A Collusion-Proof Efficient Dynamic Mechanism

Endre Csóka

Alfréd Rényi Institute of Mathematics, Budapest, Hungary Heng Liu

Dep of Economics, Rensselaer Polytechnic Institute, USA Alexander (Sasha) Rodivilov Sch of Business, Stevens Institute of Technology, USA

Alexander (Alex) Teytelboym

Dep of Economics, University of Oxford, UK

EEA-ESEM 2024

Efficiency and Dominant Strategy Incentive Compatibility in dynamic settings:

In general, it is impossible to implement the efficient allocation rule in dominant strategies in dynamic setting Bergemann and Välimäki (JEL, 2019)

Efficiency and Dominant Strategy Incentive Compatibility in dynamic settings:

In general, it is impossible to implement the efficient allocation rule in dominant strategies in dynamic setting Bergemann and Välimäki (JEL, 2019)

(Perfect) Bayesian Nash equilibria:

Efficiency and Dominant Strategy Incentive Compatibility in dynamic settings:

In general, it is impossible to implement the efficient allocation rule in dominant strategies in dynamic setting Bergemann and Välimäki (JEL, 2019)

(Perfect) Bayesian Nash equilibria:

• Multiple equilibria

Efficiency and Dominant Strategy Incentive Compatibility in dynamic settings:

In general, it is impossible to implement the efficient allocation rule in dominant strategies in dynamic setting Bergemann and Välimäki (JEL, 2019)

(Perfect) Bayesian Nash equilibria:

- Multiple equilibria
- Dynamic coordination/collusion undermines efficiency

Efficiency and Dominant Strategy Incentive Compatibility in dynamic settings:

In general, it is impossible to implement the efficient allocation rule in dominant strategies in dynamic setting Bergemann and Välimäki (JEL, 2019)

(Perfect) Bayesian Nash equilibria:

- Multiple equilibria
- Dynamic coordination/collusion undermines efficiency
- We show that in most celebrated dynamic mechanisms efficient eq might not survive Iterated Elimination of Weakly Dominated Strategies (IEWDS)...

We introduce a

• strong dynamic notion of collusion-proofness.

We introduce a

• strong dynamic notion of collusion-proofness.

We develop an

3/26

We introduce a

• strong dynamic notion of collusion-proofness.

We develop an

• efficient, budget-balanced, dynamic mechanism;

We introduce a

• strong dynamic notion of collusion-proofness.

We develop an

- efficient, budget-balanced, dynamic mechanism;
- strategically simple: play the maxmin strategy;

We introduce a

• strong dynamic notion of collusion-proofness.

We develop an

- efficient, budget-balanced, dynamic mechanism;
- strategically simple: play the maxmin strategy;
- efficient eq survives IEWDS;

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

We introduce a

• strong dynamic notion of collusion-proofness.

We develop an

- efficient, budget-balanced, dynamic mechanism;
- strategically simple: play the maxmin strategy;
- efficient eq survives IEWDS;
- robust to a very strong notion of collusion.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

We introduce a

• strong dynamic notion of collusion-proofness.

We develop an

- efficient, budget-balanced, dynamic mechanism;
- strategically simple: play the maxmin strategy;
- efficient eq survives IEWDS;
- robust to a very strong notion of collusion.

Key Idea (*#MaximinAndEfficiency*):

We introduce a

• strong dynamic notion of collusion-proofness.

We develop an

- efficient, budget-balanced, dynamic mechanism;
- strategically simple: play the maxmin strategy;
- efficient eq survives IEWDS;
- robust to a very strong notion of collusion.

Key Idea (*#MaximinAndEfficiency*):

• every *truthful* agent can obtain a guaranteed expected (maxmin) utility even if all others "conspire" against him;

We introduce a

• strong dynamic notion of collusion-proofness.

We develop an

- efficient, budget-balanced, dynamic mechanism;
- strategically simple: play the maxmin strategy;
- efficient eq survives IEWDS;
- robust to a very strong notion of collusion.

Key Idea (#MaximinAndEfficiency):

- every *truthful* agent can obtain a guaranteed expected (maxmin) utility even if all others "conspire" against him;
- all guarantees add up to the *efficient* surplus: cannot expect to get more than maxmin utility.

We introduce a

• strong dynamic notion of collusion-proofness.

We develop an

- efficient, budget-balanced, dynamic mechanism;
- strategically simple: play the maxmin strategy;
- efficient eq survives IEWDS;
- robust to a very strong notion of collusion.

Key Idea (#MaximinAndEfficiency):

- every *truthful* agent can obtain a guaranteed expected (maxmin) utility even if all others "conspire" against him;
- all guarantees add up to the *efficient* surplus: cannot expect to get more than maxmin utility.

