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Abstract

Recent development in identification methods utilizing higher-order moments

have advanced structural analysis in macroeconomics. This paper reviews pre-

vailing approaches, including those using time-varying volatility or assuming in-

dependence under non-Gaussianity, and highlights their limitations in address-

ing co-heteroskedasticity. We introduce a novel identification scheme that ac-

commodates latent shocks with unknown second-order moment features and

propose a new estimator, which is consistent regardless of whether shocks are

(co-)heteroskedastic or homoskedastic. We study its asymptotic properties, and

demonstrate superior finite-sample performance through simulations. Applying

this method to US monetary policy model yields variance estimators that align

well with benchmark macroeconomic uncertainty measures.
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1 Introduction

In recent years, a novel branch of literature has emerged, focusing on the statistical

identification of structural simultaneous equations models (SEMs), such as vector au-

toregressive models (SVARs) and similar multivariate dynamic systems that face the

problem of simultaneous causality. This line of research aims to achieve identification

and subsequent structural analysis by imposing higher-order moment conditions on the

data-generating process (DGP). These statistical identification approaches have gar-

nered attention due to their intuitive appeal and flexibility, especially in scenarios with

limited theoretical or institutional knowledge and when external instruments are either

scant, weak, or unavailable. Within this literature, two main branches of statistical

identification have emerged. The first branch encompasses identification techniques

that build upon informative time-varying volatility of the data (see, e.g., Sentana and

Fiorentini 2001, Rigobon 2003, Lewis 2021). The second branch of this literature

explores the statistical independence of latent shocks and the potential of indepen-

dent component analysis (ICA) as a promising tool for identification (see, e.g., Lanne

et al. 2017, Gouriéroux et al. 2017, Guay 2021). Notably, statistical identifications

have proven useful in analyzing small to medium-sized financial and macroeconometric

models, contributing valuable insights into the causal relationships within these models

and deepening the understanding of policy interventions and transmission mechanisms

of structural innovations.

In this paper, we begin by reviewing the identifying assumptions underlying both ap-

proaches: While identifications based on time-varying volatility require that the sample

paths of the volatility processes must be linearly independent and at most one path

is constant, ICA-based identifications assume that the latent shocks are mutually in-

dependent and at most one shock is Gaussian. If one of these conditions is satisfied,

the structural mixing parameters are locally identified, up to column permutations

and sign flips.1 We discuss the connection between both types of identification as-

sumptions and when the violation of one assumption can invalidate the other. In

particular, we show that both identification approaches exclude an empirically rele-

vant scenario commonly observed in macroeconomic data, where shocks share common

volatility processes, known as co-heteroskedasticity (Montiel Olea et al. 2022, Lewis

2024). Co-heteroskedasticity is rather a common specification in many financial and

1Statistically identified shocks do not necessarily allow for a direct economic interpretation. The

so-called shock labeling problem is typically resolved through supplementary economic reasoning and

careful assessment of estimated structural model implications, such as impact multipliers, impulse

response functions and historical narratives (see, e.g., Herwartz and Lütkepohl 2014, Lewis 2021).

2



macroeconomic models, given the empirical evidence suggesting that volatilities of cer-

tain shocks may co-move, for instance, during the transition to the so-called Great Mod-

eration era or periods of economic downturns and financial distress. Another example

includes shocks to precautionary demand for oil, which may exhibit increased volatil-

ity amidst heightened uncertainty surrounding crude oil supply due to factors such as

rising geopolitical tensions, warfare, and sanctions. In these cases, the second-order

moment dependence among the shocks leads to violation of conditions for identification

approaches both via time-varying volatility and independence under non-Gaussianity,

and thus renders them under-identified.

To overcome the identification problem in the presence of co-heteroskedastic shocks,

this paper suggests a novel identification scheme allowing latent shocks to have second-

order moment features of unknown form. Sufficient conditions for local identification

are provided. We demonstrate that the commonly adopted ICA-based methods relying

on independent shocks are nested within our identification scheme. We give conditions

under which the independence assumption imposed on the latent shocks remains valid

and the standard techniques relying on it remain operational. We further propose a

non-parametric kernel-based ML (KML) approach, which adjusts each individual or-

thogonalized observation by its corresponding standard deviation obtained from a ker-

nel smoother, without imposing specific parametric forms for the underlying variance

process. We study the asymptotic properties of the proposed estimator and investigate

its finite-sample performance through Monte Carlo experiments. Specifically, by plac-

ing a continuity and mild integrability condition on the limiting variance processes,

we show that the suggested estimator is consistent and asymptotically normal under

standard regularity conditions.

Monte Carlo simulations highlight the superior finite-sample performance of the sug-

gested estimator in various DGPs and a range of stochastic and deterministic volatility

processes. In contrast, ML methods using fixed densities and approaches imposing

higher-order moment restrictions might be vulnerable to pseudo density misspecifi-

cation and outliers, respectively, in specific data generation scenarios. Particularly

noteworthy is the comparison with an unfeasible estimator that employs shocks scaled

with their true standard deviations, revealing that the non-parametric approach to

variance estimation involves only a minimal loss in efficiency, which becomes negligible

in large samples.

Our study contributes to the growing literature on identification approaches that

rely on higher-order moments and is one of the first to explicitly address the is-
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sue of co-heteroskedasticity, which has been overlooked in most statistical identifi-

cation procedures. It is noteworthy that certain higher-order moment or cumulant

conditions implied by mutual independence remain valid even in the presence of co-

heteroskedasticity, allowing methods based on these restrictions to remain applica-

ble (see Lanne and Luoto 2021, Mesters and Zwiernik 2022). For instance, zero

asymmetric co-skewness and co-kurtosis are valid restrictions. However, under co-

heteroskedasticity, these conditions alone, without assuming independence, may not

suffice for identification (see Keweloh 2021, Lewis 2024). Additionally, our simulation

study demonstrates that estimation of higher-order moment statistics is challenging in

small samples and can be sensitive to heavy-tailed source distributions and distorted

by outliers in the data (see also Keweloh 2023 for discussion of GMM estimation).

Importantly, the procedure proposed in this paper primarily utilizes information from

non-Gaussianity rather than heteroskedasticity for identification. Therefore, the sug-

gested estimator is consistent regardless of whether the shocks are heteroskedastic,

co-heteroskedastic, or homoskedastic.

When applied to a small-scale US monetary policy analysis, the estimator identifies

demand, supply, and monetary policy shocks in alignment with their well-established

features regarding their effects on economic activity, inflation, and treasury yields. Our

estimates indicate that an unexpected monetary tightening can have sustained effects

on controlling medium to long-term inflation, while having only transitory adverse ef-

fects on economic activity. In addition, we demonstrate sizable co-movement in the

second-order moments of the identified shocks. Furthermore, the estimated variance of

structural shocks exhibits strong parallels with the benchmark information-rich mea-

sure of macroeconomic uncertainty proposed by Jurado et al. (2015). This outcome

stands as an informal yet significant affirmation of the structural model’s findings.

The remainder of this study is structured as follows. The next Section outlines the

model, identification problems under (co-)heteroskedasticity and introduces the novel

identification approach and a new estimator. Section 3 provides simulation-based in-

sights into the finite-sample performance of the suggested estimator. In Section 4, we

apply the approach to a small scale US monetary policy model. Section 5 summarizes

and concludes. An Appendix collects proofs of the theorems. The Online Appendices

document additional simulation results (OA A) and supplement the empirical analysis

with model diagnostics (tests for remaining residual correlation, non-Gaussianity, and

fundamentalness and independence of structural shocks, OA B), and further structural

impulse response estimations (OA C). Throughout the paper, XT
p→ X denotes con-

vergence in probability and XT ⇒ X denotes convergence in law as T → ∞. We
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use X⌊sT ⌋ ⇒ X(s) to denote weak convergence in C[0, 1] with respect to the uniform

metric, where ⌊sT ⌋ is the integer part of sT . Moreover, ||·|| and ∥·∥p denotes the Eu-

clidean and the Lp norm. The function δX takes value one if statement X is true and

zero otherwise. The term ‘volatilities’ refers to both variances and standard deviations

unless explicitly defined otherwise.

2 Methodology

In this section, we outline the general model framework, review the identifying as-

sumptions underlying the two most popular identification methods via higher-order

moments. We discuss their limitations under co-heteroskedasticity and propose suit-

able conditions allowing for (local) point identification and consistent estimation. We

introduce a novel estimator is and study its asymptotic properties.

2.1 General model specification

A fundamental challenge in causal analysis of multivariate time series lies in uncovering

their structural representation from the data. Typically, identifying this representation

involves solving a system of equations:

xt = Bξt, ξt ∼ (0,Σt), t = 1, . . . , T, (1)

where ξt is a vector of N latent factors or shocks, which are serially uncorrelated and

have a diagonal covariance matrix Σt = diag (σ2
1t, . . . , σ

2
Nt), which may or may not be

time-varying. The latent shocks ξt are mapped to the N observables collected in xt

through a non-singular matrix B. The system in (1) can be written as:

xt = Bξt = BΣ
1/2
t ηt, ηt

iid∼ (0, IN), (2)

where the random vector ηt is independent from the volatility processes in Σ
1/2
t . Let

{Ft}t≥1 be a natural filtration generated by Ft = σ(ηt−j,Σt−j+1, j ≥ 0), to which ξt

is measurable for all t. It follows that the structural shocks ξt are martingale dif-

ference sequences with E[ξt|Ft−1] = 0 and E[ξtξ⊤t |Ft−1] = Σt. This specification can

accommodate a GARCH-type volatility process, where Ft simplifies to σ(ηt−j, j ≥ 0).

It also allows for a stochastic volatility process, where elements in Σt are driven by

other innovations. Assume E[Σt] = IN , the vector of observables has a zero mean and

non-diagonal covariance matrix given by

E[xtx⊤t ] = BE[Σ1/2
t ηtη

⊤
t Σ

1/2
t ]B⊤ = BE[Σt]B

⊤ = BB⊤ = Ω,

where the penultimate equality holds due to independence between Σt and ηt.
2

2The imposition of unit variance for the latent shocks is made to normalize the size of the shocks

and is applied without any loss of generality. Alternative normalizations have also been proposed. For
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The SEM as outlined above finds many applications in empirical finance and macroe-

conomics. For example, xt can represent the returns of N speculative assets, and the

structural parameters in B provide insights into the contribution of each shock in ξt to

the asset returns. In factor models, xt is a potential rotation of the vector of orthogo-

nalized factors. In structural VAR models (SVARs), xt is the residual vector from the

reduced-form model. In the following, we illustrate our approach by viewing SVAR

analysis as the primary application and provide a short description of this framework.

Let yt be the N × 1 vector of observable variables. In its reduced form and adjusted

for deterministic terms, the VAR of order p reads as

xt ≡ A(L)yt, (3)

where L is the lag-operator, A(z) =
(
IN −

∑p
j=1Ajz

j
)
, z ∈ C, is the reverse charac-

teristic polynomial. Under the weak stationarity condition, assuming detA(z) ̸= 0 for

|z|≤ 1, yt has a Wold moving average (MA) representation. Such a representation is of

great interest, as it reveals the dynamic effects of structural shocks on the observable

system through structural impulse response functions (IRFs)

yt =
∞∑
j=0

Φjξt−j = Φ(L)ξt,

where Φ(L) = A(1)−1B with Φ0 = B. Hence, the ‘impact multipliers’ in B provide

valuable insights into how the variables in yt contemporaneously react to exogenous

changes in ξt. While the reduced-form parameters in (3) (i.e., AR coefficients Aj’s

and unconditional covariance Ω) can be consistently estimated, it is well-known that

structural parameters in B lack identification from the second moments of the data.

While classical identification techniques typically rely on economic theory and institu-

tional knowledge that can be used to develop exclusion (e.g. Sims 1980, Blanchard and

Quah 1989) and sign restrictions (e.g. Faust 1998, Uhlig 2005), or instruments for struc-

tural shocks (Mertens and Ravn 2013, Stock andWatson 2012), statistical identification

approaches that exploit higher-order moment information have gained attention in re-

cent years (see Montiel Olea et al. 2022, Lewis 2024 for a review of recent literature).

We briefly outline these approaches and their underlying the identifying assumptions.

example, one approach involves restricting the diagonal elements of matrix B to be unity, denoted

as B†, while allowing E[Σt] = Σ to have flexible diagonal elements. In this case, B = B†Σ1/2 (see

Gouriéroux et al. 2017 and references therein for a discussion).
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2.2 Statistical identifications via higher-order moments

Beginning with pioneering works by Sentana and Fiorentini (2001) and Rigobon (2003),

which shed light on the identifiability under time-varying variances of latent shocks,

subsequent studies have furthered the approach by exploring various forms for the

volatility processes, including exogenous shifts (Lanne and Lütkepohl 2008), smooth

transitions (Lütkepohl and Netšunajev 2017) and Markov switching (Lanne et al.

