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Abstract 

 

We study how South Korea’s first “mission-oriented” R&D program shaped innovation and 

economic outcomes after its implementation between 1992 and 2001. Using new textual data 

from archival sources and a language model to identify targeted and control technological 

classes, we exploit that some research projects were planned but not implemented due to budget 

shocks. We use a local projections event study to compare the outcomes of targeted 

technological classes relative to control classes. Despite the absence of differential trends 

before the program, targeted classes doubled their future-citation-weighed patenting output and 

tripled their real exports relative to control classes ten years after receiving program support. 

These results stand when we study cross-country evidence in both outcomes. Technological 

classes with less concentrated patenting output before the program drive our results. Our 

findings suggest that technology policy played a central role in South Korea’s transition to a 

knowledge-intensive economy.  
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1. Introduction 

 

Industrial policy is back: the Inflation Reduction Act, the CHIPS Act, the European Green 

Deal, and the Made in China 2025 Plan commit trillions of dollars for investments that aim to 

transform the economy’s structure and the direction in which it innovates. Despite theoretical 

arguments that rationalize interventions to address market and coordination failures, empirical 

practice lacks a clear notion of what works – and what does not work. As Juhász et al. (2023) 

point out, the open question is increasingly not whether but how governments should conduct 

industrial and innovation policy. 

 

We contribute to this debate by investigating how the G7 Program (G7P, henceforth), South 

Korea’s first “mission-oriented” Research and Development Program, shaped innovation 

patterns and real outcomes over the last four decades. Though a global innovation 

powerhouse today, South Korea was not always a leader in science and technology. The G7P, 

active between 1992 and 2001, was the first explicit policy effort to achieve such status. A 

coordinated effort across different ministries, the program aimed for frontier-level (G7-

country-level, hence the name) technological development in selected industries by the 2000s. 

The G7P was the policy response to the perceived exhaustion of South Korea’s catching-up 

strategy and rising labor costs since the return to democracy in 1987 (Ministry of Science and 

Technology of the Republic of Korea, 1991). 

 

We find that the G7P shifted the direction in which South Korea innovated. Exploiting that 

some R&D projects were planned but not implemented, we find that G7P-targeted 

technological classes doubled their future-citation-weighed patent output relative to control 

classes ten years after they were targeted. Targeted and control classes followed similar trends 

in this outcome in the five years before they received G7P support. Moreover, G7P-targeting 

is not informative of underlying economic characteristics that potentially informed sectorial 

choice - such as value added, output per worker or capital intensity.  

 

Changes in innovation output had important consequences on the real economy. Though less 

immediate than in the case of patenting, G7P-targeted technological classes tripled their exports 

relative to control classes ten years after they were targeted. We do not find evidence of 

differential trends in exports the five years before G7P-targeting.  
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Policymakers often frame industrial policy within the realm of strategic competition across 

countries. Indeed, some industrial policies might be a policymakers’ response to their 

counterpart’s program in a rivaling country. We study this dimension and validate our within-

country, baseline empirical results by investigating South Korea’s performance in targeted 

technological classes relative to other countries, which effectively serve as placebos. We find 

that, despite showing similar trends before targeting, South Korean future-citation-weighed 

patents and exports in targeted technological classes grew substantially faster than in other 

countries after the G7P. In other words, South Korea outperformed other countries in G7P-

supported technological classes. 

 

While an extensive literature in economics studies innovation (Cohen, 2010) and how different 

policy regimes might spur it (Bloom, 2019), research studying the practice of large publicly 

funded R&D programs is thin. Indeed, most of the literature studies efforts that change research 

funding marginally and in which the government has a limited role if any at all. Notable 

exceptions are Gross and Sampat (2023) and Kantor and Whalley (2023), who, respectively, 

study how expenditure shocks related to WWII and the Apollo Mission shaped innovation and 

economic outcomes in the United States over the second half of the twentieth century. These 

papers deal with programs in times of crisis in the United States. Though highly relevant, these 

episodes might have limited external validity to policymakers during more mundane times in 

different contexts.  

