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Abstract

The environmental impact of many energy-saving technologies depends on user behavior.
For Plug-in Hybrid Electric Vehicles (PHEVs), consumer choices regarding how much to
drive and which source of energy to use (fossil fuels vs. electricity) impact CO2 emissions.
This paper leverages quasi-experimental variation in the availability of home charging sta-
tions to quantify the impact of this technology on energy use and CO2 emissions of 836
PHEV company cars. Fuel and charging expenditures for these cars are covered by the
employer so that, to the employee, home charging changes only the non-monetary costs of
charging the car. We find that access to home charging increases electricity consumption by
298.88 (±25.9) kWh per quarter and decreases fuel consumption by 102.34 (±38.0) liters,
reducing CO2 emissions by 39 %. Moreover, access to home charging increases the em-
ployee’s propensity to choose a Battery Electric Vehicle (BEV) upon renewal of the lease.
We use these estimates to compute (private) levelized abatement costs and payback times of
home charging for a range of scenarios characterizing the diffusion of BEVs. With current
tax-inclusive energy prices, home charging stations break even within six to eight years.
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1 Introduction

The true environmental impact of many potentially energy-saving technologies depends

on consumer behavior. Plug-in Hybrid Electric Vehicles (PHEVs) are an important case

in point because they can run on either electricity or petroleum-based fuels. Therefore,

consumer choices of how much to drive and which source of energy to use have a major

impact on the environmental externalities emitted by the vehicle. Because real-world elec-

tric driving shares are systematically lower than what is technically feasible, or assumed

in official testing procedures (Chakraborty et al., 2020; Plötz et al., 2022; Tsanko, 2023),

the true environmental impact of PHEVs is higher than necessary. One explanation for

low electric driving shares is the additional time needed to recharge the car (Krishna,

2021). The provision of charging infrastructure in convenient locations could increase

electric utilization by lowering that time cost, yet so far this hypothesis has not been

tested empirically.

This paper leverages quasi-experimental variation in the adoption of home chargers

to estimate their effect on the electric driving share of PHEV company cars (and several

other outcomes). To encourage employees holding a Battery Electric Vehicle (BEV) or a

PHEV company car to charge their cars at home, the cooperating company introduced a

program that (i) subsidized the installation cost of a home charger and (ii) automatically

reimbursed electricity expenditures for home charging. To be eligible for participation in

the program, employees must hold a BEV or PHEV and participate in the company’s

fuel cost compensation scheme. Under this scheme, refueling and charging the company

car has no variable monetary cost for employees (but a monthly fixed cost in terms of a

deduction from the monthly salary), even if the car is used for private trips. Employees

in our sample applied for home chargers between January 2021 and December 2022. For

various reasons, e.g., because of delays in the delivery and installation due to supply

chain disruptions in the aftermath of the COVID-19 pandemic, the program roll-out was

staggered over time. In particular, the waiting times for employees varied considerably

despite similar application dates for the home chargers.

Our sample consists of 836 PHEVs, for which our partner company provided us with

transaction data on fuel and electricity consumption. Besides the date and time of refu-

eling (or recharging), the data contains the amount of fuel in liters (electricity in kWh),

employee-reported odometer readings, and information on the vehicle’s make and model.

Using emission factors for the different energy sources (Juhrich, 2022; Icha & Lauf, 2022),

we also estimate CO2 emissions.

The setting described above allows us to study the effect of installing charging in-
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frastructure at home using a Difference-in-Differences (DiD) estimator. As two-way fixed

effects estimators can suffer from severe biases under staggered treatment adoption, we

employ the estimator developed by Callaway & Sant’Anna (2021) and use as the control

group not-yet-treated PHEV users who receive a home charger at a later point in time.

The difference in contemporaneous outcomes between these groups identifies the average

treatment effect on the treated. Outcomes of primary interest are the amount of electric-

ity charged, the amount of fuel used, the mileage driven, and the implied CO2 emission

changes.

We find that the availability of home charging increased electricity consumption by

298.9 (±25.9) kilowatt-hours (kWh) per quarter while decreasing consumption of gasoline

or diesel by 102.3 (±38.0) liters per quarter. This translates into a 39 % reduction in

tailpipe emissions, corresponding to 248.1 (±130.1) kg of CO2. The average employee’s

mileage increased by 606.6 (±498.1) km per quarter, which can be interpreted as a 14 %

rebound effect in terms of vehicle kilometers traveled.

The reduction in tailpipe CO2 emissions is statistically and economically significant

and, as we argue, translates into real emissions abatement for the planet. For one, the

type-approval-based CO2 emission ratings of PHEVs assume zero on-road CO2 emissions

for electric driving. More importantly, however, CO2 emissions from electricity generation

in Germany, where this study took place, are covered under the emissions cap of the

European Emissions Trading System for CO2 and may thus be reasonably considered as

non-additional.

In addition to intensive-margin effects, we also find an extensive-margin effect on the

adoption of Battery Electric Vehicles (BEVs) following the installation of home chargers.

In particular, employees with a PHEV who receive access to home charging at least half

a year before replacing their company car are 30 % more likely to choose a BEV. This

choice eliminates the option of refueling in the future, thus further contributing to future

emissions reductions.

In a cost-benefit analysis using different assumptions about the diffusion of BEVs in

the initial PHEV fleet, we find that total abatement per employee from adopting a home

charger ranges from between four to 20 tons of CO2 emissions. What is more, in most

scenarios the installation of the home charger already pays off for the company after six

to eight years. Given that the useful lifetime of a home charger should be considerably

longer than that, the program can be said to yield substantial benefits in terms of emissions

abatement but also financially.
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2 Literature

Our paper bridges a gap between the literature on the effect of financial incentives on

electric vehicle use and charging behavior on one hand and the literature on the impact

of infrastructure provision and monetary incentives on electric vehicle adoption on the

other hand.

Concerning the former literature, studies show that higher home electricity prices

and lower potential cost savings from charging are related to not plugging in a PHEV

(Chakraborty et al., 2020) and that electric vehicle households respond to changing elec-

tricity pricing signals by increasing their charging in lower-priced off-peak hours (Qiu

et al., 2022). Chakraborty et al. (2019) find that costs of charging play an important

role in the demand for charging location (at home vs. at the place of work) for PHEV

commuters. Grigolon et al. (2024) show that PHEV drivers respond to fuel price increases

more than drivers of gasoline and diesel cars, making fuel prices an effective instrument

for improving the environmental performance of PHEVs, given their low electric driving

share. Bailey et al. (2023) find for BEV drivers that financial rewards mimicking time-

of-use pricing are effective at shifting charging behavior to off-peak hours, while a moral

suasion nudge is not. Both Grigolon et al. (2024) and Bailey et al. (2023) find no evidence

of habit formation when fuel prices fall or financial incentives are removed. Nehiba (2024)

studies the role of residential electricity prices and the availability of public charging sta-

tions on the mileage of BEVs. In particular, a 10 % increase in residential electricity

prices reduces mileage by 1 %. In our setting, there are no differences in actual costs for

PHEV users between charging at the firm, at home or at public charging stations.

The second strand of literature focuses on the BEV or PHEV adoption decision and

how this decision is influenced by the provision and availability of (mostly public) charg-

ing infrastructure and monetary incentives. He et al. (2023) exploit a quasi-experimental

setting to show that for the US, PHEV sales increased by an average of 2.7 % following

a $2,000 tax credit incentive and that sales remained stable after the incentive’s termina-

tion. Bailey et al. (2015) show that awareness of public chargers is not a strong predictor

of PHEV interest and that the availability of charging at home is more important. Li et al.

(2017), Springel (2021) and Remmy (2022) study the interdependence between electric

vehicle adoption and public charging stations (indirect network effects). The first study

finds that a 10 % increase in the number of public charging stations would increase PHEV

sales by about 8 %. Springel (2021) shows for Norway that subsidies on public charging

stations resulted in more than twice as many electric vehicle purchases than the same

amount spent on subsidies on purchase prices. By contrast, Remmy (2022) finds that
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German purchase subsidies generated more electric vehicle sales than charging station

subsidies. Illmann & Kluge (2020) also find a positive but small effect of charging in-

frastructure on monthly electric vehicle registrations for Germany. Ou et al. (2020) show

in a simulation study that public charging infrastructure is more effective at promoting

PHEV sales in emerging markets than in mature markets. Lee et al. (2023) show that

PHEV adopters’ replacement choices when deciding between a conventional car, a BEV,

or (again) a PHEV correlate with charging convenience and home charging access. Hard-

man & Tal (2021) study the purchase decisions of PHEV owners and find that PHEV

discontinuance in California is related to dissatisfaction with the convenience of charging

and not having 240-volt charging at home. Finally, Li (2023) shows that unifying three

incompatible charging standards would induce car manufacturers to build more charging

stations and sell more electric vehicles.

Using fuel and charging expenditure transaction data on company cars, we can track

an employee’s driving behavior across multiple energy sources and link this data to infor-

mation on the availability of a company-provided home charging station. Our paper is

the first to causally estimate the impact of home charging on charging behavior and CO2

emissions.

Lastly, our paper is related to the literature on behavioral reactions to the adoption

of energy-efficient technology. This line of research shows that inefficient consumption

behavior (Salvo & Huse, 2013) and increased consumption (“rebound” - Davis et al.,

2014) can offset the anticipated reductions in environmental externalities following the

adoption of energy-efficient technology. We contribute to this literature by showing that

technological solutions reducing the non-monetary cost of using energy-efficient durable

goods can counteract this effect.