We also construct

We introduce a

• strong dynamic notion of collusion-proofness.

We develop an

- efficient, budget-balanced, dynamic mechanism;
- strategically simple: play the maxmin strategy;
- efficient eq survives IEWDS;
- robust to a very strong notion of collusion.
- Key Idea (#MaximinAndEfficiency):
 - every *truthful* agent can obtain a guaranteed expected (maxmin) utility even if all others "conspire" against him;
 - all guarantees add up to the *efficient* surplus: cannot expect to get more than maxmin utility.

We also construct

a modified mechanism that approximately achieves the same property in environments without transfers.

Related Literature

Collusion-proof static mechanisms: Che and Kim (2006), Laffont and Martimort (1997, 2000), Cremer and Riordan (1985), Safronov (2017)

Efficient dynamic mechanisms: Skrzypacz and Toikka (2015), Bergemann and Välimäki (2010), Athey and Segal (2013)

Optimal dynamic mechanisms: Pavan, Segal and Toikka (2014), Bergemann and Välimäki (2019)

Collusion with persistent private info: Athey and Bagwell (2001, 2008), Miller (2012)

Repeated implementation: Jackson and Sonnenschein (2007), Ball et al. (2022), Lee and Sabourian (2009, 2013), Renou and Mezzetti (2017), Renou and Tomala (2015)

	BV10 DP	AS13 BTM	GUM
Incentive Compatibility			
efficient PBE	YES	YES	
efficient PBE survive IEWDS	NO	NO	
all PBEs/BNEs are efficient	NO	NO	

- Dynamic Pivot extends AGV
- Balanced Team Mechanism extends VCG

	BV10 DP	AS13 BTM	GUM
Incentive Compatibility			
efficient PBE	YES	YES	YES
efficient PBE survive IEWDS	NO	NO	YES
all PBEs/BNEs are efficient	NO	NO	YES

- Dynamic Pivot extends AGV
- Balanced Team Mechanism extends VCG

	BV10 DP	AS13 BTM	GUM	
Incentive Compatibility				
efficient PBE	YES	YES	YES	
efficient PBE survive IEWDS	NO	NO	YES	
all PBEs/BNEs are efficient	NO	NO	YES	
Collusion				
collusion-proof	NO	NO	YES	

	BV10 DP	AS13 BTM	GUM	
Incentive Compatibility				
efficient PBE	YES	YES	YES	
efficient PBE survive IEWDS	NO	NO	YES	
all PBEs/BNEs are efficient	NO	NO	YES	
Collusion				
collusion-proof	NO	NO	YES	
Properties, Robustness, Extensions				
balanced budget	NO	YES	YES	
IR (exiting and re-entering)	YES	NO	YES	

Setup (à la AS13): IPV with transfers Agents: $I = \{1, ..., N\}$ Time: $t \in \{0, 1, ..., T\}$

Agents: $I = \{1, ..., N\}$ Time: $t \in \{0, 1, ..., T\}$

- In each t, $\theta_t = (\theta_t^0, \theta_t^1, \dots, \theta_t^N)$
 - public state $heta_t^0 \in \Theta^0$,
 - private type $\theta_t^i \in \Theta^i$.

Agents: $I = \{1, ..., N\}$ Time: $t \in \{0, 1, ..., T\}$

- In each t, $\theta_t = (\theta_t^0, \theta_t^1, \dots, \theta_t^N)$ • public state $\theta_t^0 \in \Theta_t^0$,
 - private type $\theta_t^i \in \Theta^i$.

 $\theta_0\in \boldsymbol{\Theta}$ is common knowledge

<ロ>
・ロ>
・日
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

9/26

Agents: $I = \{1, ..., N\}$ Time: $t \in \{0, 1, ..., T\}$

In each t, $\theta_t = (\theta_t^0, \theta_t^1, \dots, \theta_t^N)$ • public state $\theta_t^0 \in \Theta^0$, • private type $\theta_t^i \in \Theta^i$.

 $\theta_0 \in \boldsymbol{\Theta}$ is common knowledge

After $\theta_t \in \boldsymbol{\Theta}$ is realized,

- a public decision $x_t \in \mathbf{X}$,
- transfers $y_t^i \in \mathbb{R}$.

Agents: $I = \{1, ..., N\}$ Time: $t \in \{0, 1, ..., T\}$

In each t, $\theta_t = (\theta_t^0, \theta_t^1, \dots, \theta_t^N)$ • public state $\theta_t^0 \in \Theta^0$, • private type $\theta_t^i \in \Theta^i$.

 $\theta_0 \in \boldsymbol{\Theta}$ is common knowledge

After $\theta_t \in \boldsymbol{\Theta}$ is realized,

- a public decision $x_t \in \mathbf{X}$,
- transfers $y_t^i \in \mathbb{R}$.