2010) between variance regimes, as well as generalized autoregressive conditional het-

eroskedasticity (GARCH) specifications (Normadin and Phaneuf 2004) and stochastic

autoregressive volatility (Bertsche and Braun 2022). In addition, a growing body of

work explores the potential of ICA as a promising tool for achieving identification.

Within the realm of ICA-based identification, a range of methodologies has emerged,

including methods of maximum likelihood (ML) assuming statistical independence

among the structural shocks (Lanne et al. 2017, Gouriéroux et al. 2017, Fiorentini

and Sentana 2023, Hafner et al. 2024, Jarociński 2024), generalized methods of mo-

ments (GMM) or classical minimum distance (CMD) estimations relying on (weaker)

mean/moment independence (Lanne and Luoto 2021, Keweloh 2021, Hafner et al. 2022,

Guay 2021), and CMD or Hodges-Lehmann (HL) methods utilizing non-parametric in-

dependence measures (Drautzburg and Wright 2023, Herwartz and Wang 2023, 2024).

While ICA-based methods often rely on similar assumptions, conditions for identifi-

cations via time-varying volatility may have different forms depending on the specific

volatility processes assumed. We present here a general condition for the sample paths

of the volatility processes, which covers special cases such as non-proportional covari-

ance changes (Rigobon 2003) or linearly dependent stochastic autoregressive volatil-

ities (Bertsche and Braun 2022) and is similar to the condition outlined in Sentana

and Fiorentini (2001) for factor identifications. Let σ2
t = (σ2

1t, . . . , σ
2
Nt)

⊤ denote the

vector collecting the marginal variances of the shocks and define a (T × N) matrix

ST = (σ2
1, . . . ,σ

2
T )

⊤. The identifying assumptions underlying the two most prominent

statistical identification schemes can be summarized as follows:

Theorem 1. If one of the following conditions is satisfied:

(i) the components in the random vector ξt are independent and at most one compo-

nent is Gaussian;

(ii) the sample paths of the processes in σ2
t are linearly independent and at most one

path is constant over time, i.e., rank ST = N ,

then the matrix B in (1) and (2) is identified up to a right-multiplication by DP, where
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D is diagonal and P is a permutation matrix. In other words, B is identified up to

column permutations and sign flips.

Remark 1. For a full (local) identification of the matrix B, it is sufficient to satisfy

one of the conditions in Theorem 1. If both (i) and (ii) are imposed, the system in

(1) and (2) is over-identified and condition (i) or (ii) can be tested conditional on the

other identifying assumption.

A subtle point contained in Remark 1 is that heteroskedasticity of the shocks does

not prohibit them to be statistically independent. We will discuss this more explicitly

in the next section. However, violation of condition (ii) can invalidate condition (i).

Notably, the identifying assumption (ii) in Theorem 1 can be violated in two ways:

Remark 2. rank ST < N , if one of the following statements holds:

(a) ∃ at least two j ∈ {1, . . . , N} for N > 2, s.t. σ2
jt = 1, a.s. ∀t;

(b) ∃ i, j ∈ {1, . . . , N}, i ̸= j and P(σ2
jt ̸= 1) > 0, s.t., ∃c ∈ R2, c ̸= 0, with

(σ2
it, σ

2
jt)

⊤c = 0, a.s. ∀t.

In other words, if at least two shocks are either (a) homoskedastic or (b) co-heteroskedastic,

condition (ii) in Theorem 1 is violated. While case (a) does not invalidate the inde-

pendence assumption (i) in Theorem 1, co-heteroskedasticity of the shocks will render

them dependent in their second-order moment:

Remark 3. In case (b) of Remark 2, both conditions (i) and (ii) in Theorem 1 are

violated and matrix B is under-identified.

Therefore, co-heteroskedasticity presents a critical challenge to identification approaches

based on (i) assuming statistical independence under non-Gaussianity and (ii) time-

varying volatility of the shocks. Specifically, co-movement of shock variances during

periods of economic recession or financial distress can lead to weak identification due to

weak dependence in second-order moments of the shocks or near rank deficiency of the

matrix ST . In the following section, we discuss the identification problem in the pres-

ence of co-heteroskedasticity in more derail and propose a novel identification scheme

that accommodates latent shocks with second-order moment features of unknown form.

2.3 Identification under (co-)heteroskedasticity

To illustrate the identification problem, consider the scenario of two volatility regimes,

where Σt = ΣI for t ∈ regime I and Σt = ΣII ̸= ΣI for t ∈ regime II. Condition (ii)

in Theorem 1 implies that ∄c ∈ R such that ΣII = cΣI . In other words, changes in
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Figure 1: Joint distribution of (ξ1t, ξ2t)
′ with time-varying variances. Red and blue

lines indicate orientations of marginals of ξ1t and ξ2t. Upper panel: Gaussian shocks

under variance change; lower: uniform shocks with χ2 random variances. From left to

right: Homoskedasticity, (independent) heteroskedasticity, and co-heteroskedasticity.

variances can not be proportional. As depicted in panels (a) – (b) of Figure 1, a non-

proportional change reveals orientations of the marginal distributions. However, if both

structural shocks undergo a common variance change, the joint distribution will expand

or contract in its scale along all directions, rendering the shocks under-identified. This

is illustrated in panel (c) of Figure 1.3

Instead, if the analyst pursues a statistical identification relying on independence un-

der non-Gaussianity, the result on local identifiability under condition (i) in Theorem 1

holds under homoskedasticity (panel (d)) and heteroskedasticity (panel (e) of Figure 1),

under the additional assumption on the variance processes stated in Theorem 3. How-

ever, if the shocks exhibit co-heteroskedasticity, condition (i) will be violated. For

simplicity, suppose c = (1,−1)⊤, case (b) of Remark 2 implies – for a scalar positive

random variable σt –

ξit = σtηit and ξjt = σtηjt.

3More broadly, common variance shifts may result in the matrix ΣIIΣ
−1
I having diagonal elements

that are close to each other or even identical, which leads to weak or under-identification of the

corresponding shocks and their structural impact multipliers in the respective columns of matrix B

(see also Rigobon 2003, Lanne et al. 2010).
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In such a case, ξit and ξjt remain uncorrelated obeying an interpretation as structural

shocks. They are mean independent in the first but no longer in the second order

moment:

E[ξitξjt] = E[σ2
t ]E[ηitηjt] = 0, E[ξit|ξjt] = σtE[ηit] = 0, E[ξ2it|ξjt] = σ2

tE[η2it] = σ2
t ,

which follows from the fact that ηit and ηjt have a diagonal covariance matrix and

are independent of σt. This is illustrated in panel (f) of Figure 1, where the common

variance σ2
t is simulated from a χ2 distribution.

While co-heteroskedasticity invalidates both conditions (i) and (ii), some weaker higher-

order moment conditions (e.g., asymmetric co-skewness E[ξ2itξjt] = 0) are still valid, and

thus, approaches that exploit these restrictions for identification purposes will remain

operational (Lanne and Luoto 2021, Mesters and Zwiernik 2022). However, estimation

of higher-order moment statistics and especially the asymptotically efficient GMM

weighting matrix can be challenging due to outliers in the data and may suffer from

poor finite-sample performance for heavy-tailed source distributions as discussed in

Keweloh (2023) and further illustrated in Section 3.4

If it is possible to appropriately adjust the structural shocks in ξt based on their specific

or shared variance processes, i.e., ηit = ξit/σit, i = 1, . . . , N , the elements of the

resulting vector ηt can be identified under the assumption that they are statistically

independent and at most one element is Gaussian. We replace (i) in Theorem 1 with

the following assumption on ηt:

Assumption A. The components in the random vector ηt are independent and at most

one component is Gaussian.

We establish the identifiability through the following theorem:

Theorem 2. Under Assumption A, the matrix B in (1) and (2) is identified up to a

right-multiplication by DP.

As discussed above, independence of components in ηt (i.e., Assumption A) does not in

general imply independence of structural shocks in ξt (i.e., (i) in Theorem 1). However,

in cases where the system is almost homoskedastic or the variance processes of distinct

shocks are independent, which is stronger than condition (ii) in Theorem 1, Assump-

tion A does imply independent shocks. In these scenarios, the identifying assumption

(i) in Theorem 1 is valid and statistical identifications relying on it remain operational.

4Keweloh (2023) illustrates that imposing mutual and serial independence of the shocks can lead

to a reduction of both the order and the number of higher-order moments in the weighting matrix

and thus improve the finite-sample performance of GMM estimation.
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Theorem 3. Under Assumption A, if one of the following conditions holds:

(i*) ∃ at most one j ∈ {1, . . . , N}, s.t. P(σ2
jt ̸= 1) > 0, ∀t;

(ii*) stochastic processes in σ2
t are independent,

then condition (i) in Theorem 1 is satisfied.

2.4 Estimation under (co-)heteroskedasticity

Let Ω1/2 := ΓΛ1/2Γ⊤ denote the matrix square root of Ω. Here, Λ1/2 is a diagonal

matrix with the square root of the eigenvalues of Ω on the main diagonal, and Γ is the

matrix of the eigenvectors. Left-multiplying equation (2) by the inverse of Ω1/2 yields

zt := Ω−1/2xt = QΣ
1/2
t ηt, (4)

where Q is orthonormal such that QQ⊤ = IN and |detQ|= 1. It can be easily verified

that zt is unconditionally white, i.e., zt ∼ (0, IN) and the structural parameter matrix

B can be expressed as B = Ω1/2Q. Prewhitening is a necessary step for consistent

estimation in many ICA techniques (see, e.g., Hyvärinen 1999, Gouriéroux et al. 2017),

since it effectively reduces the number of free parameters from N2 to N(N −1)/2. The

space of the parameter of interest in Q is restricted to be the set of all N -dimensional

orthonormal matrices O(N) = {Q = (q1, . . . , qN) : qi ∈ RN , q⊤i qj = δi=j,∀i, j =

1, . . . , N}. Let the orthonormal matrix Q be parameterized by a vector θ ∈ Θ, we

define ξt(θ) := Q(θ)⊤zt, ξit(θ) := e⊤i ξt(θ), ηit(θ) = ξit(θ)/σit, with ei being the i-th

column of an identity matrix with conformable dimension. One particularly interesting

parameterization of Q under the constraint Q ∈ O(N) is given by a sequence of Givens

rotation matrices (see Gouriéroux et al. 2017). A typical choice in the literature has

the following form:

Q(θ) =

(
N−1∏
i=1

N∏
j=i+1

Gi,j(θn)

)⊤

,

where θn for n = 1, . . . , N(N − 1)/2 are rotation angles and Gi,j(θn) is the Givens

matrix that rotates the subspace spanned by axes i and j while holding other axes

fixed.5 Let θ0 ∈ Θ be the true parameter vector, ηt := ηt(θ0) be the true independent

components and fi,θ0 its pdf. Under the identifiability stated in Theorem 2, the log-

likelihood is given by
∑T

t=1

∑N
i=1 (log fi,θ0 (ηit(θ))− log σit). Because the true density

5For instance, in case N = 3, one has:

(G1,2(θ3)G1,3(θ2)G2,3(θ1))
⊤
=

1 0 0

0 cos θ1 − sin θ1

0 sin θ1 cos θ1


cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2


cos θ3 − sin θ3 0

sin θ3 cos θ3 0

0 0 1

 .

11



functions fi,θ0 ’s are rarely known and estimation based on fixed pseudo densities can

suffer from missspecification, Hafner et al. (2024) propose the KML approach that

maximizes an estimated log-likelihood

l̃T (θ) =
1

T

T∑
t=1

N∑
i=1

(
log f̂i,θ (ηit(θ))− log σit

)
, (5)

where f̂i,θ is a kernel density estimate

f̂i,θ(ηit(θ)) =
1

Thf

T∑
k=1

Kf

(
ηit(θ)− ηik(θ)

hf

)
, i = 1, . . . , N,

where Kf : R 7→ R+
0 is a bounded kernel function and hf is a bandwidth parameter.

Essentially, the KML approach replaces fi,θ in the estimation equation (see equation (8)

and Lemma 1) by a kernel estimate, which is consistent under mild assumptions about

the true density function and standard conditions for Kf and hf . Hafner et al. (2024)

shown by simulation that the KML approach has favorable finite-sample performance

and is robust to a large variety of distributions that exhibit different forms of non-

Gaussianity, including those close to a Gaussian distribution.