 

We study a large, actively managed applied research program that invested $7 billion (2023 

dollars) to support government-picked R&D projects. The program provided funds to firms 

and public research institutes interested in participating in specific, government-commissioned 

projects. It took place in a developing economy looking to close the technological gap to the 

frontier in select industries.4 The country we study had strengths in some of those (electronics, 

machines, materials), but not in others (energy, biotechnology). Besides the former sectors, in 

which South Korea had an established comparative advantage, policymakers sought to develop 

capacities in the latter because self-sufficiency was deemed strategic for any advanced country. 

  

 
4 Despite spectacular growth rates in the 1970s and the 1980s, South Korea was still a developing economy by 

1992. According to the World Bank (2023), South Korea’s per capita GDP (PPP) in 1992 was $8,126.67, which 

is lower than Mexico’s in 2005 ($8,321.85) or Brazil’s in 2007 ($8,801.60). By the same year, the Observatory of 

Economic Complexity (2023) ranked South Korea’s export basket just slightly higher (position 19/115) than 

Mexico’s (24/115) or Brazil’s (31/115).  
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We investigate how future-citation-weighed patenting activity in G7P-targeted technological 

classes evolved relative to other almost-targeted classes. To address selection concerns, we 

exploit that the government unit that managed the G7P selected 24 candidate mega-projects. 

Of those 24, only 18 were implemented. Even though the remaining mega-projects passed all 

selection filters and were deemed high-potential by program experts, these did not receive 

funds due to budgetary and program-fit considerations (KISTEP, 2002). Our treated (control) 

group comprises technological classes related to 18 (6) mega-projects that were (were not) 

implemented. We discuss below how these projects map into technological classes. 

 

As the G7P supported many technological classes over time, with new supported cohorts in 

every year from 1992 to 2000, we implement an event-study analysis that allows us to 

circumvent the concern that single temporal shocks contemporaneous to the G7P drive our 

results. 

 

We find that the G7P substantially increased the future-citation-weighed patenting output of 

targeted technological classes relative to control classes. Our estimates show that by the 5th 

year after receiving program support, targeted classes saw their granted patents increase by 

64% relative to control classes on the year before receiving program support. This effect 

increases to 123% by the 10th year and 232% by the 15th year. We interpret these results as 

causal since there were no differential trends in patenting before targeting. Moreover, and 

supporting our identification strategy, we fail to identify systematic differences between 

targeted and control classes in a variety of observables such as output per worker, value added, 

or capital intensity. 

 

Since these programs typically have important economic motivations, we also study the G7P 

impact on exports. We focus on this specific dimension of real activity since it is widely 

acknowledged that these were central to South Korea’s outstanding economic performance 

over the last few decades. We find that the program had null effects on exports over the first 

three years after the G7P targeted a technological class. These, however, picked up quickly. By 

the 5th year after receiving program support, G7P-targeted classes saw their exports grow by 

62% relative to control classes on the year before targeting. This figure increases to 245% by 

the 10th year and 204% by the 15th year. We do not find pre-trends in this outcome variable 

before the G7P targeted a sector. Our findings underline that R&D programs might take time 

to yield tangible benefits in the real economy. 
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Technological classes with less concentrated scientific output drive our results. We show that 

lower concentration measures in citation shares in the decade leading up to the G7P leads to 

stronger program effects. Moving from the 25th to the 75th percentile in the Hirschman 

Herfindahl Index (HHI) citation shares has a detrimental effect equivalent to roughly three-

quarters of the baseline effect we identify. This finding suggests that technological classes’ 

pre-existing structures, which likely govern spillovers through knowledge networks, played an 

important role in determining the G7P effectiveness.  Moreover, it might serve as a cautionary 

tale against policies that focus solely on creating “national champions” while pursuing scale, 

as they might limit knowledge spillovers. 