(independent types):

$$\mu^{i}: \boldsymbol{\Theta^{0}} imes \boldsymbol{\Theta^{i}} imes \boldsymbol{X} o \Delta(\boldsymbol{\Theta^{i}}).$$

9/26

Agents: $I = \{1, ..., N\}$ Time: $t \in \{0, 1, ..., T\}$

(private values):

In each t, $\theta_t = (\theta_t^0, \theta_t^1, \dots, \theta_t^N)$ • public state $\theta_t^0 \in \Theta^0$,

• private type $\theta_t^i \in \Theta^i$.

 $\theta_0 \in \boldsymbol{\Theta}$ is common knowledge

After $\theta_t \in \boldsymbol{\Theta}$ is realized,

- a public decision $x_t \in \mathbf{X}$,
- transfers $y_t^i \in \mathbb{R}$.

(independent types):

$$\mu^{i}: \boldsymbol{\Theta}^{\boldsymbol{0}} \times \boldsymbol{\Theta}^{\boldsymbol{i}} \times \boldsymbol{X} \to \Delta(\boldsymbol{\Theta}^{\boldsymbol{i}}).$$

$$U^{i}(\theta^{i}, x, y^{i}) = \sum_{t=0}^{T} \left[u^{i}(\theta^{i}_{t}, x_{t}) + y^{i}_{t} \right]$$

9/26

Agents: $I = \{1, ..., N\}$ Time: $t \in \{0, 1, ..., T\}$

(private values):

In each
$$t$$
, $\theta_t = (\theta_t^0, \theta_t^1, \dots, \theta_t^N)$
• public state $\theta_t^0 \in \Theta^0$,
• private type $\theta_t^i \in \Theta^i$.

 $\theta_0 \in \boldsymbol{\Theta}$ is common knowledge

After $\theta_t \in \boldsymbol{\Theta}$ is realized,

- a public decision $x_t \in \mathbf{X}$,
- transfers $y_t^i \in \mathbb{R}$.

(independent types):

$$\mu^{i}: \boldsymbol{\Theta}^{\boldsymbol{0}} \times \boldsymbol{\Theta}^{\boldsymbol{i}} \times \boldsymbol{X} \to \Delta(\boldsymbol{\Theta}^{\boldsymbol{i}}).$$

$$U^{i}(\theta^{i}, x, y^{i}) = \sum_{t=0}^{T} \left[u^{i}(\theta^{i}_{t}, x_{t}) + y^{i}_{t} \right]$$

• **Reported** types $\hat{\theta}_{t} = (\hat{\theta}_{t}^{0}, \hat{\theta}_{t}^{1}, ..., \hat{\theta}_{t}^{N})$

<ロト < 部 > < 注 > < 注 > う < で 9/26</p>

Agents: $I = \{1, ..., N\}$ Time: $t \in \{0, 1, ..., T\}$

In each t, $\theta_t = (\theta_t^0, \theta_t^1, \dots, \theta_t^N)$ • public state $\theta_t^0 \in \Theta^0$, • private type $\theta_t^i \in \Theta^i$.

 $\theta_0 \in \boldsymbol{\Theta}$ is common knowledge

After $\theta_t \in \boldsymbol{\Theta}$ is realized,

- a public decision $x_t \in \mathbf{X}$,
- transfers $y_t^i \in \mathbb{R}$.

(independent types):

$$\mu^{i}: \boldsymbol{\Theta}^{\boldsymbol{0}} \times \boldsymbol{\Theta}^{\boldsymbol{i}} \times \boldsymbol{X} \to \Delta(\boldsymbol{\Theta}^{\boldsymbol{i}}).$$

(private values):

$$U^{i}(\theta^{i}, x, y^{i}) = \sum_{t=0}^{T} \left[u^{i}(\theta^{i}_{t}, x_{t}) + y^{i}_{t} \right]$$

• **Reported** types $\hat{\theta}_{t} = (\hat{\theta}_{t}^{0}, \hat{\theta}_{t}^{1}, ..., \hat{\theta}_{t}^{N})$

• **Public** history
$$h_t = (\hat{\theta}_0, \hat{\theta}_1, ..., \hat{\theta}_t)$$

・ロト ・団ト ・ヨト ・ヨー うらぐ

9/26

Agents: $I = \{1, ..., N\}$ Time: $t \in \{0, 1, ..., T\}$

In each t, $\theta_t = (\theta_t^0, \theta_t^1, \dots, \theta_t^N)$ • public state $\theta_t^0 \in \Theta^0$, • private type $\theta_t^i \in \Theta^i$.

 $\theta_0 \in \boldsymbol{\Theta}$ is common knowledge

After $\theta_t \in \boldsymbol{\Theta}$ is realized,

- a public decision $x_t \in \boldsymbol{X}$,
- transfers $y_t^i \in \mathbb{R}$.