Notably, both identification and estimation hinge on the knowledge about Σt. Un-

fortunately, the structural shocks are latent and their variance processes are typically

unknown, rendering the aforementioned identification procedure infeasible in practice.

This is especially challenging without assuming that variance processes follow specific

parametric forms. However, consistent non-parametric variance estimates can be ob-

tained under the mild assumption that the limiting variance process is continuous.If

that process is bounded away from zero, by a continuous mapping theorem, the inde-

pendent components adjusted based on the estimated variance η̂it(θ) = ξit(θ)/σ̂it will

be close to ηit(θ) as n becomes large. In order to consistently estimate the variance

process through a non-parametric kernel method, we make the following assumptions

concerning unconditional moments of components in ηt and the volatility processes.

Assumption B.

(i) For some p > 1 and for all i, j, k, l ∈ {1, . . . , N}, E[ηpitη
p
jtη

p
ktη

p
lt] ≤ Mη < ∞,

E[σpitσ
p
jtσ

p
ktσ

p
lt] ≤Mσ <∞,

(ii) For all i ∈ {1, . . . , N}, σi,⌊sT ⌋ ⇒ σi(s) as T → ∞ with s ∈ [0, 1], where σi(s) has

continuous sample paths a.s. and ∃σ−, σ+, s.t. sups∈[0,1] σi(s) ≤ σ+ <∞, infs∈[0,1] σi(s) ≥
σ− > 0, ∀s and

∫ 1

0
σ−2
i (s)ds <∞.

The moment conditions in B(i) ensure that components in ηt(θ) are bounded in L4p

for all θ. It also implies that fourth moments of structural shocks in ξt exist, which
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is commonly required for inference about covariance matrix Ω in VAR models.6 The

continuity and boundedness of volatility process in B(ii) is essential for consistent

estimation of σit and its inverse with kernel smoothing (see Hansen 1995). Define

σ̂2
it(θ) :=

∑T
k=1Kσ((k − t)/hσ)ξ

2
ik(θ)∑T

k=1Kσ((k − t)/hσ)
,

whereKσ : [−1, 1] 7→ [0, 1] represents a standard kernel function satisfying
∫
Kσ(x)dx >

0 and hσ denotes the bandwidth parameter controlling the smoothness of the estimated

volatility processes, which increases as T → ∞. Substituting ηit and σit in (5) by η̂it

and σ̂it, respectively, the objective function is given by

l̂T (θ) =
1

T

T∑
t=1

N∑
i=1

(
log f̂i,θ(η̂it(θ))− log σ̂it(θ)

)
, (6)

where the density estimate is f̂i,θ(η̂it(θ)) =
1

Thf

∑T
k=1Kf

(
η̂it(θ)−η̂ik(θ)

hf

)
. The heteroskedasticity-

consistent KML (HC-KML) estimator of the orthogonal mixing matrix is then obtained

by maximizing the non-parametric pseudo log-likelihood function (6), i.e.,

Q̂ ≡ Q(θ̂), with θ̂ = argmax
θ∈Θ

l̂T (θ) (7)

In implementing the estimator given in equation (7), the analyst faces the task of

selecting suitable kernel functions, namely Kf and Kσ, as well as bandwidth pa-

rameters, hf and hσ, for variance and density estimation. Notably, Hafner et al.

(2024) show the robust performance of the KML estimator by utilizing a Gaussian

kernel with Kf (x) = (2π)−1/2 exp(−x2/2) and the rule-of-thumb bandwidth estimator

hf = 1.06T 1/5 proposed by Silverman (1998). This choice minimizes the mean inte-

grated squared error under a Gaussian density. As shown by Hafner et al. (2024), the

kernel choice has minimal impact on the performance of the KML approach. For vari-

ance estimation, we employ the Epanechnikov kernel Kσ(x) = 3/4(1− x2)δ|x|≤1 due to

its favorable simulation performance documented by Herwartz et al. (2023). The uti-

lization of a symmetric kernel is also motivated by simulation-based evidence presented

in Boswijk (2005). While the impact of the kernel choice is generally less significant in

contexts with unbounded support, the compact support of variance smoothing means

that fixed kernel functions can introduce boundary biases in small samples. Such biases

can be mitigated by utilizing a more flexible kernel such as the beta kernel smoother

(see, e.g., Bouezmarni and Scaillet 2005).

6If analyst directly observes the mixed independent components, the moment condition on σit can

be dropped. We illustrate this in Section 3 with a volatility scenario (II).

13



Regarding the bandwidth parameter hσ, it is essential for it to increase at a rate slower

than T , though not too slowly. Detailed assumptions for hσ will be presented later.

A smaller value of hσ results in reduced local smoothing and increased resolution in

volatility estimation. However, it is crucial to acknowledge that employing a smaller

bandwidth necessitates the presence of higher-order moments. Specifically, in Assump-

tion B(i), p must be much larger than 1. As a benchmark bandwidth, we set hσ =
√
T

and explore the impact of varying its value in both our simulation experiments and

empirical applications, aiming to assess the sensitivity of our estimation outcomes to

different choices of hσ. While more advanced methods exist for bandwidth selection,

an extensive discussion of such techniques is beyond the scope of this paper. Detailed

discussions can be found in Foster and Nelson (1996) and Kristensen (2010). Nonethe-

less, it is important to bear in mind that the HC-KML estimator may benefit from

further refinements through the adoption of more sophisticated bandwidth selection

approaches.

2.5 Asymptotic properties

Denote σit(θ) the standard deviation of the (non-structural) shock ξit(θ) and ηit(θ) =

ξit(θ)/σit(θ) the corresponding independent component. Let fi,θ and fθ be the true

marginal and joint density functions of ηit(θ) and ηt(θ), respectively. For a given

θ ∈ Θ, the log-likelihood function based on the true variance and joint density is

logLT (θ) =
1

T

T∑
t=1

(
log fθ(ηt(θ))−

N∑
i=1

log σit(θ)

)
,

whereas the pseudo log-likelihood function based on the true marginal densities is

lT (θ) =
1

T

T∑
t=1

N∑
i=1

(log fi,θ(ηit(θ))− log σit(θ)) . (8)

It is important to note that at the true parameter θ0, components in ηt(θ0) are inde-

pendent and thus logLT (θ0) = lT (θ0). To demonstrate the consistency of the HC-KML

estimator, we make the following assumptions:

Assumption C.

(i) The true parameter value θ0 ∈ Θ lies in the parameter space Θ, a compact subspace

of RN(N−1)/2, on which the local identification condition holds.

(ii) For all i ∈ {1, . . . , N}, fi is uniformly continuous with bounded derivatives on its

support, and infx fi(x) ≥ ϵ1 > 0.

(iii) The kernel function in the density estimator satisfies: Kf (x) ≥ 0,
∫
Kf (x)dx = 1,∫

|Kf (x)|dx < ∞, |x|Kf (x) → 0 as |x|→ ∞, supxKf (x) < ∞, supx|dKf (x)/dx|< ∞
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and Kf (0) ≥ ϵ2 > 0. The bandwidth parameter satisfies: hf → 0 and Thf/log(T ) → ∞
as T → ∞.

(iv) The kernel function in the volatility smoothing satisfies
∫
Kσ(x)dx > 0. The

bandwidth parameter satisfies: hσ = αT β for some 0 < α < ∞ and (4p)−1 < β < 1,

where p is determined in Assumption B(i).

Let l(θ) :=
∑N

i=1 E[log fi,θ(ηit(θ))− log σit(θ)] denote the population objective function,

which has a unique maximum at the true parameter value θ0:

Lemma 1. For any ϵ > 0, there exists an open ball B(θ0, ϵ) with radius ϵ s.t.

sup
θ∈Θ∩B(θ0,ϵ)c

l(θ) < l(θ0).

Theorem 4. Under Assumptions A, B and C,

θ̂
p→ θ0

The estimator remains consistent, if some or all shocks are homoskedastic.

Remark 4. If for some i ∈ {1, . . . , N}, σ2
it = E[σ2

it] = 1, a.s. ∀t, θ̂ p→ θ0.

Studying the asymptotic distribution of the estimator θ̂ is known to be challenging due

to the random denominator in the score estimation (see, e.g., Chen and Bickel 2006,

Robinson and Taylor 2017). However, convergence of θ̂ to the normal distribution at

the usual rate can be derived under additional assumptions involving sampling-splitting

and trimming conditions. For notational convenience, we drop the index θ. Define the

density score as ψit(ηit) :=
f ′i(ηit)

fi(ηit)
and its estimator as ψ̃it(η̂it) :=

f̂ ′i(η̂it)

f̂i(η̂it)
, where f̂ ′

i(η̂it(θ))

is the kernel estimate of the first derivative of the density.7 To ensure that the sequence

of score estimates is bounded, we define the trimmed estimator

ψ̂it(η̂it) :=

ψ̃it(η̂it), if η̂it ≤M η̂
T , f̂i(η̂it) ≥ dT , f̂

′
i(η̂it) ≤Mψ

T f̂i(η̂it)

0, otherwise,
(9)

where we assume for constant sequences dT → 0, M η̂
T → ∞ and Mψ

T → ∞, as T → ∞.

This also ensures that the estimated variance sequence is bounded away from zero.

7For instance, if Kf is chosen to be a Gaussian kernel, the r-th derivative of the density can be

consistently estimated by

f̂
(r)
i (η̂it) =

1

Thr+1
f

T∑
k=1

(−1)rHr

(
η̂it − η̂ik

hf

)
Kf

(
η̂it − η̂ik

hf

)
,

where Hr(x) is the r-th Hermite polynomial (see, e.g., Bhattacharya 1967).
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Alternative trimming conditions for σ̂2
it have been discussed in Hansen (1995). For

simplicity, we will write ψit = ψit(ηit(θ0)). To establish asymptotic normality, we make

further assumptions.

Assumption D.

(i) For all i ∈ {1, . . . , N}, fi is symmetric about zero.

(ii) The bandwidth parameter hf satisfies hfM
ψ
T → 0, and T−1M η̂

T/h
3
f → 0.

(iii) The true parameter value θ0 ∈ interior(Θ).

Restricting the space of distributions, as in Assumptions D(i), has been widely adopted

in previous studies on adaptive estimation (see, e.g., Bickel 1982). This assumption

facilitates the proof of convergence of score estimates by enabling the establishment of

mean-squared convergence. Moreover, it implies that ψ′(X)X is a zero-mean random

variable and makes ψ̂it(η̂it) asymptotically close to ψ̂it(ηit). A proof of asymptotic

normality without the symmetry assumption may be achieved by relying on additional

smoothness conditions and more stringent constraints on the bandwidth sequence (see

Andrews 1994, Hafner et al. 2024). In Section 3, we demonstrate that the proposed

estimator performs well under skewed source distributions. Additionally, we employ

sample splitting, where ιT is a sequence of natural numbers such that ιT/T → ι ∈ (0, 1)

as T → ∞. The score estimator ψ̂it is constructed based on the sub-sample z1, . . . , zιT if

t ∈ {ιT+1, . . . , T}, and on the subsample zιT+1
, . . . , zT if t ∈ {1, . . . , ιT}. This effectively

makes ψ̂it i.i.d. and independent of ηit, thereby simplifying the proof.

Theorem 5. Under Assumptions A, B, C and D

√
T (θ̂ − θ0) ⇒ J (θ0)

−1

(
N∑
i=1

∫ 1

0

σ−1
i (s)dW i(s)

)
,

where W i(s) is a vector Brownian motion on CN(N−1)/2[0, 1] with covariance matrix

Ii(θ0) for all i = 1, . . . , N and

Ii(θ0) = E
[
ψ2
it

∂ξit(θ0)

∂θ

∂ξit(θ0)

∂θ⊤

]
,

J (θ0) = −
N∑
i=1

E
[
ψit

∂2ξit(θ0)

∂θ∂θ⊤
+ ψ′

it

∂ξit(θ0)

∂θ

∂ξit(θ0)

∂θ⊤

](∫ 1

0

σ−2
i (s)ds

)
,

with ∂ξit(θ0)
∂θ

:= ∂ξit(θ)
∂θ

|θ0 and ∂2ξit(θ0)
∂θ∂θ⊤

:= ∂2ξit(θ)
∂θ∂θ⊤

|θ0.

The asymptotic covariance matrix can be consistently estimated by replacing expec-

tations with sample averages and the score with its nonparametric estimate. Detailed

expressions and some examples are provided in the proof. Notably, θ̂ has the same

asymptotic distribution as the KML estimator, if the latent shocks are homoskedastic.
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Remark 5. If σ2
it = E[σ2

it] = 1, a.s. ∀t,∀i,
√
T (θ̂−θ0) ⇒ N (0,J (θ0)

−1I(θ0)J (θ0)
−1) ,

where I(θ0) =
∑N

i=1 Ii(θ0).