3 Research Design

We exploit quasi-experimental variation in the timing of adoption of home chargers by

PHEV holders to identify causal impacts on charging and several other outcomes. Link-

ing adoption time to rich microdata on charging, refueling, and driving behavior, we

are able to estimate average treatment effects on the treated (ATT) in an event-study

framework. A unique feature of our setting is that the switch to home charging has no

pecuniary consequences for the subjects in our sample. That is, our ATT estimates speak

to non-financial channels that drive behavior with respect to electric vehicle usage and

charging. In what follows, we describe the data-generating process in detail, explain our

identification strategy, and describe the estimation framework.
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3.1 Quasi-Experimental Roll-Out of Home Charging

We study the roll-out of home chargers among employees of a large German firm that

operates a large fleet of company cars. In Germany and other EU countries, company cars

are commonly offered as a fringe benefit to employees. In exchange for a fixed monthly

pay deduction of pre-tax income, employees get a car that they can use for business-

related trips but also private trips. For an additional lump-sum deduction, employees can

enroll in a fuel cost compensation scheme that covers the costs of all fuel and electricity

consumed by the vehicle.1

Employees of our partner company can choose a car from a large set of makes and

models. Vehicles with an internal combustion engine (ICEVs) are the most popular choice,

but PHEVs have been on the rise and some employees have switched to fully electric

battery vehicles (BEVs). For PHEVs, the electric utilization rate is typically measured

by the so-called utility factor (Plötz et al., 2021), which is defined as the ratio between

kilometers traveled using electricity and total vehicle kilometers traveled.2 Although

electric vehicles can be charged at no extra cost to the holder under the above scheme at

public charging points and in the company parking lots, the utility factor for employees

without access to home charging is low. Employees receiving a home charger in 2021 and

2022 exhibited an average utility factor of 0.29 in 2020. This is much lower than the

average utility factor of 0.69 assumed in type-approval ratings under the New European

Driving Cycle (NEDC) but higher than the average utility factor of 0.18 found for German

PHEV company cars (Plötz et al., 2020).

To encourage holders of PHEV and BEV company cars to charge at home, the company

introduced a program that subsidized the installation cost of a home charger (at 100 %)

and automatically reimbursed expenditures for the electricity consumed by that home

charger. The program was rolled out in January 2021 and open to all employees (i)

driving a PHEV or BEV company car and (ii) participating in the fuel cost compensation

scheme.

Several features of the application and installation process caused the roll-out to be

staggered over time. First, during the first eight months of the program, participants

could order a home charger only via the employer and not directly from the provider. The

employer collected applications and forwarded them in batches to the company installing

the home chargers. Second, throughout the first two years of the program, supply-side

1See Appendix B for background on the German company car scheme.
2Since we can only observe the total number of kilometers traveled, we need to impute the utility

factor based on the rated fuel consumption per 100 km of the vehicle according to testing procedures.
The imputation is taken from Plötz et al. (2022), and described in more detail in Appendix C.
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frictions in the aftermath of the COVID-19 pandemic caused delays in the delivery and

installation of home chargers. Third, employees only become eligible for participation in

the home charger program once they hold or have ordered an electric company car (BEV

or PHEV). They typically become eligible to order a company car after three years of

being employed with the company, regardless of whether they need a company car for

business-related travel. Employees who order a company car must hold on to it for four

years before they can order a new one or opt out of the program (which rarely happens).

This implies that each month, a new group of employees can decide to order an electric

company car and, potentially, participate in the home charger program.

All of these factors delayed the installation dates of the home chargers in ways that

varied considerably across participants, as can be seen in Figure 1. Panel (a) shows

cumulative applications for and deliveries of home chargers over time, pointing to a time-

varying gap between the time of application and the time of first usage. Panel (b) shows

the cross-sectional distribution of waiting times between the application for a home charger

and its date of first usage. We observe that the mode of the average waiting time is two

months but some employees also waited more than 12 months for the installation of their

home charger. Panel (c) shows that the waiting times varied considerably over the sample

period. The average waiting times by month of application lie between two and more than

five months.

3.2 Econometric framework

The setting described above allows us to study the effect of installing home chargers using

a generalized Difference-in-Differences (DiD) estimator. The traditional approach would

implement a two-way fixed-effects estimator based on the equation

Yit = β1 I(t ≥ HCi) + ηi + µt + ϵit (1)

where the variable Yit measures relevant outcome variables of employee respectively vehicle

i in quarter t, HCit denotes the quarter t in which the home charger (HC) becomes

available for use for employee i, and ηi and µt are car and quarter fixed effects.

Since this two-way fixed effects estimator can suffer from severe biases under staggered

treatment adoption, as is the case in our setting, we employ the alternative estimator

developed by Callaway & Sant’Anna (2021). We use not-yet-treated PHEV users as

the control group, i.e., users who receive a home charger at a later point in time. By

comparing their outcomes to the contemporaneous outcomes of PHEV users who have

already received a home charger, we estimate the ATT on different outcome variables.
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Figure 1: Home Charger Applications and Distribution of Waiting Times

(a) Applications and Deliveries over Time

(b) Distribution of Waiting Times across
Employees

(c) Average Waiting Times by Month of
Application

Notes: Figure (a): Cumulative applications and deliveries of home chargers over the sample period.

Figure (b): Cross-sectional distribution of waiting times between the date of application and the date of

first use of a home charger. Figure (c): Average waiting times by month of application. 95 % confidence

interval of the mean indicated. Source: Own computations.
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We use the estimator in equation 3.11 in Callaway & Sant’Anna, 2021 to aggregate the

group × time-specific estimates of the ATT into one summary measure for the average

treatment effect of home charger adoption. This estimator assigns equal weight to each

employee in our sample, independent of the number of post-treatment observations. The

analysis is clustered at the level of the participating employee. Furthermore, we allow

for an unbalanced panel, which is necessary, since each month, some employees could

potentially order a new car. To estimate event study coefficients for treatment effects

as a function of the length of treatment exposure, we use the estimator in equation 3.4

in Callaway & Sant’Anna, 2021 to aggregate the group × time-specific estimates of the

ATT into an estimator of the treatment effect at differential temporal exposure to the

treatment. As Callaway & Sant’Anna (2021) point out, interpreting differences in the

estimator θes(e) as dynamic effects hinges on the assumption of homogeneous effects of

treatment exposure across groups with different timing of home charger adoption since

the composition of groups observed with a given exposure time might change.

Our primary interest is with the outcome variables amount of electricity charged,

amount of fuel used, total amount of energy used, mileage of the PHEV, and the implied

CO2 emission changes. The next section describes how we measure those outcomes at the

worker level.

3.3 Data

Sample Composition. Our analysis considers all home charger applications between

January 2021 and December 2022. Fuel efficiency and mileage outcomes are computed

based on automatically collected transaction data on charging and refueling, but also on

employee-reported odometer readings. Employees report their vehicles’ odometer read-

ings only when refueling their cars. Starting with transaction data for 1,021 PHEVs held

by 939 employees during our sample period (i.e., some employees renewed their lease dur-

ing the sample period), we drop 63 cars with less than two odometer readings. To the

remaining odometer readings, we apply a data cleaning algorithm that identifies implau-

sible (infeasible) mileages and interpolates between odometer readings that were deemed

feasible to impute a plausible measure of mileage. We explain the details of this imputa-

tion in Appendix C. As part of the cleaning procedure, we drop 50 cars for which we do

not observe at least three feasible odometer readings. We drop two cars that had more

than 30 % of their quarterly mileages above the 99.9th percentile of quarterly mileages,

and we additionally drop all quarterly observations where i) the mileage exceeded the

99.9th percentile of quarterly mileages or ii) the ratio between the observed mileage and
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an approximation of the mileage based on the vehicles fuel and electricity consumption

was below 0.005 (the 0.5th percentile of the ratio) or exceeded 4.68 (the 99.5th percentile

of the ratio).3 Finally, we drop all observations after September 2022, since for many cars,

we observe the second to last refueling event and thus odometer reading before September

2022. The final analysis sample comprises 908 PHEVs held by 836 employees.

Note that we aggregate the data to quarterly observations. This is because weekly and

monthly observations would be too noisy, as some subjects in the sample refuel their car

only every couple of weeks, which would imply that we do not have reliable data for short

time periods. Furthermore, the estimator by Callaway & Sant’Anna (2021) relies on the

estimation of a generalized propensity score, which requires a minimum size for treatment

groups (i.e. employees receiving access to home charging in the same time period), which

was not attained in a monthly aggregation.

Summary Statistics. Transaction data on fuel and electricity consumption between

January 2020 and December 2022 contains automatically registered information on the

date and time of refueling (or recharging), the amount of fuel in liters (electricity in kWh),

the employee-reported odometer readings, and administrative information on the vehicle

model, which we merged with vehicle efficiency data published by the General German

Automobile Club (Allgemeiner Deutscher Automobil-Club e.V. (ADAC), nd) . We esti-

mate CO2 emissions using appropriate emission factors for each energy source (gasoline,

diesel, and electricity) published by the German Environment Agency (Umweltbunde-

samt) (Juhrich, 2022; Icha & Lauf, 2022). Appendix Table A.1 provides comprehensive

summary statistics on driving and charging behavior, vehicle attributes, and employee

characteristics for this sample, following the adoption of a home charger.

Selection into Treatment. Employees who applied for the home charger program

might differ systematically from those who drove a PHEV and did not apply during the

period of analysis. Those differences might be correlated with potential outcomes associ-

ated with home charger adoption. To guard against such selection bias, our identification

strategy discards non-applicants and relies entirely on quasi-experimental variation in

the installation time among program participants. This strengthens the internal validity

of our approach, yet the external validity hinges on how different applicants are from

non-applicants.