(independent types):

 $\mu^i: \boldsymbol{\Theta^0} \times \boldsymbol{\Theta^i} \times \boldsymbol{X} \to \Delta(\boldsymbol{\Theta^i}).$

(private values):

$$U^{i}(\theta^{i}, x, y^{i}) = \sum_{t=0}^{T} \left[u^{i}(\theta^{i}_{t}, x_{t}) + y^{i}_{t} \right]$$

- **Reported** types $\hat{\theta}_{t} = (\hat{\theta}_{t}^{0}, \hat{\theta}_{t}^{1}, ..., \hat{\theta}_{t}^{N})$
- **Public** history $h_t = (\hat{\theta}_0, \hat{\theta}_1, ..., \hat{\theta}_t)$
- A (pure) strategy $s^i = \{s^i_t\}_{t=1}^T$:

$$s_t^i: \left({oldsymbol \Theta}^i
ight)^t imes \mathcal{H}_{t-1} o {oldsymbol \Theta}^i.$$

・ロト ・母ト ・ヨト ・ヨー ・つくで

Mechanism

A mechanism consists of the following:

Mechanism

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

10/26

A mechanism consists of the following:

1 decision policy

$$\chi: \{0, 1, ..., T\} \times \boldsymbol{\Theta} \to \boldsymbol{X}$$

that determines public decision $x_t = \chi(\hat{ heta}_t)$ at every t;

Mechanism

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

10/26

A mechanism consists of the following:

1 decision policy

$$\chi: \{0, 1, ..., T\} imes \mathbf{\Theta} o \mathbf{X}$$

that determines public decision $x_t = \chi(\hat{\theta}_t)$ at every t;

$$y_t^i = y_t^i(h_t)$$

as a function of public history.

Guaranteed Utility Mechanism (GUM)

Two key features:

Guaranteed Utility Mechanism (GUM)

Two key features:

[Updating reports]

Every period t, agents simultaneously report their types; but reports are updated as if they were arriving one by one, according to the ordering 0, 1, ..., N within period t.

Guaranteed Utility Mechanism (GUM)

Two key features:

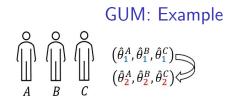
[Updating reports]

Every period t, agents simultaneously report their types; but reports are updated as if they were arriving one by one, according to the ordering 0, 1, ..., N within period t.

[Transfers]

Externality payments are **bilateral**:

 every agent j receives the transfer from i, which compensates j by the externality imposed on j by i.

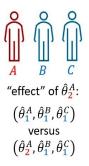


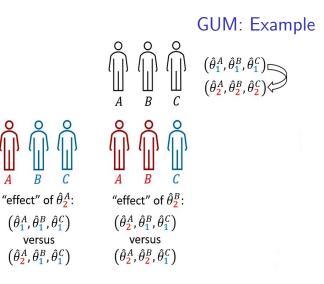
<ロト < 団 > < 臣 > < 臣 > 臣 の < で 12/26



イロト イヨト イヨト イヨト

æ

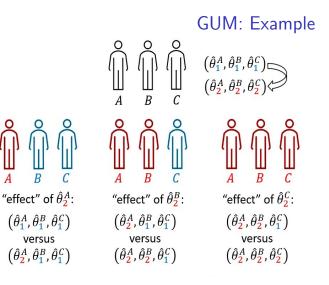




・ロト ・四ト ・ヨト ・ヨト

크

A

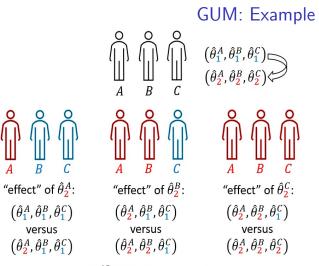


<ロト <部ト < 国ト < 国ト

크

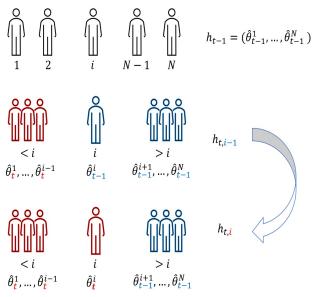
A

15/26



If $\hat{\theta}_2^B \uparrow U_A$ by 20 and $\downarrow U_C$ by 5, transfers are (-20, 15, 5): **A** pays 20 to **B B** pays 5 to **C**.