It is important to note that, when applying to identification of macroeconomic models

such as factor models, consideration must be given to the sampling uncertainty of zt,

which depends on the reduced-form covariance matrix Ω. If xt is not observed but also

estimated as in the case of SVARs, the estimated zt will depend on VAR slope param-

eters. As long as there exists consistent estimators for these reduced-form parameters,

the suggested estimator for the structural parameter remains consistent under our as-

sumption due to a continuous mapping theorem. However, the asymptotic variance of

θ̂ will have a different form than the one presented in Theorem 5. It is feasible to devise

a one-step estimator that concurrently estimates both the reduced-form and structural

parameters, and attains the semiparametric lower bound, as exemplified in the work

of Fiorentini and Sentana (2023). Such an estimator could exhibit improved efficiency

than our chosen approach. We focus on a two-step estimator as it offers the advantage

of separating the estimation of structural parameters from that of the reduced-form

parameters, facilitating comparisons between alternative identification schemes. To

gauge the effect of estimating xt on the finite-sample performance, we conduct simu-

lation exercises in the next section. To jointly account for the estimation uncertainty

of both the reduced-form and structural parameters, we adopt a residual-based mov-

ing block bootstrap approach in the empirical application (Brüggemann et al. 2016).

The block bootstrap can correctly replicate the fourth-order moments of the structural

shocks that are present in the asymptotic covariance of Ω. While the asymptotic prop-

erties of the bootstrap approach are intriguing topics in their own right, they leave the

scope of our study.

3 Monte Carlo experiments

In this section, we conduct two Monte Carlo experiments to assess the finite-sample

performance of the suggested identification approach under co-heteroskedasticity with

observed mixed shocks and in an estimated VAR process.

3.1 Data generation and volatility scenarios

Our baseline analysis focuses on a bivariate model with observable variables zt given

by zt = Qξt. Here, the elements in the vector ξt share a common volatility process σt,

where ξit = σtηit for i = 1, 2, and σt is independent of ηt. To investigate estimator

performance under various types of non-Gaussianity, we use six alternative distribu-

tions for the vector of independent components ηt, encompassing leptokurtic (Student’s
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t and exponential mixture), platykurtic (uniform and symmetric Gaussian mixture),

and skewed (asymmetric Gaussian mixture and exponential) distributions. These dis-

tributions are visualized in the left-hand-side panel of Figure 3. To ensure compara-

bility, we adjust the independent components ηt simulated from all data-generating

distributions to have zero mean and unit variance across populations. Additionally, we

consider two volatility-generating processes, which allow us to generate both stochastic

autoregressive volatility and level shifts, i.e.,

V(a)
t (c1, c2) = exp

(
c1T

−1/2ht
)
and V(b)

t (κ, τ) = (1− Gt(κ, τ))ς22 + Gt(κ, τ)ς23 ,

where ht = (1−c2T−1)ht−1+ζt, ζt
iid∼ N (0, ς21 ), and Gt(κ, τ) = (1 + exp(−κ(t− ⌊Tτ⌋))−1,

for finite constants c1, c2, ς1, ς2, ς3, κ ∈ R and τ ∈ (0, 1). The volatility process V(a)
t has

been considered in previous studies (see, e.g., Hansen 1995) as a discrete version of a

continuous stochastic process. It is well-known that T−1/2h⌊sT ⌋ ⇒ Wc2(s) with Wc2(s)

being a diffusion process, such that dWc2(s) = −c2Wc2(s) + dW (s), where W (s) is a

standard Brownian motion. The local-to-unity specification (1−c2T−1) in the represen-

tation of ht is motivated by empirical estimates of stochastic autoregressive volatility

processes (see, e.g., Harvey et al. 1994) and allows for unit roots (c2 = 0) as well as

roots close to unity. The volatility process V(b)
t has been considered in Lütkepohl and

Netšunajev (2017) as a smooth transition in volatility modeled by a logistic transition

function Gt(κ, τ). Coefficients κ and τ capture the smoothness and location of the

transition, respectively.

I

1:Tob

si
g2

II

1:Tob

si
g2

III

1:Tob

si
g2

IV

1:Tob

si
g2

V

1:Tob

si
g2

Figure 2: A random realization of σ2
t under the volatility scenarios (I) – (V) (T =

1, 000).

For our analysis, we set ς2 = 1, ς1 = ς3 = 3 and consider five alternative volatility sce-

narios: (I) homoskedasticity, (II) – (III) autoregressive processes with distinct degrees

of persistence, and (IV) – (V) volatility shifts occurring at the center of the sample

18



(τ = 0.5) with varying degrees of smoothness. Formally, we have

σ
2,(I)
t = V(a)

t (0, c2) = 1

σ
2,(II)
t = V(a)

t (1, T/10)

σ
2,(III)
t = V(a)

t (1, 0)

σ
2,(IV )
t = V(b)

t ((T/24)−1, 0.5)

σ
2,(V )
t = lim

κ→∞
V(b)
t (κ, 0.5) = 1 · (1− δt>T/2) + 9δt>T/2.

In scenario I, the shocks ξt are generated under homoskedasticity. For scenarios II

and III, the stochastic component is given by ht = 0.9ht−1 + ζt and ht = ht−1 + ζt,

representing stationary autoregressive and unit root processes, respectively. Scenarios

IV and V capture volatility shifts, with scenario IV exhibiting a smooth transition and

scenario V involving an instant change at t = T/2. We consider four sample sizes:

T = 50, 100, 200, and 1, 000. Figure 2 displays exemplary realizations of each of the

five volatility scenarios for a sample size of T = 1, 000.
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Figure 3: The left panel displays six data-generating-distributions, including leptokur-

tic (Student’s t and exponential mixture), platykurtic (uniform and symmetric Gaus-

sian mixture), and skewed (asymmetric Gaussian mixture and exponential) distribu-

tions. The right panel presents boxplots of the estimation error for alternative ap-

proaches with sample sizes T = 100 and 1, 000. Thick lines indicate the medians.
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3.2 Implementation of alternative identification approaches

Following the generation of shocks under alternative volatility scenarios, the structural

shocks in ξt are mixed by an orthogonal matrix Q(θ), where θ is uniformly sampled

from [−π; π]N(N−1)/2. The mixed shocks zt are observed, and the structural parameters

in Q are then identified using various approaches.

First, we employ the unadjusted KML approach that relies on assumption (i) in The-

orem 1. For kernel density estimation, we follow Hafner et al. (2024) and adopt a

general and agnostic setting with a Gaussian kernel and a rule-of-thumb bandwidth.

Second, we utilize the novel HC-KML identification approach by adjusting the compo-

nents in Q(θ)⊤zt with their estimated standard deviations. The Epanechnikov kernel

is employed for variance smoothing with the bandwidth chosen as T 1/2. It is worth

noting that alternative kernels and bandwidth choices, such as T 1/3, T 2/3, T 1/4, and

T 3/4, yield similar performance. Third, we report estimates obtained by maximizing

the function (5) assuming Σt is known. While this estimator, denoted as TV-KML, is

infeasible in practice, it helps to gauge the efficiency loss caused by variance smooth-

ing. Fourth, we consider ML estimation based on unrestricted two-component DLSMN

densities, as also studied in the Monte Carlo analysis of Fiorentini and Sentana (2023)

and Hafner et al. (2024). Furthermore, we employ a GMM estimator by imposing a

set of asymmetric third- and fourth-order moment conditions, given by:

E[ξ2itξjt] = 0, and E[ξ3itξjt] = 0, for i ̸= j and i, j ∈ {1, . . . , N}. (10)

It is worth highlighting that these asymmetric moment conditions remain valid under

(co-)heteroskedasticity.8 Finally, we identify the matrix Q by means of PML based on a

Student-t and a Gaussian mixture pseudo density, resulting in estimators PML(+) and

PML(−), respectively. For a comprehensive comparison between the KML approach

and a broader variety of ICA procedures (such as dCovICA, FastICA and JADE etc.)

under a wider range of distribution scenarios, we refer the reader to the Section 3 of

Hafner et al. (2024). To evaluate the estimates obtained from the alternative proce-

dures, we use the Amari distance as a measure of estimation error. The Amari distance

8Let ξit = σitηit, then E[ξ2itξjt] = E[σ2
itη

2
itσjtηjt] = E[σ2

itσjt]E[η2it]E[ηjt] = 0 and E[ξ3itξjt] =

E[σ3
itη

3
itσjtηjt] = E[σ3

itσjt]E[η3it]E[ηjt] = 0, where the second and fourth equalities hold due to the

independence between σit and ηit for all i, j and the independence between ηit and ηjt for all i ̸= j.

The argument for co-heteroskedasticity is similar. However, it is worth mentioning that under co-

heteroskedasticity, these conditions alone (i.e., without mutual independence) may not be sufficient

for identification in the lack of skewness (see Keweloh 2021).
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(see, e.g., Bach and Jordan 2003) is given by:

dAmari(Q, Q̂) =
N∑
i=1

(∑N
j=1|rij|

maxj|rij|
− 1

)
+

N∑
j=1

(∑N
i=1|rij|

maxi|rij|
− 1

)
, with rij = (Q−1Q̂)ij.

(11)

The Amari distance is designed to be invariant to sign slips and column permutations,

making it a suitable measure for comparing estimated matrices. Additionally, we com-

pute the standard deviation of the Amari distance to provide a measure of uncertainty

associated with the estimation error.

Vola. Scenario I II III IV V I II III IV V

T = 50 T = 100

KML .094 (.115) .228 (.242) .304 (.277) .252 (.248) .281 (.268) .056 (.063) .107 (.143) .248 (.262) .185 (.229) .190 (.230)

HC-KML .141 (.167) .171 (.192) .163 (.183) .146 (.170) .156 (.183) .077 (.102) .090 (.110) .090 (.112) .075 (.088) .082 (.109)

TV-KML .091 (.106) .103 (.132) .100 (.130) .096 (.119) .098 (.119) .056 (.062) .054 (.068) .052 (.058) .059 (.072) .057 (.066)

DLSMN .139 (.164) .280 (.264) .361 (.294) .396 (.303) .417 (.306) .107 (.148) .162 (.203) .346 (.299) .403 (.322) .406 (.304)

GMM .338 (.300) .412 (.288) .445 (.292) .442 (.279) .455 (.284) .277 (.296) .337 (.281) .429 (.287) .436 (.269) .432 (.270)

PML(+) .360 (.308) .404 (.299) .416 (.306) .426 (.307) .434 (.306) .345 (.313) .364 (.306) .398 (.312) .408 (.322) .422 (.320)

PML(−) .491 (.322) .458 (.310) .461 (.316) .443 (.314) .432 (.314) .489 (.340) .488 (.339) .454 (.316) .440 (.329) .447 (.329)

T = 200 T = 1, 000

KML .034 (.040) .048 (.060) .198 (.255) .101 (.175) .123 (.208) .012 (.011) .014 (.013) .143 (.269) .029 (.096) .033 (.112)

HC-KML .041 (.040) .046 (.046) .048 (.049) .044 (.043) .044 (.042) .014 (.012) .015 (.013) .015 (.012) .014 (.012) .015 (.012)

TV-KML .034 (.032) .032 (.029) .033 (.030) .032 (.034) .033 (.030) .012 (.011) .013 (.012) .012 (.010) .012 (.010) .012 (.010)

DLSMN .074 (.121) .088 (.130) .304 (.293) .389 (.333) .376 (.323) .048 (.106) .053 (.125) .252 (.316) .346 (.368) .377 (.367)

GMM .216 (.278) .225 (.255) .402 (.293) .444 (.261) .436 (.263) .093 (.207) .092 (.200) .335 (.291) .389 (.255) .382 (.255)

PML(+) .315 (.321) .345 (.327) .377 (.325) .405 (.342) .426 (.339) .307 (.351) .320 (.356) .346 (.364) .410 (.393) .404 (.388)

PML(−) .518 (.371) .490 (.364) .476 (.334) .435 (.341) .420 (.335) .493 (.414) .496 (.414) .494 (.369) .389 (.337) .394 (.333)

Table 1: Mean and standard deviation (in parentheses) of the estimation error for

alternative methods under different volatility scenarios labeled from I to V, and various

sample sizes T , with independent components being randomly sampled from six data-

generating distributions. Boldface numbers indicate the lowest mean and standard

deviation of estimation error among the feasible methods (i.e., excluding TV-KML).

