim
r→1

BC (r) =
[
1 − (1 − sZ) ζC

ρC
+ ζCY

ρY

]−1
= B̄C

1 + B̄CsZζC/ρC

lim
r→1

BY (r) =
[
1 + ζY

ρY
− (1 − sZ) sC

ζCY

ρC

]−1
= B̄Y

1 + B̄Y sZsCζCY /ρC

lim
r→1

BS (r) =
[
1 − ζS

ρS

]−1
= B̄S ,

where sZ = limr→1
Z′(r)
C′(r) = ρC

ρZ
limr→1

Z(r)
C(r) represents the marginal increase in consumption scaled

by the marginal increase in endowment at the top of the income (and endowment) distribution, and

where B̄C , B̄Y , and B̄S correspond to the marginal benefits of redistributing consumption, income,

and savings in the baseline model without endowments.

The budget constraint implies that min {ρY , ρZ} = min {ρC , ρS}, which allows us to distinguish

different scenarios: 1. Endowments have a thinner Pareto tail than income (ρY < ρZ and sZsC = 0)

and/or preferences are separable (ζCY = 0); 2. Endowments and income have equal Pareto tails

(ρY = ρZ), and consumption and income are complementary (ζCY > 0); 3. Endowments have

a thicker Pareto tail than income (ρY > ρZ), and consumption and income are complementary

(ζCY > 0).

In Case 1, limr→1BY (r) remains the same as in our baseline model, and hence endowments

only affect the combined wedge 1−τY
1+τS

= 1−ζS/ρS

1+ζY /ρY
through their effect on the Pareto tail of savings.

The thickness of the Pareto tail of consumption and endowments then governs the limit of BC (r):

Specifically, if endowments have a thinner tail than consumption (ρC < ρZ), then sZ = 0 and the

top income and savings taxes are the same as in our baseline model. Intuitively, if endowments

have a strictly thinner tail than consumption and income, then they simply do not matter at the

top of the distribution: Top earners’ endowments are negligible compared to their consumption and

labor income. If instead endowments have the same tail as consumption (ρC = ρZ), then sZ > 0,

resulting in a shift from income to savings taxes. This shift can go so far as to make it optimal
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to subsidize income, and if endowments have a strictly thicker tail than consumption (ρC > ρZ),

then BC (r) → 0 and earnings subsidies, along with savings taxes, become arbitrarily large for top

income earners.

In Case 2., 0 < sZsC < ∞ and the combined wedge is strictly lower than in the baseline model.

If consumption has the same Pareto coefficient as income and endowments (ρC = ρY = ρZ),

then sZ and sC are both finite, so that the wedges τY and τS are finite. The introduction of

endowments reduces both BY and BC , resulting in a strictly higher savings wedge and a lower

combined wedge than in the baseline model; the labor wedge is reduced whenever sC
ζCY
ρC

B̄Y

B̄C
< 1.

If instead consumption has a strictly thinner tail (ρZ = ρY < ρC) then sC → 0, sZ → ∞ and

BC (r) → 0, resulting as before in arbitrarily large earnings subsidies and savings taxes at the top.

In Case 3., sZsC = ∞ and BY (r) → 0, so that the combined wedge converges to 1. If

consumption and endowments have equal tail coefficients (ρC = ρZ), then 0 < sZ < ∞ and τS is

finite and strictly larger than in our baseline economy, while the labor wedge becomes arbitrarily

large (τY → 1). If ρZ < ρC < ρY , we have both sZ → ∞ and sC → ∞ implying both arbitrarily

large savings wedges (because ρZ < ρC) and arbitrarily large labor wedges (because ρC < ρY ).

If ρC = ρY , the savings wedge remains unbounded but the labor wedge is finite and given by

1 − τY = ζC
sCζCY

. If ρC > ρY , we obtain τY = −∞, making it optimal to have arbitrarily large

savings taxes and earnings subsidies (but the combined wedge is always dominated by the savings

wedge).

Intuitively, when endowments have a thicker upper tail than income, the planner’s main tool

for redistribution becomes the savings tax. Moreover, if consumption has a thinner tail than

endowments (and savings), then a savings tax becomes non-distortionary at the top, and can

therefore be arbitrarily large. The optimal labor wedge can then be understood by considering the

spillover of labor income on savings: An increase in income allows households to both increase their

spending on consumption and savings, and it induces them to substitute towards more consumption

relative to savings. When sC is high, the substitution effect dominates, which implies that an

increase in income reduces savings, and hence the scope for redistribution through savings taxes.

The planner then finds it optimal to tax income to reduce spill-overs to savings. In constrast, when

sC is low, the wealth effect of income on savings dominates, which makes it optimal to subsidize

income. In the limit when sC → 0, and a fortiori when ρC > ρY , the implied savings subsidy

becomes arbitrarily large at the top.
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