GUM



◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ■

anticipated payoff of agent *j* is:

$$\Upsilon^{j}_{t,i} = \mathbb{E}^{\mu(h_{t,i},\chi^*)} \Big[\sum_{t'=0}^{T} u^{j} \big(\tilde{\theta}^{j}_{t'}, x(\tilde{\theta}_{t'}) \big) \Big].$$

 $\text{recall } h_{t,i} = \left(\ \hat{\theta}_0, \hat{\theta}_1, ..., \hat{\theta}_{t-1}, \left(\hat{\theta}_t^0, \hat{\theta}_t^1, ..., \hat{\theta}_t^i \right) \right)$

anticipated payoff of agent *j* is:

$$\Upsilon^{j}_{t,i} = \mathbb{E}^{\mu(h_{t,i},\chi^*)} \Big[\sum_{t'=0}^{T} u^{j} \big(\tilde{\theta}^{j}_{t'}, x(\tilde{\theta}_{t'}) \big) \Big].$$

recall $h_{t,i} = (\hat{\theta}_0, \hat{\theta}_1, ..., \hat{\theta}_{t-1}, (\hat{\theta}_t^0, \hat{\theta}_t^1, ..., \hat{\theta}_t^i))$ externality *i*'s report $\hat{\theta}_t^i$ imposes on *j*:

$$\gamma_t^{i \to j} = \Upsilon_{t,i}^j - \Upsilon_{t,i-1}^j.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ りへぐ

anticipated payoff of agent *j* is:

$$\Upsilon_{t,i}^{j} = \mathbb{E}^{\mu(h_{t,i},\chi^{*})} \Big[\sum_{t'=0}^{T} u^{j} \big(\tilde{\theta}_{t'}^{j}, x(\tilde{\theta}_{t'}) \big) \Big].$$

recall $h_{t,i} = (\hat{\theta}_0, \hat{\theta}_1, ..., \hat{\theta}_{t-1}, (\hat{\theta}_t^0, \hat{\theta}_t^1, ..., \hat{\theta}_t^i))$ externality *i*'s report $\hat{\theta}_t^i$ imposes on *j*:

$$\gamma_t^{i \to j} = \Upsilon_{t,i}^j - \Upsilon_{t,i-1}^j.$$

transfer to agent *i* at period *t*:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ● 臣 ○ のへで

anticipated payoff of agent j is:

$$\Upsilon^{j}_{t,i} = \mathbb{E}^{\mu(h_{t,i},\chi^{*})} \Big[\sum_{t'=0}^{T} u^{j} \big(\tilde{\theta}^{j}_{t'}, x(\tilde{\theta}_{t'}) \big) \Big].$$

recall $h_{t,i} = (\hat{\theta}_0, \hat{\theta}_1, ..., \hat{\theta}_{t-1}, (\hat{\theta}_t^0, \hat{\theta}_t^1, ..., \hat{\theta}_t^i))$ externality *i*'s report $\hat{\theta}_t^i$ imposes on *j*:

$$\gamma_t^{i \to j} = \Upsilon_{t,i}^j - \Upsilon_{t,i-1}^j.$$

transfer to agent *i* at period *t*:

budget-balanced as every payment is from one agent to another.

18/26

Mechanism satisfies the *Guaranteed Utility Property* (GUP) if there exists a strategy profile $s_* \in S^{\mathcal{I}}$ and a vector $C \in \mathbb{R}^N$ such that:

$$\forall i \in \mathcal{I}, \ \forall s^{-i} \in \mathcal{S}^{-i} \qquad \mathbb{E} \big[U^i(s^i_*, s^{-i}) \big] \geqslant C^i; \\ \sup_{s \in \mathcal{S}^{\mathcal{I}}} \sum_{i \in \mathcal{I}} \mathbb{E} \big[U^i(s) \big] = \sum_{i \in \mathcal{I}} C^i.$$

Mechanism satisfies the *Guaranteed Utility Property* (GUP) if there exists a strategy profile $s_* \in S^{\mathcal{I}}$ and a vector $C \in \mathbb{R}^N$ such that:

$$\forall i \in \mathcal{I}, \ \forall s^{-i} \in \mathcal{S}^{-i} \qquad \mathbb{E} \big[U^i(s^i_*, s^{-i}) \big] \geqslant C^i; \\ \sup_{s \in \mathcal{S}^{\mathcal{I}}} \sum_{i \in \mathcal{I}} \mathbb{E} \big[U^i(s) \big] = \sum_{i \in \mathcal{I}} C^i.$$

GUM satisfies GUP: each agent guarantees

$$C^{i} = \Upsilon^{i}_{0,N} = \mathbb{E}^{\mu(\theta_{0},\chi^{*})} \big[\sum_{k=0}^{T} u^{i} \big(\tilde{\theta}^{i}_{k}, \chi^{*}(\tilde{\theta}_{k}) \big) \big]$$

by being truthful, even if others deviate from truth-telling.