 

To move beyond within-country comparisons and study the international dimension of the 

G7P, we study how targeted technological classes fared in South Korea relative to other 

countries around the World. Intuitively, we compare our baseline estimates for South Korea 

with those for other countries, which effectively serve as placebos. Our results here are like 

those we exposed before. We find substantial effects by the tenth year following targeting, a 

lack of differential trends in outcomes before G7P support, and a delayed response for exports. 

The interpretation here is, however, different. Targeted technological classes not only did 

better, but South Korea did better than other countries ~ accomplishing, in fact, the G7P’s 

primary objective. 

 

A substantial data effort makes our analysis possible. Through a Transparency Law request, 

we obtained and digitized data on circa 4,800 G7P research projects from the National Research 

Foundation of Korea. For each of those, we observe the mega-project affiliation, project code, 

name, description, objectives, the managing public research institute, individual participating 

firms (if any), start and finish dates, and public and private investment. We would like to 

observe the technological classes targeted by each project. Unfortunately, we do not. This is 

problematic since the outcomes we study (future-citation-weighed patents and exports) are 

available for the International Patent Classification (IPC) codes, which denote technological 

classes. How do we use the G7P information we gathered to study the important questions that 

motivate this paper? 

 

We overcome this challenge with a text-based approach that leverages the information we 

digitized and developments in language models.  We use the rich textual data we digitize to 
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classify patents on technological classes based on text. We use the project’s name, description, 

and objectives to feed the World Intellectual Property Organization’s (WIPO) International 

Patent Classification Computer-Assisted Categorization (IPCCAT) tool to retrieve a 

technology class associated with each project. We input those characteristics into the language 

model. We then receive a list of related technological classes. We keep only high-quality 

predictions. Our list of targeted and almost-targeted technology classes follows from this 

exercise. We later find that our results are robust to using alternative quality thresholds. 

 

IPCCAT is an AI-based tool that enables users, typically resource-constrained patent offices, 

to consistently classify an invention in one or more IPC categories based on some inputted text. 

Trained with over 37 million manually classified patent documents, IPCCAT provides a level 

of confidence for each prediction. The tool correctly classifies over 94% of the documents in 

the training dataset at the levels of disaggregation of the IPC code we use for this study (WIPO, 

2021). 

 

We download the universe of United States Patent and Trademark Office (USPTO) granted 

patents from 1980 to 2015 from USPTO’s PatentView. Our sample starts twelve years before 

the implementation of the first G7P project and fifteen years after implementing the last one. 

Though data for later years is available, we choose 2015 to avoid the right-truncation problem 

that arises from long patent application cycles. We focus on USPTO-granted patents to keep 

contextual elements, such as relative market attractiveness and strength of property-rights 

protection, as fixed as possible. Moreover, inventors worldwide typically file important 

discoveries with the USPTO (Bloom et al., 2021). 

 

We observe each patent’s assignee (the legal entity holding ownership interest in the legal 

rights at the time of application) and research team member location, IPC code, and cited 

patents. We follow the literature in defining a patent as South Korean when the patent’s 

assignee is located in South Korea. On a similar fashion, our primary outcome of interest for 

this dataset is the future-citation-weighed count of USPTO-granted patents to South Korea at 

the 4-character IPC technological class level. The literature prefers this measure, which is a 

way to adjust innovation output for quality, to raw patent counts which weigh equally highly 

used and non-used patents. We also explore how using alternative definitions of patent 

nationality might alter our findings. Our results do not materially change. 
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We download information on South Korea’s exports from the UN-COMTRADE database. Our 

sample starts in 1980 and ends in 2015. Though this data is not available at the IPC code level, 

we use Lybbert & Zolas’ (2014) correspondence table between the Standard International 

Trade Classification (SITC) Rev. 2 and the IPC code to conduct our empirical analysis. We 

also use South Korea’s Mining and Manufacturing Survey, which provides plant-level 

information and is available to us between 1980 and 2003. Given the limited timeframe, we 

use this dataset to study the validity of our identification strategy. 