During the analysis period, 836 employees holding a PHEV company car participated

3Only three cars had a very high mileage (≥ 19,770 km per quarter) in more than 30 % of all observed
quarters. Two of them are observed in the sample period.
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Table 1: Home Charger Sample vs. Population of PHEV Drivers

Home Charger No Home Charger

Variable Mean Sd Mean Sd

Panel A: Vehicle Use in 2020
Mileage per quarter [km] 4358.644 (2904.99) 4258.238 (2762.52)
Emissions [kg CO2] 654.973 (564.69) 709.286 (581.34)
Tailpipe Emissions [kg CO2] 636.078 (570.88) 695.018 (587.41)
Electricity per quarter [kWh] 49.334 (82.34) 37.254 (73.84)
Fuel per quarter [l] 263.416 (237.34) 289.477 (245.01)
Fuel consumption [l/100 km] 5.792 (3.2) 6.534 (3.08)
Electricity consumption [kWh/100 km] 1.518 (2.83) 1.213 (2.53)
Utility factor [km elec./km total] 0.287 (0.38) 0.187 (0.38)
Energy expenditures [euro] 347.345 (301.51) 379.198 (312.62)

Panel B: Vehicle Characteristics
Fuel efficiency [l/100 km WLTP] 1.591 (0.35) 1.537 (0.36)
Electric efficiency [kWh/100 km WLTP] 17.469 (3.16) 16.645 (2.49)
Price [euro] 32164.160 (4198.59) 30286.348 (4765.73)
Weight [kg] 1999.109 (255.61) 1896.169 (210.85)

Panel C: Employee Characteristics
Age [years] 48.215 (0.46) 43.188 (0)
Tenure [years] 17.431 (1.07) 12.888 (0)
Female [%] 0.156 (0.02) 0.235 (0)

Notes: Comparison of the sample of employees selecting into the home charger program
between January 2021 and December 2022 (N = 836 employees) to the group of employees
not selecting into the home charger program during that period (N = 2683 employees).
Both samples are restricted to the employees holding at least one PHEV during the sample
period and opting into the fuel cost compensation scheme of the company. Panel A shows
summary statistics for vehicle use in the year 2020 in which none of the employees in the
home charger sample has received a home charger yet. The sample sizes are reduced to
N = 388 employees that are using their PHEV during that period for the home charger
sample and N = 1533 employees in the no home charger sample. Panel B displays vehicle
characteristics obtained from the General German Automobile Club’s car catalog. Panel
C displays employee characteristics which are only available in terms of group averages.
WLTP stands for “Worldwide Harmonised Light Vehicle Testing Protocol”.
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Figure 2: Average Differences in Electric Utilization Between Treated and Not-yet-treated
Employees

(a) Utility Factor (b) Charging by Source

Notes: Based on transaction data for the period 2020 - 2022. Utility factors are calculated based on the observed on-road

fuel consumption and the vehicle’s fuel consumption in the charge-sustaining mode in the NEDC testing procedure. For

details on the calculation, see Appendix C. Charging by source is calculated based on the observed amount charged at each

source. Both measures compare employees who have already received home chargers with employees who selected into the

program but have not yet received home chargers. Thus, some employees switch between the two samples as time proceeds.

95 % confidence intervals are indicated.

in the program, while 2,683 employees holding a PHEV company car did not. Table 1

shows the differences in means of all the key variables for these groups in 2020, i.e., the

year before the launch of the program.4 Home charger applicants are more frequently

male, they are older and have longer tenure with the company than non-applicants. That

applicants are, on average, older than non-applicants seems plausible, as it is easier to

have a home charger installed when an employee owns a home than when she rents a

home, and home ownership increases with age. With a two percent higher mileage per

quarter, applicants use nine percent less fuel and 24 percent more electricity than non-

applicants. Given those differences, a näıve estimate based on never-takers of the home

charger would likely induce bias in the results.

Average Outcomes for Treated and Not-yet-treated Subjects. Within the group

of employees eventually receiving a home charger, Figure 2 compares average outcomes

between employees who have a company-sponsored home charger and those who do not

yet have it, for the years 2020 to 2022. Panel (a) shows that home charging users exhibited

4Since PHEV adoption grew very fast during this period, both groups were considerably smaller in
2020, with 317 and 1,623 cars, respectively. The proportion between these groups remained stable over
time.
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a utility factor almost three times as high as for non-users, despite similar overall mileages.

This difference is mainly driven by charging at home, which dwarfs charging at the firm or

at public places (Panel b). The next section investigates whether these findings continue

to hold in a causal evaluation framework.

4 Treatment Effects of Home Charger Adoption

In this section, we first consider the effects of access to home charging on several outcome

variables in event studies. In the second part of this section, we aggregate these quarterly

treatment effects into one ATT over the full sample period,using a weighted average of the

DiD estimates. Furthermore, we also consider treatment effects on the extensive margin

of buying a BEV instead of a PHEV, and intensive-margin treatment effects for BEVs

only (i.e., their electricity consumption).

4.1 Treatment Effects by Quarter

We begin our discussion of the results by looking at the margin of charging vs. refueling.

Figure 3 displays the ATTs per quarter obtained with the event-study design discussed

above. Quarter 0 refers to the quarter in which the home charger was installed, quarter

1 is the first quarter after the adoption quarter, and so on. Two general comments

apply. First, the point estimates in quarter zero are lower in absolute value than those for

subsequent quarters because subjects receive the home charger on different dates during

that quarter. Second, point estimates get noisier for higher treatment lags because the

size of the control group (not-yet-treated employees) falls over time. Panel (a) of Figure

3 shows that the total electricity consumption of the PHEVs held by employees receiving

a home charger increases sharply at the time of adoption by between 200 and 400 kWh

per quarter. The effect is relatively stable over time, with a slight decrease in total

charging beginning in quarter 3 after adoption. Panel (b) shows that treated subjects

reduce charging at public stations, to an increasing extent, by up to around 60 kWh per

quarter. We observe from panel (c) that there is no significant impact on charging at the

firm, though this estimate points in the expected direction of less charging at the firm’s

premises.

Figure 4 displays various outcomes concerning fuel consumption and mileage. We

observe that the increase in electric charging is accompanied by a drop in fuel use (Panel

a), which is driven by reductions in both the number of refueling transactions per quarter

(Panel b) and the average quantity of fuel per transaction (Panel c). On average, treated
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Figure 3: Treatment Effects on Electric Charging Per Quarter

(a) Total Charging

(b) At Public Station (c) At Firm

Notes: Doubly-robust estimator θes(e) from Callaway & Sant’Anna (2021). 95 % confidence intervals are indicated.
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Figure 4: Treatment Effect on Fuel Consumption and Mileage

(a) Fuel in Liters (b) Number of Refueling Transactions

(c) Liters per Refueling Transaction (d) Kilometers Traveled

Notes: Doubly-robust estimator θes(e) from Callaway & Sant’Anna (2021). 95 % confidence intervals are indicated.

subjects reduce quarterly fuel consumption by slightly more than 100 liters in the first

few quarters after adoption. These results indicate a high substitutability of electricity

for gasoline among treated subjects. As before, the precision of these estimates falls with

the length of the event window.

Five quarters after the installation date for the home charger, the treatment effect on

fuel consumption appears to vanish whereas the increase in electric charging is sustained

(see Figure 3a). This begs the question of whether treated workers end up driving more.

The estimated treatment effects on total kilometers driven per quarter are plotted in Panel

(d) of Figure 4. While a positive effect on the vehicle kilometers traveled is observed in the

first three quarters after the adoption of home charging (mileage increases by up to 1000

km per quarter), this effect seems to become somewhat smaller in quarter 4 after adoption
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and it becomes statistically insignificant from that quarter onwards. The observed increase

in mileage in the first quarters after adoption is equivalent to an increase of roughly 20

% as compared to 2020 levels. This rebound effect might have several reasons. First, as

charging becomes more convenient with a home charger and potentially also less time-

consuming for treated subjects, this lowers the non-monetary cost of driving the PHEV,

leading to higher mileage. Second, treated subjects might feel morally licensed to use their

PHEV more often, as charging is associated with lower CO2 emissions than refueling. In

other words, they might have less of a bad conscience when driving the car electrically

(for moral licensing in the environmental domain, see, e.g., Tiefenbeck et al., 2013). As a

consequence, using the PHEV becomes more attractive relative to using another car that

may be available in the household, or to using other environmentally friendly modes of

transport.

Turning to environmental outcomes, Figure 5 shows that the treatment reduced av-

erage fuel consumption per 100 km by up to three liters (Panel (a)) as it increased the

electric driving share of PHEVs by up to 40 percentage points (Panel (b)). How this

translates into CO2 emissions abatement depends on the assumptions about the emis-

sions caused by electricity generation for charging. We argue that the most reasonable

assumption about these emissions is that no additional emissions are generated. The rea-

son for this is that any emissions from charging are regulated under the total emissions

cap implied by the EU’s Emissions Trading System (EU ETS). Hence, any additional

emissions from charging must reduce emissions elsewhere under the cap. Under this re-

alistic scenario, the reduction in fuel consumption translates into reduced CO2 emissions

of up to 300 kg per quarter (Panel c). For comparison, panel (d) shows the treatment

effect on net CO2 emissions if the additional electricity charged gave rise to unregulated

CO2 emissions at the prevailing average CO2 intensity in the German electricity grid (cf.

Appendix D.1). Under this scenario, emissions abatement is still about half of the abate-

ment under the other scenario, though the corresponding coefficient becomes statistically

insignificant already shortly after the adoption of home charging infrastructure.

