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Motivation

Efficiency and Dominant Strategy Incentive Compatibility
in dynamic settings:

In general, it is impossible to implement the efficient allo-
cation rule in dominant strategies in dynamic setting

Bergemann and Välimäki (JEL, 2019)

(Perfect) Bayesian Nash equilibria:

• Multiple equilibria

• Dynamic coordination/collusion undermines efficiency

• We show that in most celebrated dynamic mechanisms
efficient eq might not survive Iterated Elimination of
Weakly Dominated Strategies (IEWDS). . .
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This Paper: Contributions
We introduce a

• strong dynamic notion of collusion-proofness.

We develop an
• efficient, budget-balanced, dynamic mechanism;
• strategically simple: play the maxmin strategy;
• efficient eq survives IEWDS;
• robust to a very strong notion of collusion.

Key Idea (#MaximinAndEfficiency):
• every truthful agent can obtain a guaranteed expected
(maxmin) utility even if all others ”conspire” against him;

• all guarantees add up to the efficient surplus: cannot expect
to get more than maxmin utility.

We also construct
a modified mechanism that approximately achieves the same
property in environments without transfers.
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Dynamic Pivot (BV10), BTM (AS13),
and Guaranteed Utility Mechanism (GUM)

BV10 DP AS13 BTM GUM

Incentive Compatibility

efficient PBE YES YES

efficient PBE survive IEWDS NO NO

all PBEs/BNEs are efficient NO NO

• Dynamic Pivot extends AGV

• Balanced Team Mechanism extends VCG
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Incentive Compatibility

efficient PBE YES YES YES

efficient PBE survive IEWDS NO NO YES

all PBEs/BNEs are efficient NO NO YES

Collusion

collusion-proof NO NO YES

Properties, Robustness, Extensions

balanced budget NO YES YES

IR (exiting and re-entering) YES NO YES
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Setup (à la AS13): IPV with transfers

Agents: I = {1, ...,N}
Time: t ∈ {0, 1, ...,T}

In each t, θt = (θ0t , θ
1
t , . . . , θ

N
t )

• public state θ0t ∈ Θ0,

• private type θit ∈ Θi .

θ0 ∈ Θ is common knowledge

After θt ∈ Θ is realized,

• a public decision xt ∈ X ,

• transfers y it ∈ R.

(independent types):

µi : Θ0 ×Θi × X → ∆(Θi ).

(private values):

U i (θi , x , y i ) =
T∑
t=0

[
ui (θit , xt)+y it

]

• Reported types
θ̂t =

(
θ̂0t , θ̂

1
t , ..., θ̂

N
t

)
• Public history

ht = (θ̂0, θ̂1, ..., θ̂t)

A (pure) strategy s i = {s it}Tt=1:

s it :
(
Θi)t ×Ht−1 → Θi .
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Setup (à la AS13): IPV with transfers

Agents: I = {1, ...,N}
Time: t ∈ {0, 1, ...,T}

In each t, θt = (θ0t , θ
1
t , . . . , θ

N
t )

• public state θ0t ∈ Θ0,

• private type θit ∈ Θi .

θ0 ∈ Θ is common knowledge

After θt ∈ Θ is realized,

• a public decision xt ∈ X ,

• transfers y it ∈ R.

(independent types):

µi : Θ0 ×Θi × X → ∆(Θi ).

(private values):

U i (θi , x , y i ) =
T∑
t=0

[
ui (θit , xt)+y it

]

• Reported types
θ̂t =

(
θ̂0t , θ̂

1
t , ..., θ̂

N
t

)
• Public history

ht = (θ̂0, θ̂1, ..., θ̂t)

A (pure) strategy s i = {s it}Tt=1:

s it :
(
Θi)t ×Ht−1 → Θi .

9/26
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Mechanism

A mechanism consists of the following:

1 decision policy

χ : {0, 1, ...,T} ×Θ → X

that determines public decision xt = χ(θ̂t) at every t;

2 transfer rule
y it = y it (ht)

as a function of public history.
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Guaranteed Utility Mechanism (GUM)

Two key features:

[Updating reports]
Every period t, agents simultaneously report their types;
but reports are updated as if they were arriving one by one,
according to the ordering 0, 1, ...,N within period t.