Mechanism satisfies the *Guaranteed Utility Property* (GUP) if there exists a strategy profile $s_* \in S^{\mathcal{I}}$ and a vector $C \in \mathbb{R}^N$ such that:

$$\forall i \in \mathcal{I}, \ \forall s^{-i} \in \mathcal{S}^{-i} \qquad \mathbb{E} \big[U^i(s^i_*, s^{-i}) \big] \geqslant C^i; \\ \sup_{s \in \mathcal{S}^{\mathcal{I}}} \sum_{i \in \mathcal{I}} \mathbb{E} \big[U^i(s) \big] = \sum_{i \in \mathcal{I}} C^i.$$

GUM satisfies GUP: each agent guarantees

$$C^{i} = \Upsilon_{0,N}^{i} = \mathbb{E}^{\mu(\theta_{0},\chi^{*})} \left[\sum_{k=0}^{T} u^{i} \left(\tilde{\theta}_{k}^{i}, \chi^{*}(\tilde{\theta}_{k}) \right) \right]$$

by being truthful, even if others deviate from truth-telling. Intuition:

Mechanism satisfies the *Guaranteed Utility Property* (GUP) if there exists a strategy profile $s_* \in S^{\mathcal{I}}$ and a vector $C \in \mathbb{R}^N$ such that:

$$\forall i \in \mathcal{I}, \ \forall s^{-i} \in \mathcal{S}^{-i} \qquad \mathbb{E} \big[U^i(s^i_*, s^{-i}) \big] \geqslant C^i; \\ \sup_{s \in \mathcal{S}^{\mathcal{I}}} \sum_{i \in \mathcal{I}} \mathbb{E} \big[U^i(s) \big] = \sum_{i \in \mathcal{I}} C^i.$$

GUM satisfies GUP: each agent guarantees

$$C^{i} = \Upsilon_{0,N}^{i} = \mathbb{E}^{\mu(\theta_{0},\chi^{*})} \left[\sum_{k=0}^{T} u^{i} \left(\tilde{\theta}_{k}^{i}, \chi^{*}(\tilde{\theta}_{k}) \right) \right]$$

by being truthful, even if others deviate from truth-telling.

Intuition: In i - j bilateral interaction, if either is truthful, he is unaffected (in expectation) by the dishonesty of the other.

Mechanism satisfies the *Guaranteed Utility Property* (GUP) if there exists a strategy profile $s_* \in S^{\mathcal{I}}$ and a vector $C \in \mathbb{R}^N$ such that:

$$\forall i \in \mathcal{I}, \ \forall s^{-i} \in \mathcal{S}^{-i} \qquad \mathbb{E} \big[U^i(s^i_*, s^{-i}) \big] \geqslant C^i; \\ \sup_{s \in \mathcal{S}^{\mathcal{I}}} \sum_{i \in \mathcal{I}} \mathbb{E} \big[U^i(s) \big] = \sum_{i \in \mathcal{I}} C^i.$$

20/26

Mechanism satisfies the *Guaranteed Utility Property* (GUP) if there exists a strategy profile $s_* \in S^{\mathcal{I}}$ and a vector $C \in \mathbb{R}^N$ such that:

$$\forall i \in \mathcal{I}, \ \forall s^{-i} \in \mathcal{S}^{-i} \qquad \mathbb{E} \big[U^i(s^i_*, s^{-i}) \big] \geqslant C^i; \\ \sup_{s \in \mathcal{S}^{\mathcal{I}}} \sum_{i \in \mathcal{I}} \mathbb{E} \big[U^i(s) \big] = \sum_{i \in \mathcal{I}} C^i.$$

GUP implies:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のみで

20/26

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ りへぐ

Mechanism satisfies the *Guaranteed Utility Property* (GUP) if there exists a strategy profile $s_* \in S^{\mathcal{I}}$ and a vector $C \in \mathbb{R}^N$ such that:

$$\forall i \in \mathcal{I}, \ \forall s^{-i} \in \mathcal{S}^{-i} \qquad \mathbb{E} \big[U^i(s^i_*, s^{-i}) \big] \geqslant C^i; \\ \sup_{s \in \mathcal{S}^{\mathcal{I}}} \sum_{i \in \mathcal{I}} \mathbb{E} \big[U^i(s) \big] = \sum_{i \in \mathcal{I}} C^i.$$

GUP implies:

truthtelling gives the maxmin payoff,

Mechanism satisfies the *Guaranteed Utility Property* (GUP) if there exists a strategy profile $s_* \in S^{\mathcal{I}}$ and a vector $C \in \mathbb{R}^N$ such that:

$$\forall i \in \mathcal{I}, \ \forall s^{-i} \in \mathcal{S}^{-i} \qquad \mathbb{E} \big[U^i(s^i_*, s^{-i}) \big] \geqslant C^i; \\ \sup_{s \in \mathcal{S}^{\mathcal{I}}} \sum_{i \in \mathcal{I}} \mathbb{E} \big[U^i(s) \big] = \sum_{i \in \mathcal{I}} C^i.$$