 

Our work contributes to several literatures in economics. First, a large body of work deals with 

the causes and consequences of investment in R&D (Romer, 1990; Grossman & Helpman, 

1991; Aghion & Howitt, 1992; Howell, 2017; Acemoglu et al., 2018; Akcigit et al., 2020; Chen 

et al., 2021; Dechezleprêtre et al., 2023). An important part of it investigates how policy 

regimes hinder or spur innovation (Bloom et al., 2019). Most of these papers study incentives, 

typically in the form of marginal subsidies or grants, that firms might get from the government 

to develop R&D projects conceived in a decentralized manner. In contrast to the existing 

literature, we study a large R&D program in which a public sector organization made the 

specific program design and selection in a centralized fashion. The G7P was a representative 

“mission-oriented” R&D program (Mazzucato, 2013 ; Gruber & Johnson, 2023; Kim, 2020). 

 

Our paper is close to Gross & Sampat (2023) and Kantor and Whalley (2023), who study other 

“mission-oriented” programs in crisis moments in the United States (WWII and the race to the 

moon, respectively). However, we study a setting that might be more informative to innovation 

and technology policymakers in more mundane times. We study a program that did not occur 

during a crisis, where stakes might be higher and incentives different. Further, we study a 

program in a developing economy with a developed industrial base and limited innovation 

activities. 

 

Second, we contribute to a growing body of literature studying industrial policy (Juhász, 2018; 

Kalouptsidi, 2017; Criscuolo et al., 2019; Giorcelli, 2019; Hanlon, 2020; Mitrunen, 2021; Choi 

& Levchenko, 2023; Choi & Shim, 2023b; Lane, 2023; Barwick et al., 2023). The work in this 

area focuses on technology adoption. Our paper speaks to a different phenomenon: technology 

development, particularly in the setting of a developing country. Though an observer might 

point out that technological change is exogenous to these countries (Gollin et al., 2002), recent 

work by Moscona & Sastry (2023) suggests they have incentives to pursue their own R&D due 
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to the high productivity costs of inappropriate technology. Moreover, Choi & Shim (2023b) 

show that advanced countries might become increasingly reluctant to transfer technology as 

receiving countries become more affluent and start competing with them. We also contribute 

by studying how concentration in a country’s innovation structure might affect the 

effectiveness of industrial policy. Altogether, our work speaks to the demand for knowledge of 

technology development in developing countries, a domain which remains fundamentally 

under-investigated. 

 

Third, we contribute to an extensive literature studying the role of industrial policy in the 

economic miracles of East Asia (Johnson, 1982; Wade, 1990; Amsden, 1992; Chang, 1993; 

Rodrik, 1995; Krueger, 1995; Noland & Pack, 2003; Choi & Levchenko, 2023; Choi & Shim, 

2023a, 2023b; Lane, 2023). This work focuses on canonical industrial policy interventions, 

particularly South Korea’s Heavy and Chemical Industry (HCI) Drive in the 1970s. These 

papers explain how South Korea became a country with an established industrial base but do 

not address how it became a global innovation powerhouse, a leap middle-income countries 

often fail to make. Closer to our paper, Choi & Shim (2023b) study why countries might move 

from adoption subsidies to R&D subsidies. Our work complements theirs in that we document 

the shift in South Korea’s industrial strategy and provide microeconometric evidence on the 

effectiveness of the country’s first “mission-oriented” R&D program. Such policy shift is 

relevant since South Korean policymakers experimented, without much success, with more 

traditional and decentralized R&D tax-credits before the G7P (Kim, 2021). 

 

The rest of the paper is as follows: section 2 provides historical context and institutional detail; 

Section 3 discusses our data collection process; Section 4 outlines our empirical strategy; 

Section 5 presents and discusses our results; Section 6 concludes. 

 

2. Historical Context and the G7 Program5 

 

Though highly successful, South Korea’s insertion into the global economy was not linear. The  

South Korean external sector underwent several boom-and-bust cycles over the last five 

decades. One materialized in the late 1980s, following the sudden end of the so-called three 

lows: low oil price, low interest rates, and low (weak, relative to the Japanese yen) dollar. These 

circumstances enabled a rapid, debt-driven expansion during the second half of the 1980s. As 

 
5 This section relies heavily on KISTEP (2002) and KISTEP (2003). 
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these external conditions changed, the external sector took a hit: exports stagnated, and their 

share of GDP fell from 34.8% in 1987 to 23.8% in 1991 (World Bank, 2023). 