Finally, panel (e) of Figure 5 plots the quarterly treatment effects on the energy costs of

charging or refueling the vehicle. This outcome aggregates the pecuniary costs of gasoline

or diesel bought at the pump and of electricity charged at home, at the firm’s premises

or at public stations. We find that home charger adoption significantly lowered energy

costs. Recall that, within the fringe benefit scheme considered here, this is a benefit that

accrues to the firm, not to the holder of the car.
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Figure 5: Treatment Effects on Fuel Efficiency, CO2 Emissions and Energy Costs

(a) Fuel Consumed per 100km (b) Electric Driving Share

(c) CO2 Emissions (EU ETS Cap) (d) CO2 Emissions (No EU ETS Cap)

(e) Company Energy Costs

Notes: Doubly-robust estimator θes(e) from Callaway & Sant’Anna (2021). Total CO2 emissions in Panel (c) are computed

under the realistic assumption that charging is not associated with any CO2 emissions under the cap implied by the EU’s

emissions trading scheme (EU ETS). By contrast, total CO2 emissions in Panel (d) are computed under the (counterfactual)

assumption that additional electricity charged by the treated group leads to unregulated CO2 emissions at the average CO2

intensity in the German electricity grid (cf. Appendix D.1). 95 % confidence intervals are indicated.
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4.2 Overall Treatment Effects

Following Callaway & Sant’Anna (2021), we compute the ATT as a weighted average

of the DiD estimates obtained for different cohorts and time horizons, assigning equal

weight to each employee in our sample (alternatively, we could assign equal weight to

each post-treatment employee × quarter observation, which would assign a larger weight

to employees joining the program earlier). Table 2 reports the resulting ATT estimates

for quarterly outcomes, all of which are statistically significant at the 5 % or 1 % level.

Home charger adoption increased electricity consumption by 298.9 (±25.9) kWh and

decreased consumption of gasoline or diesel by 102.3 (±37.9) liters per quarter. The net

effect on emissions is a reduction of 248.1 (±88.6) kg of CO2 under the assumption of non-

additionality of emissions under the EU ETS. Emissions would drop by only 112.7 (±90.7)

kg if additional charging induced higher CO2 emissions from electricity generation at the

average emissions rate in the German electricity grid. Home charger adoption caused a

reduction in energy costs of 117.4 (±62.8) euros for the company. Finally, the average

employee’s mileage increased by 606.6 (±498.1) km per quarter, which can be interpreted

as a 14 % rebound effect in terms of vehicle kilometers traveled.

4.3 Treatment Effects on Vehicle Choice

Employees entitled to a company car get to choose a new vehicle every four years. This

allows us to investigate whether the availability of home charging makes it more likely

that employees choose a BEV. We identify this treatment effect using quasi-experimental

variation in exposure to home charging infrastructure among PHEV holders. The esti-

mation sample for this analysis contains all PHEV holders whose renewal decisions were

scheduled between July 2021 and June 2022. All these employees could have adopted a

home charger at least two quarters before the renewal, and some of them did. Due to

the delays in the ordering and installation of home chargers described above, however,

other employees did not receive the home charger before choosing their new company car.

We thus compare PHEV holders who had access to home charging for at least one full

quarter before obtaining a new company car to PHEV holders who obtained access to

at-home charging only after ordering a new company car. This identifies the treatment

effect of home chargers on the choice probabilities for BEV and PHEV company cars,

respectively.5 Note that selection into the home-charging program does not affect these

choice probabilities, since both groups select into the program eventually.

5For this distinction to work, we drop 33 employees who received access to home charging less than
a full quarter before obtaining a new company car.
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Table 3: Access to Home Charger and BEV Adoption

(1) (2)

Treatment 0.393*** 0.298***
(0.108) (0.100)

Observations 75 75
RMSE 0.46 0.43
AIC 95.0 93.8

* p < 0.1, ** p < 0.05, *** p < 0.01.
Notes: Probit regressions, coefficients transformed into marginal effects. Bootstrapped standard errors
(1000 draws). In model (2), the following covariates were included: A dummy for working at the head-
quarters and energy consumption with previously held PHEV (fuel in liters and electricity by source in
kWh). *, **, *** means that the corresponding estimated parameter is different from zero at the 10 %,
5 %, and 1 % significance level, respectively.

Our hypothesis is that employees who already had access to at-home charging with

their previous vehicle are more likely to decide for a BEV company car.6 We test this

by regressing an indicator for BEV adoption on a treatment indicator, as defined above.

This is a cross-sectional regression since we observe at most one vehicle choice per em-

ployee. Our preferred specification controls for location-specific effects (in particular the

availability of charging stations at the employee’s location of work and the density of the

public charging network) using a headquarters dummy, and for employee-specific mobility

preferences by including the total amount of energy consumed with the previously held

PHEV company car.7 Table 3 reports the estimated treatment effects on choice prob-

abilities. Having access to a home charger increases the probability of ordering a BEV

by 29.8%-points in the preferred specification. This suggests that home charger adoption

induces some PHEV holders to go all electric and switch to a BEV, thus eliminating the

option of refueling in the future.
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Table 4: ATT across different Outcomes for BEVs

Electricity consumption

Total [kWh] Firm [kWh] Public [kWh] Emissions [kg CO2] Expenditures [euro]

Home charger 172.05** -52.38** -247.73*** 79.84** 23.03
(73.02) (24.16) (62.58) (32.16) (24.84)

Employees 407 407 407 407 407
Groups 5 5 5 5 5
Periods 10 10 10 10 10

Employee FE X X X X X
Time FE X X X X X

Notes: Doubly-robust ATT estimator (Callaway & Sant’Anna, 2021). “Periods” are quarters.
“Groups” are groups of employees receiving home charging in the same quarter. *, **, *** means that
the corresponding estimated parameter is different from zero at the 10 %, 5 %, and 1 % significance
level, respectively.

4.4 Treatment Effects on Charging of Battery Electric Vehicles

For employees obtaining a BEV at some point during the sample period,8 we estimate

the effect of home charging on electricity consumption and expenditures. Table 4 re-

ports aggregate ATT estimates. We find that home charging increases total electricity

consumption by 172.05 kWh per quarter, after netting out significant decreases in both

charging at the firm’s premises (-52.3 kWh) and, especially, on the public grid (-247.73

kWh). Since public charging is more expensive than charging at home,9 the resulting in-

crease in charging expenditures is economically and statistically insignificant. If there was

no cap on electricity sector emissions, the increase in charging would lead to incremental

CO2 emissions of 79.84 kg.

These effects are unlikely to be driven by systematic differences between adopters of

home chargers and non-adopters. As shown in Table A.2, electricity consumption per

quarter prior to treatment is very similar across the two groups, and differences in the

electric efficiency, weight and price of the respective BEVs are minor. As in the larger

sample of EV holders, treated BEV holders tend to be male, older than non-participants,

6In theory, access to at-home charging should also affect choice probabilities for vehicle ownership
and ICEV ownership. These margins play a limited role in our sample. We observe only four employees
in the treated and none in the not-yet-treated group that either do not get a new company car at all or
choose an ICEV instead.

7Note that all PHEV company cars were held for approximately four years. Thus, the total amount
of fuel and electricity consumed can be interpreted as reflecting driving behavior over a four-year period.

8Due to the smaller sample of employees holding a BEV company car and since we rely on not-yet-
treated units as our control group, we had to cut our sample period off after July 2022 (Q2 2022). In Q2
2022, the control group still comprised 28 employees holding a BEV company car.

9In 2021, the charging price at the median supplier and normal charger was 0.39 eper kWh, compared
to 0.28 eper kWh at the average employee’s home and 0.15 e per kWh on the firm premises.
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and have longer tenure with the company.

5 Cost-Benefit Analysis

Building on the estimated treatment effects at the intensive and extensive margins, we

conduct a cost-benefit analysis of home charger adoption which relates total emissions

abatement to the associated costs. Simulating emissions trajectories over the expected

20-year lifetime of a home charger requires us to combine intensive-margin and extensive-

margin impacts of its adoption. This is because adopters are more likely to switch to

BEVs, and BEV holders use the home charger differently than PHEV holders. We address

this by adapting the method by Dugoua & Gerarden (2023, Appendix H) to our potential

outcome framework (using conditional expectations instead of derivatives). The basic

idea is to first consider a one-off vehicle choice and then forward-simulate the path of

the outcome variable over a 20-year period with repeated vehicle choices. A detailed

description of how we simulate the paths of energy costs and emissions, as well as formal

derivations of the ATTs is relegated to Appendix E. We simulate these outcomes under

alternative assumptions about employees’ vehicle choices, subsumed in scenarios. Across

scenarios, we rely on a set of common assumptions. First, emissions from electricity

generation are non-additional due to a binding cap of the EU ETS. Second, the initial

fleet of PHEVs in the first four years is equal to the fleet observed in the data. Third, all

employees choose a new company car simultaneously in four-year increments.10

5.1 Scenarios

Scenario 0: Baseline This scenario is based on the following assumptions:

A1 There is no exit from vehicle ownership.

A2 BEV adoption is an absorbing state (employees do not go back to ICEVs or PHEVs).

A3 Home charging does not decrease the probability of BEV adoption among employees

currently holding a PHEV and does not decrease the probability of BEV adoption

among employees currently holding a BEV

The choice probabilities for different vehicle types are then given by the transition matrix

in equation (E.15), and the ATT over different time horizons can be calculated using the

formula in equation (E.10).

10This reflects the time employees have to hold on to their company car at our partner company. In
reality, this schedule implies that roughly a quarter of employees chooses a new company car every year.
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Scenario 1: Treatment does not affect vehicle choice We replace assumption A3

with the assumption that access to home charging does not change vehicle choice, thus

shutting down extensive-margin effects of the treatment. The choice probabilities for

different vehicle types are thus given by the following transition matrix:

E(δi(1)|kit) =E(δi(0)|kit)

=

(
(1− E(δEV

i (0)|PHEV )) 0

E(δEV
i (0)|PHEV ) 1

)
(2)

Since the treatment no longer affects vehicle choice, we only need to consider the intensive-

margin treatment effects for the ATTs:

ATT (Yit) =
5∑

t=1

γtE(δPHEV
it (1))E(∆Y PHEV

i ) (3)

Scenario 2: Randomly assigned access to home charging Like scenario 1, but

also replacing assumption A2 with the assumption that the vehicle choice probabilites

among employees in the home charger program are the same as in the population of all

employees having to replace their company car in the near future (within the next two

years). We elicited these choice probabilities in a company-wide survey in February 2023.