GUP implies:

- truthtelling gives the maxmin payoff,
- but agents cannot expect to get more than the maxmin payoff because maxmin payoffs add up to maximum surplus,

Mechanism satisfies the *Guaranteed Utility Property* (GUP) if there exists a strategy profile $s_* \in S^{\mathcal{I}}$ and a vector $C \in \mathbb{R}^N$ such that:

$$\forall i \in \mathcal{I}, \ \forall s^{-i} \in \mathcal{S}^{-i} \qquad \mathbb{E} \big[U^i(s^i_*, s^{-i}) \big] \geqslant C^i; \\ \sup_{s \in \mathcal{S}^{\mathcal{I}}} \sum_{i \in \mathcal{I}} \mathbb{E} \big[U^i(s) \big] = \sum_{i \in \mathcal{I}} C^i.$$

GUP implies:

- truthtelling gives the maxmin payoff,
- but agents cannot expect to get more than the maxmin payoff because maxmin payoffs add up to maximum surplus,
- **strategically simple**: play the maxmin strategy because you cannot expect to improve on the maxmin strategy.

Mechanism satisfies the *Guaranteed Utility Property* (GUP) if there exists a strategy profile $s_* \in S^{\mathcal{I}}$ and a vector $C \in \mathbb{R}^N$ such that:

$$\forall i \in \mathcal{I}, \ \forall s^{-i} \in \mathcal{S}^{-i} \qquad \mathbb{E} \big[U^i(s^i_*, s^{-i}) \big] \geqslant C^i; \\ \sup_{s \in \mathcal{S}^{\mathcal{I}}} \sum_{i \in \mathcal{I}} \mathbb{E} \big[U^i(s) \big] = \sum_{i \in \mathcal{I}} C^i.$$

GUP implies:

- truthtelling gives the maxmin payoff,
- but agents cannot expect to get more than the maxmin payoff because maxmin payoffs add up to maximum surplus,
- **strategically simple**: play the maxmin strategy because you cannot expect to improve on the maxmin strategy.

Proposition

All BNEs (PBEs) in GUM are efficient and utility-equivalent.

For $L \subseteq \mathcal{I}$, a side contract is $\bar{s}^L = \{\bar{s}^L_t\}_{t=1}^T$, where

$$\bar{s}_t^L : (\Theta^L)^t \times \mathcal{H}_t \to \Theta^L \times \mathbb{R}^{|L|}.$$

For $L \subseteq \mathcal{I}$, a side contract is $\bar{s}^L = \{\bar{s}_t^L\}_{t=1}^T$, where $\bar{s}_t^L : (\Theta^L)^t \times \mathcal{H}_t \to \Theta^L \times \mathbb{R}^{|L|}$.

 $\overline{s}^{*\mathcal{I}} \in \overline{S}^{\mathcal{I}}$ is a weak equilibrium if: $\forall i \in \mathcal{I}, \forall s^i \in S^i, \exists \overline{s}^{\mathcal{I} \setminus \{i\}} \in \overline{S}^{\mathcal{I} \setminus \{i\}} \quad \mathbb{E} \left[U^i(s^i, \overline{s}^{\mathcal{I} \setminus \{i\}}) \right] \leq \mathbb{E} \left[U^i(\overline{s}^{*\mathcal{I}}) \right]$

For $L \subseteq \mathcal{I}$, a side contract is $\bar{s}^L = \{\bar{s}^L_t\}_{t=1}^T$, where $\bar{s}^L_t : (\Theta^L)^t \times \mathcal{H}_t \to \Theta^L \times \mathbb{R}^{|L|}$.

 $\overline{s}^{*\mathcal{I}} \in \overline{S}^{\mathcal{I}}$ is a weak equilibrium if: $\forall i \in \mathcal{I}, \forall s^{i} \in S^{i}, \exists \overline{s}^{\mathcal{I} \setminus \{i\}} \in \overline{S}^{\mathcal{I} \setminus \{i\}} \mathbb{E} [U^{i}(s^{i}, \overline{s}^{\mathcal{I} \setminus \{i\}})] \leq \mathbb{E} [U^{i}(\overline{s}^{*\mathcal{I}})]$

Ex: Bayesian Nash Equilibrium is a weak equilibrium.

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (?) 21/26

For $L \subseteq \mathcal{I}$, a side contract is $\bar{s}^L = \{\bar{s}^L_t\}_{t=1}^T$, where $\bar{s}^L_t : (\Theta^L)^t \times \mathcal{H}_t \to \Theta^L \times \mathbb{R}^{|L|}$.