 

Most economists agree that the crisis revealed structural weaknesses in South Korea’s 

industrial development strategy, which favored (debt-driven) input-oriented expansion based 

on comparatively low labor costs (Kwon, 2021). The end of favorable external conditions and 

the increase in labor costs that followed the return to democracy exhausted the strategy’s 

sources of competitive edge. Indeed, real labor pay rose by 53% between 1987 and 1989, far 

surpassing the growth rate of labor productivity. These conditions made competition in 

relatively low-value-added markets with other Asian countries much tougher. Without the edge 

of low labor costs, the prospect of competing with advanced countries was grim due to 

relatively poor technology capacities (Ministry of Science and Technology of the Republic of 

Korea, 1991). 

 

South Korean policymakers identified the need to shift the nature of the markets where South 

Korea competed abroad towards increased value-added. This necessity, paired with the 

increased reluctance of developed countries to share technology with South Korean firms (Choi 

& Shim, 2023b), justified the development of “indigenous” innovation and R&D capacities. 

Following the relative lack of success of earlier promotion policies (Kwon, 2021), which 

included a R&D tax credit, policymakers identified the need for a more coordinated and 

concentrated effort (Ministry of Science & Technology of the Republic of Korea, 1991). The 

G7 Program, announced by President Roh Tae-wooh in November of 1991, responded to this 

challenge. 

 

The G7P 

 

Also known as the Highly Advanced National Program (HAN, as the river crossing Seoul), the 

G7P was South Korea’s first National R&D program. It invested over $7 billion (2023 dollars) 

and mobilized over 100.000 research staff from 1992 to 2000 (Kwon, 2021). The program 

aimed to take South Korean R&D capacities in select sectors to the level of G7 countries by 

the 2000s. 

 

The G7P supported research projects looking to address problems in applied technology, not 

basic science. The program supported two types of “mega-projects”: (i) “product technologies” 

and (ii) “base technologies”. Over its course, the G7P supported 18 “mega-projects”, nine in 
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each category. Our empirical strategy exploits that budget shocks and program-fit concerns 

reduced the length of supported “mega-projects” from 24 to 18. Each “mega-project” had 

smaller individual projects, for which we collected data, that map into IPC technology classes 

in our regression analysis. 

 

For “product technologies”, the concern was that the private sector would not engage in these 

projects because they were too large and risky. Indeed, and with few exceptions, the South 

Korean private sector had been unwilling to engage in R&D and favored instead the 

continuation of previous input-driven strategies (Kwon, 2021). A government subsidy and a 

pooling mechanism that enabled the participation of various firms in a single research project 

would enhance the risk-reward profile of these investments. The distinguishing features of 

these projects were that they had immediate commercial applications and that South Korea 

already had product development capacities. Table 1 shows the nine “mega-projects” that fell 

within this category. Some familiar names like HDTV, a next-generation flat panel display, a 

high-capacity semiconductor, and an electric vehicle appear here. 

 

For “base technologies”, the main concern was that the private sector would not find these 

projects profitable because they lacked immediate commercial applications. This phenomenon 

might lead to a typical under-provision of public goods because private agents do not 

incorporate the society-wide returns that a given invention brings. Table 1 shows the nine 

“mega-projects” supported in this category. Technologies with significant environmental and 

national security externalities, such as a next-generation nuclear reactor, a fuel cell, and next-

generation semiconductor materials, are here. 