3.3 Baseline simulation results

Figure 3 displays the simulation performance of alternative estimators in terms of esti-

mation errors, conditioned on specific shock distributions (leptokurtic, platykurtic, and

skewed), for sample sizes T = 100 and T = 1, 000. Beyond showcasing the consistent

performance of the practically infeasible TV-KML estimator and its feasible HC-KML

counterpart, both of which exhibit remarkable robustness across various source dis-

tributions and volatility scenarios, the presented simulation results offer three pivotal

insights into the performance of KML, DLSMN, PML, and GMM estimation.

First, both the KML and DLSMN estimators exhibit vulnerabilities when encounter-

ing platykurtic distributions of independent components with non-stationary volatility

(scenarios III, IV, and V). Specifically, in scenario III, characterized by platykurtic

distributions alongside nonstationary volatility, KML estimation shows inconsistency,
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while the DLSMN approach falters in the presence of a smooth or instantaneous level

shift in shock variance. Second and unsurprisingly, the performance of PML hinges on

the choice of an appropriate pseudo density. Specifically, when underlying independent

components are drawn from platykurtic distributions, adopting a Student-t pseudo

density (PML(+)) leads to significant estimation biases that persist even in asymp-

totic settings. Similarly, the use of a Gaussian mixture pseudo density (PML(−))

lacks consistency in detecting leptokurtic independent components. Interestingly, the

PML(+) estimator outperforms PML(−) when latent independent components follow

a skewed distribution. Third, the GMM approach displays substantial distortions when

dealing with heavy-tailed (i.e., leptokurtic) source distributions, even in situations of

homoskedasticity or stationary volatility. In larger samples (T = 1, 000), GMM esti-

mation suffers from pronounced nonstationary heteroskedasticity (volatility scenarios

III, IV, and V), which may lead to the emergence of markedly outlying observations.

These outliers make it especially difficult to obtain accurate estimate of the asymptot-

ically efficient GMM weighting matrix, which involves estimating up to eighth-order

moments (such as E[ξ3itξjtξ3ktξlt]) (see Keweloh 2023 for discussion).

Table 1 documents performance statistics, including means and standard deviations,

under alternative sample sizes, where shocks are randomly sampled with equal proba-

bility from six data-generating distributions. In the homoskedastic baseline scenario,

KML, DLSMN and GMM approaches demonstrate consistent performance while HC-

KML estimator presents a marginal inefficiency when contrasted with the benchmark

KML estimator in small samples. When considering co-heteroskedasticity and among

the KML variations, the infeasible TV-KML estimator, which employs true standard

deviations for shock rescaling, (unsurprisingly) emerges as the most effective regard-

less of the specific volatility process. Intriguingly, the feasible HC-KML estimator

yields parameter estimates that are only marginally less precise. Finally, the baseline

KML estimator demonstrates accurate performance across all distributional scenarios

and various heteroskedasticity specifications for underlying independent components.

However, in cases of non-stationary volatility, the KML estimator’s average large sam-

ple performance (T = 1, 000) appears to slightly trail behind that of TV-KML and

HC-KML. Further simulation results are documented in OA A.

3.4 Performance in estimated VAR processes

In a second simulation exercise, we consider a three-dimensional VAR(1) model, wherein

the independent components ηt are mapped to observable variables in yt through the
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Figure 4: The estimation error for alternative approaches with sample sizes T = 200

and 1, 000 as boxplots, where xt are estimated from a VAR process.

following DGP:

yt −


0.79 0.00 0.25

0.19 0.95 −0.46

0.12 0.00 0.62

 yt−1 = BΣ
1/2
t ηt,

where the autoregressive slope parameter is calibrated based on an economic model

studied by An and Schorfheide (2007) and was previously employed in related simula-

tion experiments (Lütkepohl and Schlaak 2022).9 Similar to the baseline experiment,

ηt are generated from six alternative distributions, and structural shocks in ξt share a

common volatility process σt. We consider four volatility scenarios (I, II, IV and V)

which are compatible with the stable VAR setting. To simulate the structural mixing

matrix B, we first draw N2 standard Gaussian variables and store them in a N × N

matrix denoted by M in each experiment. Then, a covariance matrix is generated as

Ω̃ = M⊤diag(N, . . . , 1)M and standardized Ω = Ω̃ diag(1/ω1, . . . , 1/ωN), where ω
2
i is

the i-th main diagonal element of Ω̃. Finally, B = Ω1/2Q(θ) where rotation angles θ

are uniformly drawn from [−π; π]N(N−1)/2.

In each experiment, the analyst observes values of {yt}Tt=1, fitted a VAR(1) model,

estimates both the slope parameter and covariance matrix Ω with least squares, from

which the estimated residual vector x̂t and whitening matrix Ω̂1/2 are extracted. Then,

based on whitened residuals ẑt, the analyst identifies the orthogonal mixing matrix Q̂

using alternative ICA approaches and obtains estimates B̂ = Ω̂1/2Q̂. We document

dAmari(B, B̂) for six feasible ICA approaches, in four volatility scenarios under two al-

9The roots of the reverse characteristic polynomial implied by the process are 1.05, 1.11 and 1.95.

Thus, yt is stable with a certain degree of persistence given the two roots close to unity.
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ternative sample sizes T = 200 and T = 1, 000. The simulation results are displayed

in Figure 4. Notably, the conclusions drawn for the baseline experiment remain un-

changed. In particular, HC-KML still exhibits very favorable finite-sample properties

when the analysis is conditional on an estimated VAR process.

4 A small scale US monetary policy model

In this section, we present the outcomes obtained by applying the proposed identifi-

cation scheme and the newly developed HC-KML estimator to a small-scale monetary

policy model for the US economy. First, we introduce the VAR model under scrutiny,

outline the implementation details, and subsequently discuss the implications of the

structural model, as demonstrated by a benchmark non-parametric variance estima-

tor. Furthermore, we rationalize the model choice within the context of the implied

variance estimators and their relationship with information-rich indicators of macroe-

conomic uncertainty (Jurado et al. 2015). As the yielded structural findings hinge on

the implementation of variance smoothing, we conclude by scrutinizing the robustness

of core structural model features.

4.1 Model representation and structural shocks

As an empirical illustration, we apply the novel identificaion approach to analyze the

impact of US monetary policy shocks on real economic activity. For this purpose,

we examine a three dimensional system of jointly endogenous variables conditional on

changes in the global price for crude oil (i.e., refiner acquisition cost of imported crude

oil) that we consider as an exogenous variable. In the vein of stylized trinity models,

the set of endogenous variables comprises a measure of real economic activity, inflation

and monetary policy indicator. More specifically, our VAR consists of the output gap

as the deviation of the natural logarithm of real GDP from a measure of log potential

GDP, annualized inflation as 400× the first difference of the natural logarithm of the

quarterly GDP deflator, and a treasury bond rate with constant maturity of one year.10

The deterministic components of the VAR include a constant term and a linear trend.

A similar model with exogenous crude oil prices has been used in Gouriéroux et al.

(2017) to illustrate the empirical performance of their pseudo ML estimator. Notably,

our model choice distinguishes itself from Gouriéroux et al. (2017) by utilizing a one-

10All endogeneous variables are constructed utilizing data downloaded from the FRED database

(FRED mnemonic in parentheses): real GDP (GDPC1), real potential GDP (GDPPOT), GDP deflator

(GDPDEF), and yields of 1 year treasury bill (GDPDEF). The real oil price series is obtained on the basis

of the refiner acquisition cost of imported crude oil provided by the US Department of Energy, and

deflated by the US consumer price index (CPIAUCSL).
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year treasury rate as an indicator of monetary policy conduct, instead of the federal

funds rate. This choice takes into account the shift in monetary policy communication

strategies over recent years, which places emphasis on steering expectations about

future interest rate paths. This is particularly important given that in comparison

with the policy analysis for the period 1959Qu4 until 2015Qu1 in Gouriéroux et al.

(2017), the quarterly data used for our analysis spans a slightly shorter period from

1975Qu4 until 2019Qu4 but includes more recent pre-Covid observations. It has been

shown that medium-maturity bond rates can serve as valuable indicators of the Federal

Reserve’s intentions, potentially revealing insights about surprises in forward guidance

strategies (Gertler and Karadi 2015, Jarociński and Karadi 2020). This conditioning of

the jointly endogenous variables on commodity market information offers an alternative

to utilizing larger-dimensional SVAR models, as considered by Uhlig (2005) and Arias

et al. (2019). Based on the model selection criteria AIC and BIC, we opt for a lag order

of p = 4, which results in a dataset comprising T = 173 observations (see Tables B.1

to B.3 in OA B for diagnostic tests on remaining serial correlation, fundamentalness,

and non-Gaussianity).

The small-scale model facilitates the recovering of three stylized macroeconomic shocks,

each characterized by well-established effect patterns. In terms of the role played by

‘positive’ shocks, we observe that (i) a demand shock is anticipated to lead to an

upswing across all macroeconomic aggregates (including output, prices, and interest

rates), (ii) a supply shock brings about higher prices while tempering economic activity,

and (iii) a contractionary monetary policy shock leads to elevated interest rates coupled

with subdued inflation. It’s noteworthy that while we achieve, akin to the approach

of Gouriéroux et al. (2017), a focus on a lower-dimensional system by conditioning on

crude oil prices, the distinct property of monetary policy shocks, causing interest rates

and prices to move in opposing directions, remains a distinctive feature even in more

complex monetary policy SVARs with higher dimensions (as discussed, for example,

by Montiel Olea et al. 2022). Consequently, one could contend that any potential

adverse impacts of excluding commodity prices from the set of endogenous variables

are likely to be minimal, particularly concerning the identification of the monetary

policy shock.11

11Montiel Olea et al. (2022) illustrate, through simulations using data from a medium-scale DSGE

model of Smets and Wouters (2007) with seven shocks, that the monetary policy shock retains near-

invertibility within a three-dimensional model. Moreover, Herbst and Schorfheide (2012) emphasize

that the predictive performance of a larger-scale model, akin to Smets and Wouters (2007), doesn’t

necessarily surpass that of a related smaller-scale model.
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4.2 Implementing the identification approach

To jointly identify all three shocks using the proposed estimator, a selection of ker-

nel functions and bandwidth parameters is necessary, both for non-parametric den-

sity estimation and variance smoothing. As elaborated in Section 2 and supported

by the evidence gathered from the Monte Carlo analysis in Section 3, we adopt the

Gaussian kernel and a rule-of-thumb bandwidth for estimating the joint multiplicative

density of standardized orthogonalized model residuals ξit/σ̂it. Regarding the non-

parametric variance estimation, we opt for the Epanechnikov kernel. With regard to

bandwidth selection for variance estimation, however, the common practice of choosing

global smoothing parameters through leave-one-out cross-validation criteria is unfea-

sible here. This stems from the fact that the empirical counterparts of leave-one-out

variance estimators, namely scaled squared shocks (ξ2it), remain latent, precluding the

determination of cross-validation criteria. Recognizing the essential role of the band-

width parameter in non-parametric variance estimation, we first evaluate the HC-KML

estimator’s performance concerning a benchmark bandwidth choice.

Given the quarterly nature of our sample observations, we consider a discrete range of

alternative bandwidth choices: hσ = 4, 8, 12, and 16, approximately corresponding to

0.3T 1/2, 0.6T 1/2, 0.9T 1/2, and 1.2T 1/2, and ultimately select hσ = 8 for benchmark re-

sults. Subsequently, we provide explicit details on the robustness of structural estimates

implied by these benchmark outcomes, supporting their plausibility. Supplementary

IRFs derived from these alternative bandwidth parameters are available in OA C.

4.3 Structural impact multiplier and impulse responses

The estimated structural impact multiplier is given by

B̂ =


0.571
(7.182)

−0.107
(−0.607)

0.037
(0.261)

0.206
(0.879)

0.765
(6.549)

−0.003
(−0.017)

0.16
(1.073)

0.019
(0.175)

0.592
(4.517)

 ,
where the values in parentheses represent the corresponding t-ratios obtained through

a residual-based moving block bootstrap with 1,000 replications.12 Importantly, the

sign pattern of the estimated impact effects of the structural shocks in B̂ facilitates

a distinctive and economically plausible labeling of ξ1t, ξ2t, and ξ3t as the demand,

supply, and monetary policy shocks, respectively. Particularly noteworthy is that the

12As evident from test results documented in Tables B.3 and B.4 in OA B, the model implied

structural shocks align with the identifying Assumptions A.
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monetary policy shock is the only one that induces inflation and interest rates to move

in opposite directions upon impact. The structural IRFs are depicted in Figure 5.