Employees who were going to choose a new company car within two years from the survey

reported the engine types of the company car they currently had and the car they were

planning to choose next. Assuming that the choice probabilities of employees who were

still undecided at the time of the survey would follow the same distribution as the sample

we observe, we obtain the following transition matrix:

E(δi(1)|kit)

=

1779/3038 105/598 15/300

643/3038 277/598 8/300

661/3038 216/598 277/300

 (4)

and consider only the intensive-margin treatment effects for the period-ATTs:

ATT (Yit) =
5∑

t=1

γtE(δPHEV
it (1))E(∆Y PHEV

i ) (5)

Scenario 3: Permanent PHEV ownership Like scenario 1, but with the simplifying

assumption that employees do not change their vehicle type over time after their initial
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choice in period 1. Under these assumptions, the ATTs are simply given by the net

present value of the period treatment effects on PHEV use:

ATT (Yit) =
5∑

t=1

γtE(∆Y PHEV
i ) (6)

Scenario 4: Forced Transition to BEVs Like scenario 1, but with the additional

assumption that the company only allows BEV company cars from the second four-year

period onwards. The dynamic ATTs then correspond to the ATTs during the first four-

year period:

ATT (Yit) = γE(∆Y PHEV
i ) (7)

This gives us all the ingredients needed to approximate the ATT on CO2 emissions

and energy costs, combining intensive- and extensive-margin reactions. We collect the

required parameters in Table 5.

Table 5: Coefficients and Parameters for the Back-of-the-Envelope Calculation

Parameter Source

Panel A: Estimated ATTs
E(∆δEV

i ) = 0.298 Table 3
E(∆EPHEV

i ) = −248.14 kg CO2 per quarter Table 2
E(∆CPHEV

i ) = −117.39 e per quarter Table 2
E(∆CEV

i ) = 0 e per quarter Table 4
Panel B: Observed population averages

E(EPHEV
i (0)) = 636.08 kg CO2 per quarter Table 1

E(CPHEV
i (0)) = 347.35 e per quarter Table 1

E(CEV
i ) = 63.40 e per quarter Table A.2

Panel C: Parameter assumptions
E(δPHEV

it (0), δEV
it (0), δICEV

it (0)) = (1, 0, 0) Starting from PHEV users
E(EEV

i ) = 0 Assumption given EU ETS Cap

γ =
∑4

y=1(1.03)
y for abatement cost Ad hoc

γ = 4 for emissions Ad hoc
E(δi(1)|kit) See scenarios

5.2 Simulation Results

Figure 6 displays cumulative treatment effects of home charging adoption over time for

various outcomes, starting from the end of year four when the leases for the initial PHEV
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Figure 6: Simulation of Cumulative Treatment Effects over Time

(a) Cumulative Emissions Abatement (b) Cumulative Abatement Cost

(c) Abatement Cost (d) Employees Holding PHEV

(e) Employees Holding ICEV (f) Employees Holding BEV

Notes: Estimates for the dynamic ATT.Scenario 0 is the baseline scenario. In scenario 1, treatment does not affect vehicle

choice. In scenario 2, access to home charging is randomly assigned to employees. In scenario 3, employees keep a PHEV

company car for the full 20-year period. In scenario 4, all employees are forced to choose a BEV after four years.
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fleet need to be renewed. Panel (a) shows cumulative CO2 emissions abatement per

employee, which ranges from about four tons of CO2 in scenario 4 (BEVs) to almost 20

tons of CO2 in the baseline scenario and scenario 3 (PHEVs), with the other two scenarios

lying somewhere in between these polar cases. The reason for low abatement in scenario

4 is that there are no further emissions reductions from adopting a home charger after

the first four years. After that, the forced transition to a pure BEV fleet means that all

vehicles run at 100% electric utility factor and hence adding chargers has no impact on

emissions.

In all other scenarios, the program generates emissions reductions in all years because

not everyone transitions to BEVs. Depending on the scenario, employees may stick with

PHEVs or even go back to an ICEV (see panels d, e, and f for the shares of employees

holding PHEVs, ICEVs, and BEVs, respectively).

Panel (b) displays the cumulative total abatement cost from adopting home chargers,

i.e., installation costs minus cost savings resulting from the substitution from fuel (gasoline

or diesel) to electricity. We observe that the abatement cost per employee is highest if

the company mandates BEV company cars from the second four-year period onwards

since home chargers do not result in additional emissions reductions, and it is lowest in

the baseline scenario and scenario 4 in which the program also generates future benefits.

Note that an abatement cost of zero implies that the home charger installation has paid

off and that lower, in particular, a negative abatement cost results when there is more to

be gained from the home charger program. This is the case when (i) more PHEVs remain

in the fleet, as in scenario 3 or (ii) access to charging at home has a positive impact on

BEV adoption, as in the baseline scenario. The break-even point is reached already after

slightly more than six years in the baseline and in scenario 4. For the remaining two

scenarios, the break-even point is approximately two to four years later, either because

the transition to BEVs is proceeding more slowly (see panel f), or because we assumed

the extensive margin effect of experience with the program to be zero (to understand the

magnitude of the extensive margin effect, compare the baseline scenario to scenario 1 in

Panel a). Per ton of CO2 emissions, we estimate levelized abatement costs of around 250

euros after four years, but these decrease to between -100 and -300 euros after 20 years

(see Panel c).

6 Conclusion

This paper contributes the first causal evidence on the effects of home charger adoption

on the use of Plug-in Hybrid Electric Vehicles. We find that CO2 emissions from Plug-in
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Hybrid Electric Vehicles fall by 38 % when the vehicle holder obtains access to home charg-

ing infrastructure under the assumption that electric charging does not cause additional

emissions under the EU’s Emissions Trading System. Home charging predominantly re-

places refueling with conventional gasoline or diesel rather than other charging options,

and hence it reduces CO2 emissions, despite a 14 % rebound effect via increased mileage.

Even under a more pessimistic assumption that electric charging leads to emissions equal

to the average emissions in the German electricity mix, total CO2 emissions are signifi-

cantly lower after installing a home charger. Furthermore, home charger adoption leads

to a 30 % higher likelihood of choosing a Battery Electric Vehicle when employees choose

a new company car under the periodical renewal of their lease.

In a cost-benefit analysis, we find that in most scenarios the installation of the home

charger already pays off (for the company) after six to eight years. The longer is the

assumed time span that the home charger lasts, the larger are the net benefits from

installing it, with negative levelized abatement costs. Per employee, total abatement

from adopting a home charger ranges from between four to 20 tons of CO2 emissions.

Since PHEVs accounted for 9.4 % of new vehicle registrations in the European Union in

2022 (European Environment Agency, 2023), our results bear high policy relevance. They

identify and quantify a powerful lever for decreasing emissions from a large segment of the

vehicle fleet. While our research design relies on data from a subsidy scheme implemented

by a private company in a company car fleet, we reckon that government subsidies on home

charging infrastructure could have similar effects for a broader segment of PHEV holders,

with expected pay-back times that are similar to the ones found in this study. Take-up

by private vehicle owners will require that the subsidy be high enough to offset the as yet

relatively high cost of the technical equipment. Falling cost of the equipment, a longer

useful lifetime, increasing carbon taxes on fossil fuels and decarbonization of the electricity

grid will all work in the direction of a faster diffusion of at-home charging, and thereby

leverage the environmental benefits of electric vehicles.
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Appendix (For Online Publication)

A Additional Tables

Table A.1: Summary Statistics

Variable Mean Sd Min Pctl. 25 Median Pctl. 75 Max

Panel A: Driving Behavior

Mileage [km] 5138 2896 21.8 3021 4739 6824 19343

Emissions [g CO2] 501 384 2.49 252 401 649 3764

Tailpipe Emissions [g CO2] 323 392 0.551 63.8 179 436 3722

Fuel [l] 133 161 0.231 26.1 73.9 181 1560

Charge at home [kWh] 347 306 0 108 293 498 2504

Charge at firm [kWh] 28.6 69.5 0 0 0.005 29.7 1203

Charge public [kWh] 22.1 64.6 0 0 0 16.1 977

Fuel consumption [l/100 km] 2.52 2.28 0.0538 0.774 1.92 3.47 14.2

Electricity consumption [kWh/100 km] 8.6 6.34 0 3.71 7.5 12.6 45.7

Panel B: Vehicle Characteristics

Price [euro] 32575 4496 0 30946 32511 35328 49631

Weight [kg] 2020 262 1480 1844 2025 2105 2655

Fuel Consumption [l/100 km WLTP] 1.59 0.343 0.8 1.4 1.4 1.7 2.9

Electricity Consumption [kWh/100 km WLTP] 17.5 3.18 13.3 15.3 16.2 18.9 24.2

Panel C: Employee Characteristics

Age [Years] 48.2

Tenure [Years] 17.4

Female [%] 0.156

Notes: Descriptive statistics on the sample of employees and their PHEVs, respectively, in the home charger
program between January 2021 and December 2022 (N = 836 employees). Panel A shows summary statistics
for vehicle use after the employee has received access to home charging. This reduces the size of the sample
to N = 720 employees since we exclude the last-treated group. Panel B displays vehicle characteristics for the
car models held by employees participating in the program. WLTP stands for “Worldwide Harmonized Light
Vehicles Test Procedure”. Panel C displays employee characteristics. Note that each employee is assigned the
average characteristics of the group simultaneously adopting a home charger.