 

Figure 1 summarizes the “mega-project” selection process, which was implemented in 1992 

and 1995. The G7P, thus, implemented projects in two waves. The selection process started 

with a broad search for candidate projects led by the Research Coordination Department of the 

Ministry of Science and Technology in conjunction with other ministries. The G7 Expert 

Planning Team, the government unit created to run the G7P, received this information. The 

G7P unit then came up with preliminary lists of candidate “mega-projects” that might be worth 

considering and drafted preliminary plans for each. These were sixty in the first wave and 

fourteen in the second wave. 
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The G7P unit sent a questionnaire to hundreds of sectorial experts, mainly in ministries and 

universities. Among those, the experts were asked to choose the most promising (fifteen in the 

first wave, ten in the second wave) according to their potential in nine dimensions related to 

potential externalities, potential to succeed and close the technological gap with frontier 

countries, market potential, and fit with the program’s philosophy.6 The experts then rated all 

projects in terms of its potential in each of those nine dimensions.7 

 

Using the survey results as input and in consultation with other ministries, the G7P unit came 

up with a list of projects (fourteen in the first wave, ten in the second wave) needing final 

approval from South Korea’s General Science and Technology Council, the country’s highest 

policymaking body in technology policy. 

 

Though all candidate projects were deemed worthy of support and highly ranked by experts in 

their questionnaire answers, the Council did not go ahead with implementing some projects in 

each round. Among those in the first wave were a high-speed maritime ship and an aircraft core 

technology. Over the second wave, these were a Korean natural language processing system, 

an automated traffic control system, and an off-shore manufacturing plant. 

 

These projects were not approved due to concerns about the G7P’s ability to complete them 

following some budget changes. There were also some more idiosyncratic concerns about their 

fit with the G7P philosophy. The Council decided to form commissions to assess the possibility 

of independently supporting those projects outside the G7P. Support eventually did not 

materialize. 

 

We exploit that these projects were planned but not implemented to inform our empirical 

analysis. A concern is that our estimates might reflect the successful selection of profitable 

technologies. As our previous discussion suggests, that is precisely what experts and 

policymakers sought. We address that concern by using as control technologies just those that 

 
6 Those were: technical externalities, comparison of technology level with advanced countries in the early 2000s 

if supported, comparison of international competitiveness in the early 2000s if supported, size of the domestic 

market when commercialized, size of the global market when commercialized, contribution to the general 

welfare, estimated R&D cost, required R&D investment, and fit with “G7P philosophy”. 
7 We retrieved the detailed results of the survey for the first wave but were unable to do so for the second wave. 

Final project proposals seem to follow the expert’s choices. 



 11 

went through the complete selection process, were deemed worthy of support, but were not 

implemented at the end due to budget shocks.  

 

We map the “mega-projects” into IPC technological classes using a language model. Parallel 

trends in exports, a variable explicitly targeted in the process, between our targeted and control 

technologies in the years prior to the implementation of the program supports our identification 

assumption. Moreover, we do not find systematic differences between the targeted and control 

technological classes in a variety of observable variables (such as value added, output per 

worker, or capital intensity) that might have influenced the policymakers’ decision-making. 

 

Once the “mega-projects” were selected, the G7P Unit designated a public research institute to 

run them. These institutes expanded and implemented the research plans developed by the G7P 

unit. Once these plans were completed and specific research projects defined, the institutes 

would issue public Request For Proposals in which firms, state-owned and private, would 

submit budgets and research plans. Research activities would follow after receiving approval 

from the managing public research institutes. 

 

3. Data 

 

Our empirical analysis relies on newly digitized data from the G7P, a language model to 

classify research projects in technological classes, patenting and citation data, and exports and 

manufacturing data. The rest of this section discusses the samples we use, the G7P Files and 

how we use a language model to determine targeted and control / almost-targeted technological 

classes, and the sources for the different outcomes we look at. 