[Transfers]
Externality payments are bilateral:

• every agent j receives the transfer from i ,
which compensates j by the externality imposed on j by i .
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GUM: Example
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GUM
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GUM: Transfers
anticipated payoff of agent j is:

Υj
t,i = Eµ(ht,i ,χ

∗)
[ T∑

t′=0

uj
(
θ̃jt′ , x(θ̃t′)

)]
.

recall ht,i =
(
θ̂0, θ̂1, ..., θ̂t−1, (θ̂

0
t , θ̂

1
t , ..., θ̂

i
t)

)

externality i ’s report θ̂it imposes on j :

γ i→j
t = Υj

t,i −Υj
t,i−1.

transfer to agent i at period t:

y it =
∑
j ̸=i

γ i→j
t︸ ︷︷ ︸

i ’s externalities on other agents

−
∑
j ̸=i

γj→i
t︸ ︷︷ ︸

other agents’ externalities on i

.

budget-balanced as every payment is from one agent to another.
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Why ”Guaranteed Utility Mechanism”?

Mechanism satisfies the Guaranteed Utility Property (GUP) if there
exists a strategy profile s∗ ∈ SI and a vector C ∈ RN such that:

∀i ∈ I, ∀s−i ∈ S−i E
[
U i (s i∗, s

−i )
]
⩾ C i ;

sup
s∈SI

∑
i∈I

E
[
U i (s)

]
=

∑
i∈I

C i .

GUM satisfies GUP: each agent guarantees

C i = Υi
0,N = Eµ(θ0,χ∗)

[∑T
k=0 u

i
(
θ̃ik , χ

∗(θ̃k)
)]

by being truthful, even if others deviate from truth-telling.

Intuition: In i − j bilateral interaction, if either is truthful, he is
unaffected (in expectation) by the dishonesty of the other.
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Why GUP matters?
Mechanism satisfies the Guaranteed Utility Property (GUP) if there
exists a strategy profile s∗ ∈ SI and a vector C ∈ RN such that:

∀i ∈ I, ∀s−i ∈ S−i E
[
U i (s i∗, s

−i )
]
⩾ C i ;

sup
s∈SI

∑
i∈I

E
[
U i (s)

]
=

∑
i∈I

C i .

GUP implies:
• truthtelling gives the maxmin payoff,
• but agents cannot expect to get more than the maxmin payoff

because maxmin payoffs add up to maximum surplus,
• strategically simple: play the maxmin strategy because you

cannot expect to improve on the maxmin strategy.

Proposition

All BNEs (PBEs) in GUM are efficient and utility-equivalent.
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Collusion-Proofness

For L ⊆ I, a side contract is s̄L = {s̄Lt }Tt=1, where

s̄Lt :
(
ΘL)t ×Ht → ΘL × R|L|.

s̄∗I ∈ S̄I is a weak equilibrium if:

∀i ∈ I, ∀s i ∈ S i , ∃s̄I\{i} ∈ S̄I\{i} E
[
U i (s i , s̄I\{i})

]
⩽ E

[
U i (s̄∗I)

]
Ex : Bayesian Nash Equilibrium is a weak equilibrium.

A mechanism is collusion-proof if
all weak equilibria are utility-equivalent.
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The Main Result

Theorem
Guaranteed Utility Mechanism is collusion-proof.

22/26



Further Properties and Extensions

• Participation constraint: allowing exiting and re-entering

• Results hold verbatim if agents can observe true past types

• Can extend to allow agents to take private actions

• Easy to achieve symmetry by averaging over orderings

• (in progress, separate paper)
agents’ initial types are private: tendering model extension
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Allocation Decisions without Transfers

A (subtle) link between dynamic collusion-proof mechanisms and
the approximately efficient Bayesian mechanisms with multiple
allocation decisions without transfers (JS, 2007):

• a transfer-free modification of GUM

• a truthful agent secures a payoff that converges to the ex ante
target level under the efficient decision policy

• each agent is given a ”budget”
• in every period, we calculate the sum of externalities imposed

by an agent from the beginning up to that period
• “punish” the agent if the sum exceeds his budget by

replacing his future reports with randomly generated ones

Our transfer-free GUM achieves efficiency with an error that
does not depend on the type space size unlike in JS07.
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Related Literature: A Closer Look

BV10 DP AS13 BTM GUM

Incentive Compatibility

efficient PBE YES YES YES

efficient PBE survive IEWDS NO NO YES

all PBEs/BNEs are efficient NO NO YES

Collusion

collusion-proof NO NO YES

Properties, robustness, extensions

balanced budget NO YES YES

exiting and re-entering YES NO YES

observing past types YES NO YES

observing same-period types YES NO NO

private actions NO YES YES
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Additive Externality (if time permits...)

(recall) externality i ’s report θ̂it imposes on j is:

γ i→j
t = Υj

t,i −Υj
t,i−1.

total externality simultaneous updating of all the agent’s reports
at period t imposes on the agent’s j payoff is

γI→j
t = Υj

t,N −Υj
t−1,N .

externality is additive if the sum of the externalities across all the
agents is equal to the total externality:∑

i∈I
γ i→j
t = γI→j

t ∀j , ∀t.
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