B Company Cars

Many companies provide generous mobility options to their employees, not only for busi-
ness trips but also for the commute to work and for leisure trips. The most prominent
example are company cars, which typically can also be used privately. The use of com-
pany cars is heavily subsidized in many countries, particularly in Europe (Copenhagen
Economics, 2010). Furthermore, companies often reimburse up to 100 % of the car’s
fuel cost. These two factors make a company car much cheaper for an employee than if
the same car were purchased privately. Additionally, providing a company car is often
perceived as a status symbol and can make working for an employer more attractive.
Therefore, companies are reluctant to take away this privilege, even though they are con-
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Table A.2: Home Charger Sample with BEVs vs. Population of BEVs

Home Charger No Home Charger

Variable Mean Sd Mean Sd

Panel A: Vehicle Use in 2020
Emissions [kg CO2] 94.889 (105.5) 93.058 (99.56)
Electricity per quarter [kWh] 247.753 (275.46) 242.972 (259.96)
Energy expenditures [euro] 63.398 (87.42) 65.303 (90.68)

Panel B: Vehicle Characteristics
Electric efficiency [kWh/100 km WLTP] 15.616 (2.11) 15.433 (2.51)
Price [euro] 32642.918 (11468.1) 31268.432 (12404.58)
Weight [kg] 1980.911 (349.8) 1901.058 (330.25)

Panel C: Employee Characteristics
Age [years] 48.338 (0.4) 43.188 (0)
Tenure [years] 17.536 (1.05) 12.888 (0)
Female [%] 0.157 (0.02) 0.235 (0)

Notes: Comparison of the sample of employees selecting into the home charger program between January
2021 and December 2022 (N = 493 employees) to the group of employees not selecting into the home
charger program during that period (N = 749 employees). Both samples are restricted to the employees
holding at least one BEV during that period and opting into the fuel cost compensation scheme of the
company. Panel A shows summary statistics for vehicle use in the year 2020 in which none of the employees
in the home charger sample has received a home charger yet. The sample sizes are reduced to N = 63 cars
that were used during that period for the home charger sample and N = 221 cars in the no-home charger
sample. Panel B displays vehicle characteristics obtained from the General German Automobile Club’s
car catalog. Panel C displays employee characteristics which are only available in terms of group averages.
WLTP stands for “Worldwide Harmonised Light Vehicle Testing Protocol”.
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fronted with external or internal ambitions to rapidly decrease CO2 emissions, also from
their employees’ mobility.

As an alternative to a company car, some companies have started to offer a so-called
mobility budget to their employees. A mobility budget is a predefined individual budget
that can be used flexibly by employees during a certain time period, e.g., a year, to choose
any transport mode that is available on the market or allowed to be used. In the European
Union, around 30 % of the companies with at least one company car already offer this
option or are considering doing so in the future; see Kantar/Arval Mobility Observatory,
2020. For an analysis of sustainability incentives within a mobility budget, see Gessner
et al. (2023).

C Data Preparation

For this project, our partner company provided us with data from five different sources:
i) the register of company cars, listing the employee holding the car, a description of the
car model, the vehicle’s fuel type, potentially the date on which the employee ordered a
home charger, ii) transaction data on charging procedures at the companies premises, iii)
transaction data on charging procedures at public charging stations iv) transaction data
on charging procedures at the employees home, for those employees who already joined
the home charger program and v) transaction data on refueling at public gas stations. For
all transaction data sets, we observe the date and time at which the transaction occurred
and the amount of energy charged (fuel in liters, electricity in kWh). For the refueling
transactions, we additionally observe employee-recorded odometer readings, giving the
total vehicle kilometers traveled up to this point.

The odometer readings imply vehicle mileages between two refueling procedures that
are sometimes implausible, since i) the implied mileage is negative or ii) the mileage
information is not consistent with the fuel and electricity consumption of the car and the
car’s efficiency. To clean the mileage variable, we assess the plausibility of the mileage
observed using the two criteria. To do so, we apply the following procedure. We manually
match the vehicle model descriptions in the company car register to vehicle models as
listed in the model catalog of the General German Automobile Club11.

For each PHEV model, we obtain the combined (using both electricity and fuel) fuel
consumption per 100 km according to type-approval tests using the New European Driving
Cycle (NEDC).The NEDC was the European Union’s testing procedure for type-approval
before 2017, and NEDC testing values had to be provided for all model years in Europe
until 2019. For all but 63 vehicles in our sample, a NEDC fuel consumption is available. If
the efficiency is only available for the newer Worldwide Harmonised Light-Duty Vehicles
Test Procedure (WLTP), we use that value divided by 1.2 as an NEDC-equivalent value.
To clean the data, we used the vehicle’s fuel consumption in charge-sustaining mode, that
is, when the PHEVs battery is (almost) depleted and the PHEV mainly uses the internal
combustion engine for driving (Riemersma & Plötz, 2017). In the ADAC data, only
the combined fuel consumption (average between charge sustaining and charge depleting

11ADAC Modellkatalog, https://www.adac.de/rund-ums-fahrzeug/autokatalog/

marken-modelle/?filter=ONLY_RECENT&sort=SORTING_DESC, last accessed 24.02.2024, 23:28 CET.
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mode, i.e. the vehicle’s fuel consumption when the battery is fully charged) is available.
We obtain a lower-bound estimate for the fuel consumption in charge-sustaining mode
using the formula for the combined consumption under the NEDC procedure (as found
in Riemersma & Plötz, 2017)

CNEDC =
CNEDC

1 DNEDC
e + CNEDC

2 25

DNEDC
e + 25

(C.1)

=⇒ CNEDC
2 ≥ 25CNEDC

DNEDC
e + 25

(C.2)

Finally, to account for the underestimation of fuel consumption under the NEDC test-
ing procedure, particularly for PHEVs (Plötz et al., 2020), we multiply the NEDC con-
sumption in charge-sustaining mode by 1.5 to obtain an estimate for the on-road fuel
consumption of the vehicle, following Grigolon et al. (2024) and Plötz et al. (2021).

Creal
2 = 1.5CNEDC 25

DNEDC
e + 25

(C.3)

CNEDC is the combined NEDC fuel consumption, CNEDC
1 is the charge-depleting NEDC

fuel consumption DNEDC
e is the NEDC electric driving range of the PHEV, and CNEDC

2

and Creal
2 are the NEDC and on-road fuel consumption in charge-sustaining mode, re-

spectively.
We also obtain the electric efficiency of the PHEV version of the model, according to

the NEDC procedure, where possible. If we only observe the WLTP electric efficiency, we
divide that value by 1.2 to obtain a proxy for the NEDC electric efficiency. We assume
that the NEDC testing procedure imposes an electric driving share of 80 % on the vehicle
(which is at the upper end of electric driving shares assumed in testing procedures, see
e.g. (Plötz et al., 2021), which implies that we obtain the efficiency of purely electric
driving by dividing the combined NEDC electricity consumption by 0.8. Assuming a high
NEDC utility factor will thus lead to a higher electricity consumption per 100 km in a
hypothetical all-electric driving mode.

We proceed to clean the mileage variable as follows: Based on the transaction data,
we calculate the total electricity consumption between two odometer readings by adding
up all the electricity charged between the two corresponding refuelling dates. Based on
the electric efficiency of the vehicle, we then translate the electricity consumption into
kilometers, which we subtract from the mileage obtained from differencing the odometer
readings. Dividing the total fuel consumption by this residual mileage multiplied by 100,
we obtain an observed fuel consumption per 100 km traveled using mainly the internal
combustion engine. If this observed average fuel consumption exceeds the vehicles fuel
consumption in charge-sustaining mode (Creal

2 ) by more than a factor 3 or else if it is
lower than 20 % of Creal

2 , we flag the mileage as erroneous. We interpolate mileages
flagged as implausible using an energy-weighted average between the last and the next
correct observed mileage. To obtain the energy weights, we transform fuel consumption
in liters into the equivalent electricity consumption in kWh using the vehicle’s electric
and fuel efficiency according to testing procedures.
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We drop series with less than three non-flagged mileage observations. Such series can
occur, e.g., for series with few refueling procedures, ii) for series that appear to charge
their PHEV privately, such that the observed average fuel consumption is constantly
below the lower bound implied by 20 % of Creal

2 , or iii) for series in which the employee
did not take entering the odometer readings seriously, such that the sequence of recorded
mileages does not appear to reflect driving behavior. Note that the latter case should be
rare since not entering odometer readings correctly violates corporate policies.

If flagged mileages occur at the end of a series, we extrapolate based on the last correct
odometer reading and the fuel and electricity use of the vehicle after that. For each
refueling procedure after the last correct odometer reading, we impute the mileage based
on the vehicle’s electricity and fuel consumption, translating energy consumption into
kilometers traveled using the vehicle’s NEDC electricity consumption per 100 km in all-
electric mode (see above) and the vehicles average fuel consumption per 100 km we observe
in the not-flagged transactions data (see above). To test whether this extrapolation
affects our results for the vehicle’s mileage, average fuel consumption per 100 km and
utility factor, we run a sensitivity analysis with two alternative imputation procedures
in Appendix F. We truncate all vehicle time series after the vehicle’s last (correct or
incorrect) mileage observation, i.e. after the second-to-last observed refueling procedure
since we would be unable to obtain a mileage after the last refueling procedure (odometer
readings are only recorded after refuelling the vehicle).

In contrast to the employee-recorded odometer readings, we take the amount of fuel
and electricity consumed in the transactions data almost at face value. The only correction
we apply is that we winsorize refueling at 100 liters per transaction since most vehicles have
a tank capacity of less than 100 liters (this affects 8 out of 949406 refueling procedures)
and we winsorize electric charging at 130 % of the vehicles gross battery capacity (this
affects 15497 out of 949406 recharging and refueling procedures).12

Finally, we construct the share of vehicle kilometers traveled in electric mode, the
so-called on-road utility factor following Plötz et al. (2021) and Grigolon et al. (2024)
using the following formula:

UF = 1− Con−road
2

Creal
2

(C.4)

We obtain estimates for the on-road fuel consumption per 100 km Con−road
2 by dividing the

fuel consumption observed in the transaction data by the mileage variable (constructed
as described above).