While demand shocks exhibit a positive impact on all variables (as seen in the first

row of Figure 5), their effects are transitory. A supply shock, presented in the sec-

ond row of Figure 5, elicits opposite movements in output and prices upon impact,

and is the only shock in the system having a significant long-run effects on the eco-

nomic activity. Turning to the effects of monetary policy shocks, the third row of

Figure 5 indicates transient and statistically insignificant output and price puzzles.

Notably, the U-shaped reaction of economic activity attains its peak magnitude after

six quarters and eventually levels off. In quantifiable terms, an unanticipated monetary

tightening leading to a median impact increase of 55 basis points in one-year treasury

rates induces a 0.09% reduction in the output gap after six quarters. Regarding in-

flation control, a discernible downward pressure on inflation becomes evident around

two quarters following a monetary contraction, with significance manifesting after five

quarters. This impact remains noteworthy in the medium to long run, spanning up

to four years. To further support the economic content of the monetary policy shocks

identified by the HC-KML approach, a comparative assessment with alternative mon-

etary policy measures, suggested by the literature based on information-rich models

or plausible narrative data, is intriguing. In this context, we consider monetary policy

shocks extracted by Smets and Wouters (2007) from a medium-scale DSGE model,

the narrative shocks constructed by Romer and Romer (2004) based on Federal Open

Market Committee minutes, and the SVAR shocks identified by Herwartz and Wang

(2023) using a six-dimensional model using sign restrictions and independence criteria.

Analyzing overlapping sample periods, we find substantial and statistically significant

correlations between the HC-KML monetary policy shocks and their counterparts from

the literature, with correlation coefficients of 0.48 (113 observations), 0.61 (125), and

0.67 (141), respectively.

In summary, our analysis underscores the effectiveness of US monetary policy in shaping

medium to long-term inflation and reveals that its impact on economic activity is tran-

sitory within intermediate horizons. Next, we turn to the estimated variance patterns

implied by the model. Considering the strides made by recent research in macroeco-

nomic uncertainty, starting with Bloom (2009), the time-varying variance patterns we

estimate might offer valuable information to corroborate the identified model. If these

variance estimates align with the fundamental findings of the uncertainty literature

(see, Bloom 2014 for a literature review), it would provide cross-confirmation. In case

that the estimated variance patterns σ̂it2 significantly diverge from established results
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in this literature, it raises the possibility of criticism towards the adopted HC-KML

model and prompts consideration for potential adjustments in bandwidth choice.

ξ3 → Output Gap ξ3 → Inflation ξ3 → Interest Rate

ξ2 → Output Gap ξ2 → Inflation ξ2 → Interest Rate

ξ1 → Output Gap ξ1 → Inflation ξ1 → Interest Rate
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Figure 5: Structural impulse responses to demand shock (ξ1), supply shock (ξ2) and

monetary policy shock (ξ3) based on a hσ = 8 bandwidth. The solid, dashed and

dotted lines indicate the median, 68% and 90% confidence intervals from a moving

block bootstrap (recursive design) with 1,000 replications, respectively. See Figures C.1

and C.2 in OA C for very similar IRFs estimates resulting from hσ = 4 or hσ = 12.

4.4 Implied variance estimates

The first three panels of Figure 6 illustrate the model-implied estimated variances of

the structural shocks, demonstrating the diverse curves that result from varying band-

width choices: hσ = 4, 8, 12. To facilitate the detection of variance heterogeneity,

horizontal lines indicate the unconditional variance of unity. Overall, these alternative

smoothing parameters offer comparable insights into the secondary-order characteris-

tics of the shocks. Several noteworthy observations pertain to the variance estimates,

particularly those derived from the benchmark bandwidth hσ = 8. First, aligning well

with the narrative of the Great Moderation era, the shock variances tend to be moder-

ate during the mid-1980s until the mid-2000s, while significant variances characterize
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Figure 6: Upper panel: Variance estimates of demand, supply and monetary policy

shocks using bandwidths hσ = 4 (red solid), hσ = 8 (blue dashed) and hσ = 12 (green

dot-dashed). Dashed horizontal lines indicate the unconditional unit variance. Lower

panel: Variance estimates based on hσ = 8 (dashed) compared to the macro uncertainty

estimates of Jurado et al. (2015) (solid), expressed in standardized units.

the late 1970s and early 1980s. It is vital to note that our identification approach does

not enforce any pre-existing knowledge or consensus on moment structure. Second,

the estimated variances of the shocks labeled as demand and supply shocks exhibit a

remarkable degree of comovement across significant portions of the sample, indicating a

dependence in their second-order moment. When considering bandwidths of hσ = 4, 8,

and hσ = 12, the variance processes of both shocks show correlations of 0.51, 0.77,

and 0.82, respectively. Such pronounced comovement profiles hold potential implica-
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tions for ICA-based identification schemes that overlook such dependence patterns.

Notably, parametric ML, pseudo ML, or kernel ML estimators may fail to capture this

co-heteroskedasticity, treating the relevant components as jointly independent. Third,

from a broader perspective, the data-driven non-parametric variance estimators do not

seem to conform to stylized representations like structural breaks, smooth transitions,

or conditional autoregressive heteroskedasticity. Consequently, identification schemes

relying on explicit formalizations of informative (co)variance shifts might be challeng-

ing or even infeasible to apply in this context. Intuitively, the estimated variance of

the latent structural shocks contribute to prediction uncertainty in the real and finan-

cial economies. Greater variance may complicate the formation of reliable predictions

for macroeconomic aggregates, and contribute to the overall level of macroeconomic

uncertainty. The lower panel of Figure 6 displays the variance estimators based on the

benchmark bandwidth parameter (adjusted through centering and rescaling) in con-

junction with the information-rich measures of macroeconomic uncertainty proposed

by Jurado et al. (2015).13 It is noteworthy that the time series of estimated variances

of structural shocks largely align with the evolution of the macroeconomic uncertainty

measure. Specifically, the variances of demand and monetary policy shocks exhibit

significant comovement with macroeconomic uncertainty, while the variance of supply

shocks in the late 1970s and 2007 appears to anticipate peaks in macroeconomic uncer-

tainty. Interestingly, both periods experienced substantial increases in international oil

prices (see Hamilton 2009 for a comparative analysis of the causes and consequences of

the oil price surge in 2007-08). This implies that while the analysis conditions against

the first-order-moment effects of commodity pricing by focusing on crude oil prices,

oil markets could play a pivotal role in driving variations in latent supply shocks and

subsequent macroeconomic uncertainty. In terms of explicit linear correlation mea-

sures, the variances of demand, supply, and monetary policy shocks (derived from

the benchmark choice hσ = 8) exhibit linear correlations with macroeconomic uncer-

tainty of 0.51, 0.35, and 0.62, respectively. Consequently, it can be concluded that the

non-parametric variance estimators find substantial validation from the intricate and

information-rich uncertainty indicators proposed by Jurado et al. (2015).

4.5 Robustness

As noted earlier, we considered a discrete set of alternative bandwidth parameters that

involve ‘averaging’ squared residuals within time windows spanning one, two (bench-

13Macroeconomic and financial uncertainty indices of Jurado et al. (2015) are constructed from

an extensive collection of macroeconomic and financial time series and can be accessed from Syd-

ney C. Ludvigson’s website https://www.sydneyludvigson.com..
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mark), and three years of observations. Among these alternatives, selecting a larger

bandwidth parameter will yield smoother patterns of implied variances in comparison

to benchmark results, while opting for a smaller parameter could lead to more sensitive

variance estimators. This distinction is evident from the top three panels of Figure 6.

With the confirmation of variance estimators through macroeconomic uncertainty, as

detailed above for the benchmark choice hσ = 8, it becomes intriguing to explore the

repercussions of varying bandwidth choices for variance estimation. Three key ob-

servations are worth highlighting in this context. First, adopting a finer bandwidth

of hσ = 4 preserves the described confirmation, as the implied variances of demand,

supply, and monetary policy shocks still maintain linear correlations with the macroe-

conomic uncertainty measure of 0.55, 0.29, and 0.64, respectively, which are of com-

parable magnitude to the benchmark outcomes. Second, opting for larger bandwidths

encompassing three or four years of observations (hσ = 12, 16) generates distinctive

outcomes. While the transition to hσ = 12 upholds the integrity of the correlations

of interest,14 a selection of hσ = 16 appears to excessively smooth the data, leading

to a notably less accurate representation of macroeconomic uncertainties. Specifically,

the implied variances of demand, supply, and monetary policy shocks correlate linearly

with macroeconomic uncertainty at 0.46, 0.35, and 0.52, respectively. Third, moving

towards even larger bandwidth choices, such as hσ = ∞, may eventually compromise

the ability to identify independent components, as certain shocks are likely influenced

by co-heteroskedasticity for substantial portions of the analyzed sample period.

Beyond the realm of alternative variance estimators capturing the core patterns of

macroeconomic uncertainties, it is worth examining the resilience of structural model

characteristics under varying bandwidth selections. In this context, the patterns of

structural IRFs remain remarkably consistent with benchmark results when opting for

either a more sensitive (hσ = 4) or less sensitive (hσ = 12) bandwidth parameter.

However, expanding the bandwidth further towards hσ = 16 leads to a combination of

an output and price puzzle. Comparable findings are obtained for the KML approach,

which is implicit in the choice of hσ = ∞.15

In conclusion, the outcomes attributed to bandwidth selections of hσ = 16 and hσ = ∞
prompt us to dismiss the implied structural models. The former is susceptible to

14In this case, the implied variances of demand, supply, and monetary policy shocks maintain linear

correlations with macroeconomic uncertainty of 0.51, 0.35, and 0.58, respectively.
15Similarly, utilizing the PML estimator using a Student-t distribution with five degrees of freedom

as the pseudo density (i.e., PML+ in the terminology of Section 3) also results in puzzling impact

effects of monetary policy signals and an inability to identify any shock with the characteristic impact

effects of demand shocks.
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over-smoothing second-order features of structural shocks and results in an output

puzzle, while the latter is prone to estimation bias due to the documented dependence,

especially involving demand and supply shocks, in the form of co-heteroskedasticity.

5 Conclusion

Statistical identification approaches that utilize higher-order moments have become es-

sential toolkits in structural analysis for econometricians. This paper reviews the iden-

tifying assumptions underlying prevalent approaches, such as those employing time-

varying volatility or assuming independence under non-Gaussianity, and demonstrates

that both approaches overlook the empirically relevant scenario where shocks share

common volatility processes, known as co-heteroskedasticity. We introduce a novel

statistical identification scheme that accommodates latent shocks with second-order

moment features of unknown form and propose a new heteroskedasticity-consistent

kernel-based maximum likelihood (HC-KML) estimator. We establish the estimator’s

consistency under standard regularity conditions and demonstrate its asymptotic nor-

mality. Notably, the suggested estimator recovers the unique linear combinations of

heteroskedastically rescaled independent components regardless whether the shocks are

(co-)heteroskedastic or homoskedastic. Through extensive Monte Carlo simulations, we

demonstrate its favorable finite-sample properties. Specifically, the performance of the

feasible HC-KML estimator is on par with the infeasible counterpart that employs the

true variances for rescaling orthogonalized residuals.

In an empirical application, we showcase the effectiveness of the new identification

approach within the context of a small-scale US monetary policy model incorporating

exogenous crude oil prices, akin to the empirical analysis conducted by Gouriéroux et al.

(2017). Our empirical findings shed light on the significance of co-heteroskedasticity

issues surrounding model-implied demand and monetary policy shocks. The structural

estimates derived from the novel HC-KML estimator reveal that an unexpected mone-

tary tightening effectively manages inflation over a medium-term horizon of one year.

As a valuable complement augmenting the structural analysis, the estimated variance

profiles of latent shocks exhibit a strong alignment with a benchmark information-rich

measure of macroeconomic uncertainty (Jurado et al. 2015).
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Jarociński, M. (2024): “Estimating the Fed’s unconventional policy shocks,” Journal

of Monetary Economics, 103548.
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A Proofs of theorems

Lemma A.1 (Darmois-Skitovich). For two scalar random variables Y1 and Y2 of the

linear form

Y1 =
N∑
j=1

α1jXj and Y2 =
N∑
j=1

α2jXj, (12)
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where α1j, α2j ∈ R are constant coefficients and Xj are independent scalar random

variables for j = 1, . . . , N , which are not necessarily identically distributed. If Y1 and

Y2 are independent, all variables Xj whose coefficients satisfy α1jα2j ̸= 0 are Gaussian.