 

We look at two types of outcomes. The first one, which we use to study future-citation-weighed 

patenting (patenting sample, henceforth), is targeted and control technological classes at the 4-

digit IPC level.8 We choose this level because finer levels of disaggregation come at an 

important cost in terms of precision of our language model and is widely used in the innovation 

literature.9 Once we restrict the sample to targeted and almost-targeted technological classes, 

 
8 An example might be illustrative. The IPC has 5 levels of disaggregation: 1 digit (“domain”), 3 digits (“class”), 

4 digits (“sub-class”), 5 digits (“main group”), and 7 digits (“sub-group”). For a hydraulic steering gear, the 1-

digit IPC would be “B – Performing operations, transporting”, the 3-digit would be “B62 - Land vehicles for 

travelling otherwise than on rails”, the 4-digit would be “B62D – Motor vehicles; trailers”, the 5-digit would be 

“B62D3 – Steering gears”, and the 7-digit would be “B62D314 – Hydraulic”. 
9 The precision of the IPCCAT model at 96.2% at the 3 digit level, 94% at the 4 digit level, 89.4% at the 5 digit 

level, and 82% at the 7 digit level. 
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we keep 520 out of a universe of 646. These 520 technological classes, which we use for our 

empirical analysis, account for 90.7% of the USPTO-granted patents to South Korea in 1990.10 

This sample starts in 1980 and ends in 2015. 

 

We use a second sample to study export outcomes (export sample, henceforth). Targeted and 

almost-targeted classes at the 3-digit IPC level comprise this sample. We follow the literature 

(Liu & Ma, 2023) and choose this level because the correspondence table between the IPC (at 

which our targeting variable is available) and the SITC (at which export data is available; 

Lybbert & Zolas, 2014) is noisy at finer levels. After restricting the sample to targeted and 

almost-targeted technological classes, we have 101 technological classes out of a universe of 

131. These accounted for 80.3% of South Korea’s exports in 1990. As with our patenting 

sample, this sample starts in 1980 and ends in 2015. 

 

Finally, we use South Korea’s Mining and Manufacturing Survey, which is currently available 

to us between 1980 and 2003. This source contains yearly plant-level information on sales, 

inputs, and outputs for South Korean establishments involved in mining or manufacturing 

employing ten or more employees. Given the limited timeframe to which we have access, we 

use this source to assess the extent to which our identification strategy addresses selection 

concerns. Here we focus on observables, such as output per worker our capital intensity, that 

policymakers might have targeted while selecting the G7P projects.  

 

G7 Program Files and The Language Model 

 

Our primary source for G7P information is the G7P Yearly Project List.11 We obtained a copy 

for every year the G7P was active (1992 through 2001) through a Transparency Law Request 

to the National Research Foundation of Korea. We digitized and cleaned these records for 

information on all 4,787 G7P projects. We observe each project’s G7P mega-project affiliation, 

name, description, objectives, managing research institute, participating firms (if any), start 

date, end date, and funds provided (public and private). Figure 2 shows an example of a typical 

page of these records. 

 
10 In practice, our samples consists of all treated technological classes in all domains and untreated classes in all 

domains except C (Chemistry; Metallurgy” and “A” (Textiles; Paper). Using IPCCAT on the control “mega-

projects” yields all classes but those two. 
11 The publication name in Korean is 선도기술개발사업 과제목록 (G7 프로젝트) 



 13 

 

We would also like to observe the specific technological class targeted by each project. We do 

not have such data. The lack of information presents a challenge since any econometric 

evaluation requires a notion of the sectors the G7P targeted.  

 

We classify projects into technological classes by using the rich textual information in a 

language model. The model is IPCCAT, which stands for International Patent Code Computer-

Assisted Categorization. The World Intellectual Property Organization (WIPO) developed the 

first version of IPCCAT in 2002 to assist resource-constrained patent offices in classifying 

inventions in the IPC technological classes, precisely our task. Improved and refined ever since, 

IPCCAT today uses data on over 37 million inventions (their abstract and description) and their 

human-originated classification.  

 

For each G7P project, we do the following: (i) we input the project’s name, description, and 

objectives into IPCCAT, (ii) we choose the level at which we want our classification done (that 

is, 3-digit, 4-digit, etc.), and (iii) we choose the language in which we are inputting the text.12 

Once we decide on those options, IPCCAT prints the IPC predictions for the text we inputted 

with a degree of confidence that ranges from 0 to 5. We detail our choices on these items below. 