 $\overline{s}^{*\mathcal{I}} \in \overline{S}^{\mathcal{I}}$ is a weak equilibrium if: $\forall i \in \mathcal{I}, \forall s^{i} \in S^{i}, \exists \overline{s}^{\mathcal{I} \setminus \{i\}} \in \overline{S}^{\mathcal{I} \setminus \{i\}} \quad \mathbb{E} \left[U^{i}(s^{i}, \overline{s}^{\mathcal{I} \setminus \{i\}}) \right] \leq \mathbb{E} \left[U^{i}(\overline{s}^{*\mathcal{I}}) \right]$

Ex: Bayesian Nash Equilibrium is a weak equilibrium.

A mechanism is **collusion-proof** if all weak equilibria are utility-equivalent.

The Main Result

Theorem Guaranteed Utility Mechanism is collusion-proof.

Further Properties and Extensions

- Participation constraint: allowing exiting and re-entering
- Results hold verbatim if agents can observe true past types
- Can extend to allow agents to take private actions
- Easy to achieve symmetry by averaging over orderings
- (in progress, separate paper) agents' initial types are **private**: tendering model extension

A (subtle) link between dynamic collusion-proof mechanisms and the approximately efficient Bayesian mechanisms with multiple allocation decisions without transfers (JS, 2007):

A (subtle) link between dynamic collusion-proof mechanisms and the approximately efficient Bayesian mechanisms with multiple allocation decisions without transfers (JS, 2007):

- a transfer-free modification of GUM
- a truthful agent secures a payoff that converges to the ex ante target level under the efficient decision policy

A (subtle) link between dynamic collusion-proof mechanisms and the approximately efficient Bayesian mechanisms with multiple allocation decisions without transfers (JS, 2007):

- a transfer-free modification of GUM
- a truthful agent secures a payoff that converges to the ex ante target level under the efficient decision policy

(ロ)、(型)、(E)、(E)、(E)、(O)()

24/26

• each agent is given a "budget"

A (subtle) link between dynamic collusion-proof mechanisms and the approximately efficient Bayesian mechanisms with multiple allocation decisions without transfers (JS, 2007):

- a transfer-free modification of GUM
- a truthful agent secures a payoff that converges to the ex ante target level under the efficient decision policy
- each agent is given a "budget"
- in every period, we calculate the sum of externalities imposed by an agent from the beginning up to that period

A (subtle) link between dynamic collusion-proof mechanisms and the approximately efficient Bayesian mechanisms with multiple allocation decisions without transfers (JS, 2007):

- a transfer-free modification of GUM
- a truthful agent secures a payoff that converges to the ex ante target level under the efficient decision policy
- each agent is given a "budget"
- in every period, we calculate the sum of externalities imposed by an agent from the beginning up to that period
 - "punish" the agent if the sum exceeds his budget by replacing his future reports with randomly generated ones

A (subtle) link between dynamic collusion-proof mechanisms and the approximately efficient Bayesian mechanisms with multiple allocation decisions without transfers (JS, 2007):

- a transfer-free modification of GUM
- a truthful agent secures a payoff that converges to the ex ante target level under the efficient decision policy
- each agent is given a "budget"
- in every period, we calculate the sum of externalities imposed by an agent from the beginning up to that period
 - "punish" the agent if the sum exceeds his budget by replacing his future reports with randomly generated ones

Our transfer-free GUM achieves efficiency with an error that does not depend on the type space size unlike in JS07.

Related Literature: A Closer Look

	BV10 DP	AS13 BTM	GUM
Incentive Compatibility			
efficient PBE	YES	YES	YES
efficient PBE survive IEWDS	NO	NO	YES
all PBEs/BNEs are efficient	NO	NO	YES
Collusion			
collusion-proof	NO	NO	YES
Properties, robustness, extensions			
balanced budget	NO	YES	YES
exiting and re-entering	YES	NO	YES
observing past types	YES	NO	YES
observing same-period types	YES	NO	NO
private actions	NO	YES	YES

Additive Externality (if time permits...) (recall) externality *i*'s report $\hat{\theta}_t^i$ imposes on *j* is:

$$\gamma_t^{i \to j} = \Upsilon_{t,i}^j - \Upsilon_{t,i-1}^j.$$

total externality simultaneous updating of all the agent's reports at period t imposes on the agent's j payoff is

$$\gamma_t^{\mathcal{I} \to j} = \Upsilon_{t,N}^j - \Upsilon_{t-1,N}^j.$$

externality is **additive** if the sum of the externalities across all the agents is equal to the total externality:

$$\sum_{i \in \mathcal{I}} \gamma_t^{i \to j} = \gamma_t^{\mathcal{I} \to j} \quad \forall j, \ \forall t.$$