The proof of Lemma A.1 relies on the application of Cramér’s Theorem (Cramér 1936)

and a extended version of the Marcinkiewicz’s Theorem. The latter states that if a

characteristic function has the form ϕ(s) = E[expP (t)], where P (t) is a polynomial,

then P (t) is at most a quadratic polynomial, and ϕ(s) corresponds to the characteristic

function of a normal law (see, e.g. Linnik 1964). A detailed proof of Lemma A.1 can be

found in standard statistical textbooks that address characterization problems, such

as Section 3 of Kagan et al. (1973).

Proof of Theorem 1: Local identifiability under condition (i) follows directly from

Lemma A.1 and can be proved by contradiction. The proof is identical to the proof

of Theorem 2, and thus omitted here. See proof of Theorem 2 for more details. We

prove local identifiability under condition (ii). First, given the conditional covariance

matrix of the observable variable E[xtx⊤t |Ft−1] = Ωt = BΣtB
⊤, both matrices B and

Σt are identified up to an orthogonal transformation. Let B̃ = BQ⊤, Σ̃t = QΣtQ
⊤

with Q ∈ O(N), then (B̃, Σ̃t) and (B,Σt) are observationally equivalent, i.e.,

B̃Σ̃tB̃
⊤ = BQ⊤QΣtQ

⊤QB⊤ = BΣtB
⊤.

The associated vector of non-structural orthogonalized shocks is given by ξ̃t = B̃−1xt

with conditional covariance matrix given by

Σ̃t = QΣtQ
⊤ =


∑N

k=1 σ
2
ktq1kq1k

∑N
k=1 σ

2
ktq1kq2k . . .

∑N
k=1 σ

2
ktq1kqNk∑N

k=1 σ
2
ktq2kq1k

∑N
k=1 σ

2
ktq2kq2k . . .

∑N
k=1 σ

2
ktq2kqNk

...
...

. . .
...∑N

k=1 σ
2
ktqNkq1k

∑N
k=1 σ

2
ktqNkq2k . . .

∑N
k=1 σ

2
ktqNkqNk

 .

Since components in ξ̃t are uncorrelated, Σ̃t is a diagonal matrix and thus
∑N

k=1 σ
2
ktqikqjk =

0 for all i ̸= j for all t. This condition can be expressed as
σ2
11 σ2

21 . . . σ2
N1

σ2
12 σ2

22 . . . σ2
N2

...
...

. . .
...

σ2
1T σ2

2T . . . σ2
NT


︸ ︷︷ ︸

ST


qi1qj1

qi2qj2

. . .

qiNqjN

 = 0, ∀i, j ∈ {1, . . . , N}, i ̸= j.

Since rank ST = N by (ii), the only solution to the system above is qikqjk = 0 for

all i ̸= j and all k = 1, . . . , N . However, since Q ∈ O(N),
∑N

j=1 q
2
jk = 1 for all k,
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each column in Q can not have two (or more) non-zero elements and the only non-zero

element is either +1 or −1. This completes the proof. □

Proof of Theorem 2: We prove the Theorem by proving that the orthogonal mix-

ing matrix Q in (4) is identified up to a right-multiplication of DP . Denote ηt =

Σ
−1/2
t Q⊤zt = (Q∗

t )
−1zt the vector of true independent components, where Q is the true

orthogonal mixing matrix, Q∗
t := QΣ

1/2
t . Under Assumption A, at most one compo-

nent in ηt is Gaussian. Suppose that there exists another orthogonal mixing matrix

Q̃ with Q̃∗
t := Q̃Σ

1/2
t and η̃t the associated vector of independent components, i.e.,

η̃t = Σ
−1/2
t Q̃⊤zt = (Q̃∗

t )
−1zt. We claim that Q̃∗

t can be expressed as Q∗
tD1P for some

diagonal matrix D1 and permutation matrix P . We prove the claim by a contradiction.

DenoteAt := (Q̃∗
t )

−1Q∗
t and suppose that matrixAt can not be expressed asAt = D1P .

Note that

η̃t = (Q̃∗
t )

−1zt = (Q̃∗
t )

−1Q∗
tηt = Atηt.

Since the matrix At does not exhibit decomposition D1P , it must contain two non-zero

elements in at least two distinct columns. Let us denote these columns as j1 and j2,

and without loss of generality, suppose that the non-zero elements are αm,j1,t and αn,j2,t

with αi,j,t being the [i, j]-th element in matrix At (j1, j2,m, n ∈ {1, . . . , N}, j1 ̸= j2,

m ̸= n). Note that

η̃mt =
N∑
j=1

αm,j,tηjt and η̃nt =
N∑
j=1

αn,j,tηjt,

where η̃mt and η̃nt are independent. Since αm,j1,tαn,j1,t ̸= 0 and αm,j2,tαn,j2,t ̸= 0, ac-

cording to Lemma A.1, the corresponding shocks ηj1,t and ηj2,t must be both Gaussian.

This contradicts our identifying Assumption A, which states that at most one of ηt is

Gaussian. Therefore, At must take the form D1P , or in other words, Q̃∗
t = Q∗

tD1P .

This implies

Q̃Σ
1/2
t = QΣ

1/2
t D1︸ ︷︷ ︸
D2

P

Q̃ = QD2PΣ
−1/2
t P⊤︸ ︷︷ ︸
D3

P = QD2D3︸ ︷︷ ︸
D

P = QDP

which proves Theorem 2. □

Proof of Theorem 3: We provide a proof for the bivariate case. The extension

towards arbitrary N > 2 is straightforward by showing pairwise independence for

N(N−1)/2 pairs of components and then applying the equivalence theorem for mutual
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independence in (Comon 1994 Theorem 11). Suppose σit has a marginal pdf denoted

by fσi for all i, which has support on R+ := (0,∞). Let σt = (σ1t, . . . , σNt)
⊤ and

denote the marginal pdf of ηit and ξit by fi and fξi , and the joint pdf of σt, ξt and ηt

by fσ, fξ and f , respectively. Then, for all i and for any ξi ∈ R,

fξi(ξi) =

∫
R+

s−1
i fσi(si)fi(ξi/si)dsi,

while for any ξ ∈ R2,

fξ(ξ) =

∫
R+×R+

(s1s2)
−1fσ(s)f(diag (s)

−1 ξ)|ds|,

where |ds|= ds1 . . . dsN . To show (i∗), suppose – without loss of generality – σ1t = 1 a.s.

∀t, then fξ1(ξ1) =
∫
R+ s

−1
1 fσ1(s1)f1(ξ1/s1)ds1 = f1(ξ1). It follwos from Assumption A

that for any η = (η1, η2)
⊤ ∈ R2, f(η) = f1(η1)f2(η2), hence for any ξ = (ξ1, ξ2)

⊤ ∈ R2,

fξ(ξ) =

∫
R+

∫
R+

fσ((s1, s2)
⊤)s−1

1 f1(ξ1/s1)s
−1
2 f2(ξ2/s2)ds2ds2

= f1(ξ1)

∫
R+

s−1
2 fσ2(s2)f2(ξ2/s2)ds2 = fξ1(ξ1)fξ2(ξ2),

which proves that condition (i) in Theorem 1 is satisfied. To show (ii∗), if processes
in σ2

t are independent, so do processes in σt and thus for any s = (s1, s2)
⊤ ∈ R+,

fσ(s) = fσ1(s1)fσ2(s2). Therefore, for any ξ = (ξ1, ξ2)
⊤ ∈ R2,

fξ(ξ) =

∫
R+

∫
R+

fσ1(s1)fσ2(s2)s
−1
1 f1(ξ1/s1)s

−1
2 f2(ξ2/s2)ds2ds2

=

∫
R+

s−1
1 fσ1(s1)f1(ξ1/s1)ds1

∫
R+

s−1
2 fσ2(s2)f2(ξ2/s2)ds2

= fξ1(ξ1)fξ2(ξ2),

which proves the Theorem. □

Lemma A.2. (i) Assume B(i), then ∀θ ∈ Θ and ∀i, ∥ηit(θ)∥4p4p≤MηMσ <∞.

(ii) Assume A and B(ii), let σit(θ) denote the standard deviation of ξit(θ), then ∀θ ∈
Θ and ∀i ∈ {1, . . . , N}, σi,⌊sT ⌋(θ) ⇒ σi(s, θ) with σi(s, θ) ∈ C[0, 1]. Moreover, ∀i,
supθ∈Θ sups∈[0,1] σ

2
i (s, θ) ≤ σ2

+ <∞ and infθ∈Θ infs∈[0,1] σ
2
i (s, θ) ≥ σ2

− > 0.

Proof. To show (i), note that ξt(θ) = Q(θ)⊤zt = Q(θ)⊤Q(θ0)ξt, where Q(θ)
⊤Q(θ0) is

orthonormal and hence ∃θ̃ ∈ Θ, s.t. ξt(θ) = Q(θ̃)⊤ξt and ηit(θ) = e⊤i Σ
−1/2
t (θ)Q(θ̃)⊤ξt.

Denote the [i, j] entry of Q(θ̃) by qij(θ̃), then

σ2
it(θ) = E

( N∑
j=1

qij(θ̃)ξjt

)2

|Ft−1

 =
N∑
j=1

q2ij(θ̃)E[ξ2jt|Ft−1] =
N∑
j=1

q2ij(θ̃)σ
2
jt.
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Note that ∀θ ∈ Θ and ∀i, E[σ2
it(θ)] =

∑N
j=1 q

2
ij(θ̃)E[σ2

jt] = 1, since
∑N

j=1 q
2
ij(θ̃) = 1.

Moreover, ∀i ∈ {1, . . . , N},

E|ξit|4p= E|σitηit|4p= E|σit|4pE|ηit|4p≤MηMσ <∞

by independence between σit and ηit. Thus, for some p > 1,

E|ηit(θ)|4p = E

 1

σ4p
it (θ)

∣∣∣∣∣
N∑
j=1

qij(θ̃)ξjt

∣∣∣∣∣
4p
 ≤ E[σ−4p

it (θ)]E

[
N∑
j=1

|qij(θ̃)|4p|ξjt|4p
]

≤ E[σ2
it(θ)]

−2pMηMσ

N∑
j=1

|qij(θ̃)|4p≤MηMσ

(
N∑
j=1

qij(θ̃)
2

)2p

=MηMσ <∞.

For (ii), since σ2
it(θ) =

∑N
j=1 q

2
ij(θ̃)σ

2
jt, σi,⌊sT ⌋(θ) ⇒ σi(s, θ), where σ

2
i (s, θ) =

∑N
j=1 qij(θ̃)

2σ2
jt(s)

is continuous a.s. on [0, 1]. Moreover, supθ∈Θ sups∈[0,1] σ
2
i (s, θ) ≥ σ2

+

∑N
j=1 qij(θ̃)

2 =

σ2
+ <∞ and infθ∈Θ infs∈[0,1] σ

2
i (s, θ) ≥ σ2

−
∑N

j=1 qij(θ̃)
2 = σ2

− > 0.

Proof of Lemma 1: As shown in the proof of Lemma A.2, ∀θ, ∃θ̃ ∈ Θ, s.t. ηt(θ) =

Σ
−1/2
t (θ)Q(θ̃)⊤Σ

1/2
t ηt = W (θ)ηt. By a change of variable theorem,

log fθ(ηt(θ)) = log fθ0 (W (θ)ηt(θ))− log|detW (θ)|, (13)

where log|detW (θ)|=
∑N

i=1 log
σit
σit(θ)

, since Q(θ̃) is also orthogonal s.t. detQ(θ̃) = 1.

For illustration purpose, in the following we provide a proof for the bivariate case. The

generalization of the proof for arbitrary N > 2 is straightforward by replacing the joint

and marginal densities with conditional densities by conditioning on the remaining

variables. First, note that

2∑
i=1

E [log fi,θ(ηit(θ))] =

∫
R
f1,θ(η1) log f1,θ(η1)dη1 +

∫
R
f2,θ(η2) log f2,θ(η2)dη2

=

∫
R

∫
R
fθ(η1, η2)dη2 log f1,θ(η1)dη1 +

∫
R

∫
R
fθ(η1, η2)dη1 log f2,θ(η2)dη2

=

∫
R

∫
R
fθ(η1, η2) log (f1,θ(η1)f2,θ(η2)) dη1dη2

= E [log (f1,θ(η1(θ))f2,θ(η2(θ)))] ,

and

2∑
i=1

E [log fi,θ0(ηit)] = E [log (f1,θ0(η1)f2,θ0(η2))] = E [log fθ0(ηt)] ,
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where the last equality follows from the independence. Then, by equation (13),

l(θ)− l(θ0) = E [log (f1,θ(η1(θ))f2,θ(η2(θ)))]− E [log fθ0(ηt)]− E[log|detW (θ)|]

= E [log (f1,θ(η1(θ))f2,θ(η2(θ)))]− E [log fθ(ηt(θ))]

=

∫
R

∫
R
log

(
f1,θ(η1)f2,θ(η2)

fθ(η1, η2)

)
fθ(η1, η2)dη1dη2

≤
∫
R

∫
R

(
f1,θ(η1)f2,θ(η2)

fθ(η1, η2)
− 1

)
fθ(η1, η2)dη1dη2

=

∫
R
f2,θ(η2)dη2

∫
R
f1,θ(η1)dη1 −

∫
R

∫
R
fθ(η1, η2)dη1dη2

= 1− 1 = 0.