12The amount of electricity charged from the station is always greater than the amount of electricity
stored in the battery, due to efficiency losses. Charging slightly more electricity in kWh than the net
battery capacity of the vehicle is thus possible. Winsorizing charged amounts at 130 % gross battery
capacity should affect only charging procedures that are technically infeasible.
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D CO2 Emissions, Energy Prices and Abatement Cost

This section outlines the assumptions made to transform the observed energy consumption
in terms of electricity, or fossil fuels (either diesel or gasoline) into CO2 emissions and
energy costs. We summarize the assumptions made for energy prices, emission factors,
etc. in Table D.1.

D.1 CO2 Emissions

The PHEVs can drive using electricity and either Gasoline or Diesel fuel. We observe the
amount of fuel in liters and the amount of electricity in kWh. Converting fuel consumption
into CO2 emissions is straightforward, since the amount of CO2 emitted is proportional
to the amount of fuel burned. To quantify that relationship, we use emissions factors for
fossil fuels from the German Environmental Protection Agency (Juhrich, 2022).

To convert electricity consumption into CO2 emissions, we make the simplifying as-
sumption that the emissions intensity of electricity generation in Germany is constant for
one year at a time. We can then calculate CO2 emissions from electric charging using the
average annual CO2 intensity of the German electricity mix, as calculated by the German
Environmental Protection Agency (Icha & Lauf, 2022).

D.2 Energy Prices

To calculate energy cost savings for the firm, we need to assign a monetary value to the
energy consumption observed. For at-home charging, we directly observe the price per
kWh of electricity. To approximate prices paid for fuel and electricity charged at the
company’s premises or on the public grid, we use annual average annual consumer prices
for Gasoline and Diesel in Germany from the industry organization “Wirtschaftsverband
Fuels und Energie e.V.” (Bittkau et al., 2022), and data on industry electricity prices from
the German Federal Statistical Office (DESTATIS, 2023b). To approximate the cost of
charging the vehicle at public charging stations, we take the average price paid across a
set of charging station providers from (Kampwirth, 2020, 2021, 2023).

D.3 Home Charging Installation Cost

Our partner company cooperated with a utility company to provide employees with sub-
sidized at-home charging stations. The utility had a modular pricing schedule. More
complex installations, e.g. for installations at underground parking needed to pay for an
inspection ahead of the installation to check whether installing a home charger would be
feasible. Depending on the complexity of the installation (defined by the length of needed
electricity cable and the number of walls these cables needed to go through) employees
were offered one of two prices for the installation. The subsidy provided by the company
was capped at 2,750 Euro, which was sufficient to cover the cost of a charging station and
the simple installation. For a more complex installation, employees could end up paying
up to 800 euros out of their own pocket. Additionally, the subsidy for the home charger
installation was subject to a flat income tax rate of 25 %.
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D.4 Abatement Cost

We calculate abatement cost by assuming that the company paid the full subsidy to all
employees, and this covered the full installation cost. The installation cost of the home
charger is thus covered by a 2,750 Euro subsidy. To obain abatement cost, we assume a
useful life of the home charger of 20 years and calculate abatement cost under different
scenarios in four-year increments. Four years is the period over which an employee has to
hold on to her company car. We assume that the treatment effect on the vehicle’s tailpipe
emissions would be constant over the useful life of the home charger. Aggregating over the
useful life, we obtain the implied CO2 emission savings. To obtain energy cost savings,
we assume that the ATT on the energy costs from refueling and charging the car is also
constant over time, and calculate the total cost per employee as the net present value of
the initial investment (the subsidy) and the future energy cost savings. We divide this
number by the CO2 emissions reduction to obtain an estimate for the abatement cost.

Table D.1: Energy prices and CO2 emission factors

Variable Value Source

Panel A: Emission factors
Diesel 74.0 tCO2/TJ (Juhrich, 2022)
Gasoline 3.169 tCO2/t (Juhrich, 2022)

Electricity
383 g/kWh (2020) (Icha & Lauf, 2022)
425 g/kWh (2021) (Icha & Lauf, 2022)
459 g/kWh (2022) (Icha & Lauf, 2022)

Panel B: Prices

Diesel
1.124 EUR/l (2020) (Bittkau et al., 2022)
1.399 EUR/l g/kWh (2021) (Bittkau et al., 2022)
1.96 EUR/l (2022) (Bittkau et al., 2022)

Gasoline
1.293 EUR/l (2020) (Bittkau et al., 2022)
1.579 EUR/l g/kWh (2021) (Bittkau et al., 2022)
1.962 EUR/l (2022) (Bittkau et al., 2022)

Electricity Firm
0.100 EUR/kWh (2020) (DESTATIS, 2023b)
0.150 EUR/kWh g/kWh (2021) (DESTATIS, 2023b)
0.246 EUR/kWh (2022) (DESTATIS, 2023b)

Electricity Public
0.38 EUR/kWh (2020) (Kampwirth, 2020)
0.39 EUR/kWh g/kWh (2021) (Kampwirth, 2021)
0.43 EUR/kWh (2022) (Kampwirth, 2021, 2023)

Social Cost of Carbon 150 EUR/tCO2 eq (Rennert et al., 2022)
Value of Time 12.80 EUR/h (DESTATIS, 2023a)
Cost of Home Charger 2750 EUR Partner company
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E Derivations for Cost-Benefit Analysis

E.1 Approximating the ATT for a One-off Vehicle Choice

For simplicity, we first consider a one-off decision for vehicle adoption (e.g. for a four-year
lease) where employee i decides on vehicle type k given her treatment status. Treatment
status Di and vehicle type k jointly determine the outcomes CO2 emissions Ek

i (Di) and
energy costs Ck

i (Di) for employee i. We adopt the notation Y k
i (Di) ∈ {Ek

i (Di), C
k
i (Di)}.

Employee i’s outcomes can then be written as Yi(Di) =
∑

k δ
k
i (Di)Y

k
i (Di), where δ

k
i is an

indicator for whether employee i adopts vehicle type k ∈ {ICEV, PHEV,EV }.
Using this notation, we can define the ATT as:

ATT (Yi) = E(Yi(1)|Di = 1)− E(Yi(0)|Di = 1) (E.1)

where E stands for the expectation operator. With random assignment of treatment, this
simplifies to:

ATT (Yi) = E(Yi(1))− E(Yi(0)). (E.2)

Considering the emissions given one treatment status in isolation, we can rewrite:

E(Yi(Di)) = E

(∑
k

δki (Di)Y
k
i (Di)

)
(E.3)

We assume that vehicle choice δki is independent of vehicle use and thus independent
of emissions Ek

i and energy costs Ck
i . We justify this assumption by the following ar-

gument: suppose a company rolls out home charging infrastructure among employees
initially holding PHEVs. These employees have similar characteristics ex-ante. Changes
in vehicle choice could be driven by i.i.d. shocks to employee preferences for sustainable
transportation. Under the independence assumption, we can r-write:

E(Yi(Di)) =
∑
k

E
(
δki (Di)

)
E
(
Y k
i (Di)

)
(E.4)

By definition, the CO2 emissions of ICEVs and EVs (under the assumption of a binding
cap of the EU ETS) and the energy costs of ICEVs are not affected by the treatment
status. Additionally, we find in Table 4 that the energy costs of BEVs are also the same
regardless of the treatment status. Thus, we can simplify our notation: Y k

i (1) = Y k
i (0) =

Y k
i ∀ i, k ∈ {EV, ICEV }, Y ∈ {E, C}. This implies that we can re-write the ATT as:

ATT (Yi) = E(δPHEV
i (1))E(Y PHEV

i (1))

− E(δPHEV
i (0))E(Y PHEV

i (0))

+
∑

k∈{EV,ICEV }

E(δki (1)− δki (0))E(Y
k
i ) (E.5)
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Adding a “smart zero” yields:

ATT (Yi) = E(δPHEV
i (1))E(Y PHEV

i (1))

+ E(δPHEV
i (1))E(Y PHEV

i (0))

− E(δPHEV
i (1))E(Y PHEV

i (0))

− E(δPHEV
i (0))E(Y PHEV

i (0))

+
∑

k∈{EV,ICEV }

E(δki (1)− δki (0))E(Y
k
i ) (E.6)

We adopt the notation δki (1) − δki (0) = ∆δki and Y k
i (1) − Y k

i (0) = ∆Y k
i and rearrange

terms:

ATT (Yi) = E(∆δPHEV
i )E(Y PHEV

i (0))

+ E(δPHEV
i (1))E(∆Y PHEV

i )

+ E(∆δICEV
i )E(Y ICEV

i )

+ E(∆δEV
i )E(Y EV

i ) (E.7)

To obtain an estimate of the ATT, we need to make three additional assumptions on
vehicle choice. First, we assume that there is no exit from vehicle ownership over the
lifetime of the home charger, implying E(∆δPHEV

i )+E(∆δICEV
i )+E(∆δEV

i ) = 0. Second,
we assume that among the employees selecting into the home charging program, employees
currently holding a PHEV or a BEV will not choose an ICEV again, even without access
to company-financed home charging. Third, access to home charging does not increase the
probability of ICEV adoption. Together, these assumptions imply that E(∆δICEV

i ) = 0
and E(∆δPHEV

i ) = −E(∆δEV
i ) , and we can re-write:

ATT (Yi) = E(δPHEV
i (1))E(∆Y PHEV

i )

+ E(∆δEV
i )E(Y EV

i − Y PHEV
i (0)) (E.8)

The first term in this expression is the intensive-margin effect on the outcomes for em-
ployees holding on to their PHEVs, and the second term is the extensive-margin effect
for employees choosing a BEV instead of a PHEV as their next company car. Note
that we have already estimated E(∆EPHEV

i ) and E(∆δEV
i ), for our sample of employ-

ees holding a PHEV initially and selecting into the home charging program. We estimate
E(EPHEV

i (0)), E(CPHEV
i (0)) andE(CEV

i ) using the corresponding sample averages among
not-yet-treated PHEV or BEV owners. Furthermore, EEV

i = 0 by assumption.