The equality holds if and only if f1,θ(η1)f2,θ(η2) = fθ(η1, η2), i.e., η1(θ) and η2(θ) are

independent, which under the local identification condition implies that θ = θ0. Thus,

for any ϵ > 0, θ ∈ Θ ∩ B(θ0, ϵ)c, the inequality holds strictly. □

Proof of Theorem 4: We start by showing that supθmax1≤t≤T |σ̂2
it(θ) − σ2

it(θ)|
p→ 0

for any i ∈ {1, . . . , N}. Denote the weights in the volatility smoothing

K̄σ(k − t) ≡ Kσ((k − t)/hσ)∑T
k=1Kσ((k − t)/hσ)

.

Note that
∑T

k=1 K̄σ(k − t) = 1. For the case hσ < t < T − hσ, note that

σ̂2
it(θ)− σ2

it(θ) =
T∑
k=1

K̄σ(k − t)[ξ2ik(θ)− σ2
it(θ)]

=
T∑
k=1

K̄σ(k − t)[(ξ2ik(θ)− σ2
ik(θ)) + (σ2

ik(θ)− σ2
it(θ))]

=
T∑
k=1

K̄σ(k − t)σ2
ik(θ)[η

2
ik(θ)− 1] +

T∑
k=1

K̄σ(k − t)[σ2
ik(θ)− σ2

it(θ)]

≡ Ra
t,T +Rb

t,T .

By Lemma A.2,

Ra
t,T =

T∑
k=1

K̄σ(k − t)σ2
ik(θ)[η

2
ik(θ)− 1] ≤ σ2

+

T∑
k=1

K̄σ(k − t)[η2ik(θ)− 1],

where K̄σ(k − t) is summable and η2ik(θ)− 1 is bounded in L4p. Hence, it follows from

Lemma 2 of Hansen (1991),
∥∥∥∑T

k=1 K̄σ(k − t)[η2ik(θ)− 1]
∥∥∥
4p

→ 0, which implies

max
hσ<t<T−hσ

|Ra
t,T |

p→ 0,
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by the generalized Chebychev’s inequality. Furthermore,

Rb
t,T ≡

T∑
k=1

K̄σ(k − t)[σ2
ik(θ)− σ2

it(θ)]

≤ max
hσ<t<T−hσ

max
t−hσ≤k≤t+hσ

[σ2
ik(θ)− σ2

it(θ)]
T∑
k=1

K̄σ(k − t)

= max
hσ<t<T−hσ

max
t−hσ≤k≤t+hσ

[σ2
ik(θ)− σ2

it(θ)].

Under the continuity of the limit variance process in Lemma A.2 and our Assump-

tion C(iv), there exists a finite real number Mhσ < ∞ such that hσ ≤ MhσTα
′
for

some α′ ∈ (0, 1) and

max
hσ<t<T−hσ

max
t−hσ≤k≤t+hσ

[σ2
ik(θ)− σ2

it(θ)]
p→ 0,

due to Lemma A.1 of Hansen (1995). Therefore,

max
hσ<t<T−hσ

|σ̂2
it(θ)− σ2

it(θ)|≤ max
hσ<t<T−hσ

|Ra
t,T |+ max

hσ<t<T−hσ
|Rb

t,T |= op(1).

The extension to cases t < hσ and T −hσ < t < T follows from Lemma A.1 of (Hansen

1995) under the continuity of the limit variance process in Assumption B(ii). Thus,

max
1≤t≤T

|σ̂2
it(θ)− σ2

it(θ)|
p→ 0,

for all θ ∈ Θ. Since ξ2it(θ) = (e⊤i Q(θ)
⊤zt)

2 and σ2
it(θ) =

∑N
j=1 q

2
ij(θ̃)σ

2
jt, where qij(θ̃) is

the [i, j] entry of Q(θ̃) = Q(θ)⊤Q(θ0), both σ̂
2
it(θ) and σ

2
it(θ) are continuous in θ. By

Assumption C(i), supθmax1≤t≤T |σ̂2
it(θ) − σ2

it(θ)|
p→ 0. Let ηit(θ) = ξit(θ)/σit(θ) denote

the structural shock standardized by the true variance. By the results above and from

Lemma A.2, σ̂it(θ) is bounded away from zero, we have η̂it(θ) = ξit(θ)/σ̂it(θ)
p→ ηit(θ).

Let f̂i,θ(ηit(θ)) be the kernel density estimates based on ηit(θ), i.e.,

f̂i,θ(ηit(θ)) :=
1

Thf

T∑
k=1

Kf

(
ηit(θ)− ηik(θ)

hf

)
.

Assumptions C(ii) and C (iii) imply that (see Masry 1996)

sup
θ
|f̂i,θ(ηit(θ))− fi,θ(ηit(θ))|= Op

{
(log(T )/Thf )

1/2 + h2f
}
= op(1).

Since for all ϵ1, ϵ2 > 0, infx fi(x) ≥ ϵ1 > 0 and there exists 0 < Tϵ2 <∞ such that for all

T > Tϵ2 , Kf (0) ≥ ϵ2 > ϵ2/Thf > 0, thus, both fi,θ(ηit(θ)) and f̂i,θ(ηit(θ)) are bounded

away from zero. Thus, for each θ ∈ Θ, define ∆(θ) := log f̂i,θ(ηit(θ)) − log fi,θ(ηit(θ)),
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and ∆(θ)
p→ 0 by the continuous mapping theorem. Then, by the mean value theorem

and the Cauchy-Schwarz inequality,

|∆(θ′)−∆(θ)|≤M ||θ′ − θ||, a.s.

where M = supθ∗∈Θ∗ ||∂∆(θ∗)/∂θ||, with Θ∗ being the line segment joining θ and θ′.

Note that M is bounded in probability since f̂i,θ(ηit(θ)) and fi,θ(ηit(θ)) have bounded

derivatives on Θ, and both are bounded away from zero. Therefore, ∆(θ) is stochasti-

cally equicontinuous (see Theorem 21.10 of Davidson 1994) and thus supθ|log f̂i,θ(ηit(θ))−
log fi,θ(ηit(θ))|

p→ 0 by Theorem 21.9 of Davidson (1994). Since supθ|log f̂i,θ(η̂it(θ)) −
log f̂i,θ(ηit(θ))|

p→ 0 by the continuous mapping theorem, we have

sup
θ
|l̂T (θ)− lT (θ)| = sup

θ

1

T
|
T∑
t=1

N∑
i=1

log f̂i,θ(η̂it(θ))− log fi,θ(ηit(θ)) + log σit(θ)− log σ̂it(θ)|

≤ sup
θ

1

T

T∑
t=1

N∑
i=1

(|log f̂i,θ(η̂it(θ))− log f̂i,θ(ηit(θ))|

+ |log f̂i,θ(ηit(θ))− log fi,θ(ηit(θ))|+|log σit(θ)− log σ̂it(θ)|)

= op(1).

Moreover, by Lemma A.2,

E

[
sup
θ

∣∣∣∣∣
N∑
i=1

log σit(θ)

∣∣∣∣∣
]
= E

sup
θ

∣∣∣∣∣∣
N∑
i=1

log

(
N∑
j=1

q2ij(θ̃)σ
2
jt

)1/2
∣∣∣∣∣∣
 ≤ N log σ+ <∞,

and thus E[supθ|
∑N

i=1 log fi,θ(ηit(θ))− log σit(θ)|] <∞. By a uniform law of large num-

bers, supθ|lT (θ)− l(θ)| p→ 0, and supθ|l̂T (θ)− l(θ)|≤ supθ|l̂T (θ)− lT (θ)|+|lT (θ)− l(θ)|=
op(1). Therefore, by Assumption C(i) and (ii), argmaxθ l̂T (θ) − argmax l(θ) = op(1).

Let logL(θ) denote the probability limit of logLT (θ), i.e., logL(θ) := E[log fθ(ηt(θ))−∑N
i=1 log σit(θ)], note that l(θ) ≤ logL(θ), where the equality holds if and only if θ = θ0

as the result of independence. By Lemma 1, we have argmaxθ l̂T (θ)−argmaxθ logL(θ)
p→

0 and thus θ̂
p→ θ0. □

Proof of Theorem 5: Define

Îi(θ0) :=
1

T

T∑
t=1

ψ̂2
it(η̂it)

∂ξit(θ0)

∂θ

∂ξit(θ0)

∂θ⊤
,

Ĵ (θ0) := − 1

T

T∑
t=1

N∑
i=1

(
ψ̂it(η̂it)

∂2ξit(θ0)

∂θ∂θ⊤
+ ψ̂′

it(η̂it)
∂ξit(θ0)

∂θ

∂ξit(θ0)

∂θ⊤

)
1

σ̂2
it

,

where the estimator for density score ψ̂it(η̂it) is defined in (9). By a first-order Taylor

expansion, we obtain

l̂′T (θ̂) = l̂′T (θ0)− Ĵ (θ0)(θ̂ − θ0) + op(||θ̂ − θ0||)
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Since the estimator satisfies l̂′T (θ̂) = 0, we have

Ĵ (θ0)
√
T (θ̂ − θ0) =

√
T l̂′T (θ0) + op(1)

=
√
T l′T (θ0) +

1√
T

T∑
t=1

N∑
i=1

(
ψ̂it(ηit)− ψit(ηit)

) ∂ξit(θ0)/∂θ
σit

+
1√
T

T∑
t=1

N∑
i=1

(
ψ̂it(η̂it)

σ̂it
− ψ̂it(ηit)

σit

)
∂ξit(θ0)

∂θ
+ op(1).

Since ψ̂it(ηit) − ψit(ηit) is i.i.d. due to the sample splitting construction, it suffices to

show that for all i = 1, . . . , N ,

E
[(
ψ̂it(ηit)− ψit(ηit)

)2
|z1, . . . , zT

]
p→ 0,

as T → ∞, which follows by Lemma 4.1 of Bickel (1982) under our conditions. A

first-order Taylor expansion of ψ̂it(η̂it) at ηit ≡ ξit/σit is

ψ̂it(η̂it) = ψ̂it(ηit)− ψ̂′
it(ηit)

ξit
σit

(σ̂it − σit)

σit
+ op(1),

where for all i = 1, . . . , N ,

1√
T

T∑
t=1

ψ̂′
it(ηit)ηit

(σ̂it − σit)

σit
≤ max

1≤t≤T
|σ̂it − σit|

1√
T

T∑
t=1

ψ̂′
it(ηit)ηit = op(1),

since ψ′
it(ηit)ηit is a bounded zero-mean innovation due to symmetry under Assump-

tion D(i). Thus, for all i = 1, . . . , N ,

1√
T

T∑
t=1

(
ψ̂it(η̂it)

σ̂it
− ψ̂it(ηit)

σit

)
∂ξit(θ0)

∂θ
=

1√
T

T∑
t=1

ψ̂it(ηit)
σit − σ̂it
σitσ̂it

∂ξit(θ0)

∂θ
+ op(1)

≤ max
1≤t≤T

|σ̂it − σit|
1√
T

T∑
t=1

ψ̂it(ηit)∂ξit(θ0)/∂θ

σitσ̂it
= op(1),

since σit and its estimates are bounded away from zero. Therefore,
√
T l̂′T (θ0) and

√
T l′T (θ0) have the same limiting distribution. By Theorem 2.1 in Hansen (1992),

√
T l′T (θ0) =

N∑
i=1

(
1√
T

T∑
t=1

ψit
∂ξit(θ0)/∂θ

σit

)
⇒

N∑
i=1

(∫ 1

0

σ−1
i (s)dW i(s)

)
,

since {(σi,t+1, ηit)}t≥1 is adapted to {Ft}t≥1 and {ηit}t≥1 is a martingale difference

sequence relative {Ft}t≥0 with supT T
−1
∑T

t=1 E[η2it] = 1 for all i = 1, . . . , N . Since

T−1
∑T

t=1 σ
−2
it ⇒

∫ 1

0
σ−2(s)ds <∞, by Assumption B(ii), and by the weak law of large

numbers and Assumption C(ii), we have Îi(θ0)
p→ Ii(θ0) and Ĵ (θ0)

p→ J (θ0). □
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