E.2 Approximating the ATT with Repeated Vehicle Choices

In our setting, employees have to decide on a new company car every four years. Assuming
that these decisions occur simultaneously for all employees, we obtain a new equation to
extrapolate the ATT over the subsequent 20 years, which corresponds to (an upper bound
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on) the expected useful life of the home charging station:

ATT (Yit) =
5∑

t=1

γtATTt

=
5∑

t=1

γt
[
(E(δPHEV

it (1))E(∆Y PHEV
it ) + E(∆δEV

it )E(Y EV
it − Y PHEV

it (0))
]

(E.9)

where t denotes the time period (e.g., t = 1 is the first four-year period) and γt denotes the
discount factor for the respective outcome in period t. We work with an annual discount
rate of three percent for energy costs and do not discount CO2 emissions abatement. We
additionally assume that (i) treatment effects are constant over time, i.e., a home charger
has the same effect on vehicle adoption and charging behavior regardless of how long
the employee has had access, and (ii) car usage, emissions factors, and energy prices are
constant over time. The ATT the simplifies to:

ATT (Yit) =
5∑

t=1

γtE(δPHEV
it (1))E(∆Y PHEV

i )

+
5∑

t=1

γtE(∆δEV
it )E(Y EV

i − Y PHEV
i (0)) (E.10)

Note that E(∆δEV
it ) still has a time index, since it depends on the constant period treat-

ment effect E(∆δEV
i ), and on the difference in the share of EVs arising from the different

accumulation of EVs due to the changed transition matrix

E(∆δEV
iT ) = E(∆δEV

i ) +
T−1∑
t=1

(
E(δit(1)|kit)t − E(δit(0)|kit)t

)
Estimating the ATT over time thus requires an estimate of the share of employees holding
a PHEV in each period t, E(δPHEV

it (1)). To obtain this share for each period, we need to
make an assumption on the initial distribution of vehicle types in the sample of employees
receiving access to company-financed home charging. In addition, we need to specify the
transition matrix for vehicle choices among employees holding different vehicle types.
Since the treatment was found to affect the vehicle choice probabilities, this transition
matrix depends on the employees’ treatment status and an be written as follows:

E(δit(Dit)|kit) =

E

E(δICEV
it (Dit)|ICEV ) E(δICEV

it (Dit)|PHEV ) E(δICEV
it (Dit)|EV )

E(δPHEV
it (Dit)|ICEV ) E(δPHEV

it (Dit)|PHEV ) E(δPHEV
it (Dit)|EV )

E(δEV
it (Dit)|ICEV ) E(δEV

it (Dit)|PHEV ) E(δEV
it (Dit)|EV )

 (E.11)
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where E(δICEV
it |ICEV ) is the probability of adopting an ICEV, conditional on currently

holding an ICEV. We assume that this transition matrix is constant over time. Given our
interest in the ATT, we need an estimate of the transition matrix for treated employees
E(δi(1)|kit). In line with the previous section, we assume that employees selecting into
the home charging program and currently holding either a PHEV or a BEV will never
revert to an ICEV company car:

E(δit(Dit)|kit) =

E

E(δICEV
it (Dit)|ICEV ) 0 0

E(δPHEV
it (Dit)|ICEV ) E(δPHEV

it (Dit)|PHEV ) E(δPHEV
it (Dit)|EV )

E(δEV
it (Dit)|ICEV ) E(δEV

it (Dit)|PHEV ) E(δEV
it (Dit)|EV )

 (E.12)

Starting from a population of employees holding BEVs or PHEVs (this was an admission
criterion for the program), we can thus consider a reduced transition matrix since no
employee in our sample will ever hold an ICEV again:

E(δit(Dit)|kit) =

E

(
E(δPHEV

it (Dit)|PHEV ) E(δPHEV
it (Dit)|EV )

E(δEV
it (Dit)|PHEV ) E(δEV

it (Dit)|EV )

)
(E.13)

We can rewrite this transition matrix as the sum of the transition matrix in the control
group and the matrix of treatment effects on vehicle choice previously estimated:

E(δit(1)|kit) = E(δit(0)|kit) + E(∆δi|kit) (E.14)

Based on our estimated treatment effects on vehicle choice from Table 3, we obtain an
estimate for E(∆δEV

i |PHEV ) = −E(∆δPHEV
i |PHEV ) given the no-exit assumption on

company car ownership. Additionally, we assume that BEV adoption is an absorbing state
for employees selecting into the home charging program. Together, these assumptions
imply:

E(δi(1)|kit) = E(δi(0)|kit) + E(∆δi|kit) =(
(1− E(δEV

i (0)|kit = PHEV )) 0
E(δEV

i (0)|kit = PHEV ) 1

)
+

(
−E(∆δEV

i |kit = PHEV ) 0
E(∆δEV

i |kit = PHEV ) 0

)
(E.15)

We can observe the probability of choosing a BEV among PHEV owners in the control
group.
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F Sensitivity Analysis on Vehicle Kilometers

As mentioned at the end of Appendix C, we run a sensitivity analysis on the imputation
procedure for implausible mileages at the beginning or the end of a vehicle time series. In
the baseline specification, we extrapolated these values based on a vehicle’s observed on-
road fuel consumption on kilometers traveled without electricity and the vehicle’s NEDC
electricity consumption per 100 km (dividing the testing value by 0.8 to translate the
electricity consumption under an 80 % utility factor into a hypothetical 100 % electric
driving electricity consumption). As alternative specifications, we use i) the vehicle’s
average fuel consumption on all vehicle kilometers and impute using only fuel consumption
or ii) the vehicle’s electricity consumption as in the baseline specification and the vehicle’s
NEDC fuel consumption in charge-sustaining mode, i.e. when the vehicle’s battery is not
charged. Note that specification i) is certainly going to bias our results on the effect on
mileage since we ignore the vehicle’s electricity consumption for the mileage imputation
at the end or the beginning of a series. We show that access to home charging reduces
the vehicle’s fuel consumption while increasing its electricity consumption, based on fuel
and electricity consumption data. Since access to home charging is an absorbing state in
our study, we will thus impute lower mileages for treated households at the end of the
sample period, which will bias the effect on mileage downwards. In specification ii) we use
the vehicle’s fuel consumption in charge-sustaining mode in the NEDC testing procedure.
We know that the NEDC testing procedures tend to be overly optimistic regarding the
electric driving share of PHEVs. Adjusting the value to display consumption in charge-
sustaining mode, we try to adjust for this bias. Nevertheless, we trust the imputation in
the baseline specification more.

The results of the sensitivity analysis are displayed in Table F.1. In the first panel, we
see that the extrapolation at the end of a series can cause meaningful differences in the
estimated effect on vehicle mileage. Especially if the vehicle’s electricity consumption is
ignored, we find that the rebound effect in terms of vehicle miles is reduced by 70 % and is
no longer significant. In the specifications accounting for electricity consumption, we find
that the differences are very small. The weaker effect on vehicle mileage translates into a
weaker reduction in the average fuel consumption per 100 km and into a weaker increase
in the electric driving share by 25 %. The sensitivity analysis shows, that even under an
extrapolation scheme that is imposing a negative bias on the number of kilometers traveled
in the treated sample, the average fuel consumption per 100 km is reduced and the electric
driving share is increased substantially. On the other hand, the comparison between the
baseline extrapolation and the extrapolation based on the vehicle’s fuel and electricity
consumption from NEDC test values shows that as long as electricity consumption is
reasonably taken into account, changing the average fuel consumption per 100 km used to
impute vehicle mileages does not change the results much. Given the proven inaccuracy
of the NEDC testing values we used to clean the mileage variable, this is reassuring.
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Table F.1: ATT on Outcomes Depending on Vehicle Kilometers

Baseline Fuel Only Efficiencies

Mileage [km]

Treated 606.65** 182.03 614.65***
(248.24) (267.83) (236.64)

Fuel [l/100km]

Treated -2.52*** -1.95*** -2.57***
(0.2) (0.2) (0.21)

Utility Factor [%]

Treated 0.33*** 0.26*** 0.34***
(0.03) (0.03) (0.03)

Obs 836 836 836
Groups 6 6 6
Periods 11 11 11

Car FE X X X
Time FE X X X

Notes: Doubly-robust ATT estimator (Call-
away & Sant’Anna, 2021). Baseline: extrap-
olation of implausible mileages at the end of
a vehicle time series as in the main analy-
sis. Fuel Only: extrapolation based on fuel
consumption only, ignoring electricity con-
sumption. Efficiencies: extrapolation based
on both fuel and electricity consumption, but
using NEDC fuel consumption in charge sus-
taining mode to translate fuel consumption
into kilometers traveled. *, **, *** means
that the corresponding estimated parameter
is different from zero at the 10 %, 5 %, and
1 % significance level, respectively.
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F.1 Additional Graphs and Tables

Figure F.1: Average Differences In Electric Utilization Between Treated and Untreated
Employees in 2022 (Post Covid-19)

(a) Utility Factor (b) Charging by Source
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Figure F.2: Vehicle Adoption Across Treatment Groups

(a) EVs

(b) PHEVs

(c) BEVs
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Figure F.3: Event Studies Using Never-Treated Units as Control

(a) Electricity in kWh (b) Fuel in Liters

(c) Tailpipe Emissions in kg CO2 (d) Emissions (No EU ETS) in kg CO2

(e) Kilometers Traveled (f) Energy Expenditures in Euro
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Figure F.4: Event Studies Comparing TWFE and Callaway & Sant’Anna (2021)

(a) Electricity in kWh (b) Fuel in Liters

(c) Tailpipe Emissions in kg CO2 (d) Emissions (No EU ETS) in kg CO2

(e) Kilometers Traveled (f) Energy Expenditures in Euro
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