 

As discussed above, we chose the IPC 4-digit code for our patenting sample because 

predictions at finer levels might have low confidence due to the increased number of choices 

the algorithm faces. The number of categories (precision of the algorithm) rises (falls) from 

646 (94%) at 4 digits to 7437 (89.4%) in 5 digits and 65158 (82%) in 7 digits (WIPO, 2021). 

Choosing finer levels makes the classification problem more complex without a perceived gain 

from increased granularity.  

 

We use the IPC 3-digit code for our export and manufacturing survey sample. This choice 

follows from the fact that the correspondence between IPC codes and real production variables 

(exports, in this case) is imperfect at relatively fine levels of detail. This precludes us from 

using the IPC 4-digit code we use in our patenting sample. 

 

 
12 Another decision the researcher needs to make is the IPC version in which IPCCAT will print the predictions. 

It is not a relevant decision for us since the IPC codes do not change for the levels of disaggregation we use.  
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Finally, we would like to use high-quality IPC-code predictions only. For both cases, we decide 

to use predictions made with a confidence of 3 or higher. This level allows us to cover projects 

accounting for over 97% of total G7P funds. For those projects for which we discard 

information, we impute their respective IPC codes from all the other projects in the same G7P 

mega-project each year. We show in the Appendix that alternative quality thresholds do not 

substantially change our findings. 

 

After we perform this exercise, we have a database of 4,787 research projects with information 

on G7P mega-project affiliation, name, description, objectives, managing research institute, 

participating firms (if any), start date, end date, funds provided (public and private), and 

targeted technology classes at the 3-digit and 4-digit IPC code level. We use this information 

to determine targeted classes and the time of targeting. We perform a similar exercise for the 

almost targeted (planned but not implemented) G7P projects, which yields the technological 

classes we use as controls for our targeted classes. We assume that once a class is targeted, it 

remains so until the end our study. 

 

Patenting Data 

 

We download the universe of patents granted by USPTO from 1980 to 2015. For each one of 

the over 7 million patents granted by USPTO, we observe the patent's application and grant 

years, IPC code(s), the geographic location of the assignee (the legal entity holding ownership 

interest in the legal rights at the time of application) and each one of the inventors, the patents 

it cites, and the citations from subsequent patents. 

 

We define a patent as coming from a given country when the assignee is in such country. We 

show in the Appendix that our results do not change when we use more demanding definitions 

of patent nationality. Second, we only consider future citations coming from patents (i) 

classified in different 3-digit IPC codes to the underlying patent and (ii) from countries 

different to South Korea. We do so to avoid the so-called home bias (Kwon et al., 2017) and 

possible strategic behavior in citation patterns. Third, we divide the patent’s future citation 

equally among all its IPC codes (that is, we use fractional citations). We add those citations at 

the 4-digit IPC code for each year, referencing the application year. We then merge this data 

with our database on G7P-targeted technological classes we described above. 
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Export Data 

 

We use UN-COMTRADE export data for South Korea and the rest of the World for the period 

between 1980 and 2015.  We gather this information at the Standard International Trade 

Classification (SITC, Rev. 2) 4-digit level. We use Lybbert and Zolas (2014) correspondence 

table between SITC and IPC 3-digit codes. We add exports at the IPC 3-digit code using the 

probability that each SITC code belongs to an IPC 3-digit code as weights. We end with a panel 

of exports at the IPC 3-digit code level from 1980 to 2015. We merge this data with the 

information we retrieved on G7P-targeted technological classes. 

 

Manufacturing Data 

We have access to South Korea’s Mining and Manufacturing Survey (MMS) between 1980 

and 2003. This source gives us access to plant-level information on output and input usage for 

all mining or manufacturing plants employing ten or more people. The MMS includes 

information on the Standard Industrial Classification (SIC) in which each plant operates. We 

use this information and Lybbert and Zolas (2014) correspondence table to determine the IPC 

3-digit codes relevant to each plant. We abstract from the effects of entry by limiting our sample 

to plants existing before the G7P. 

 

4. Empirical Strategy 

 

For both our patenting and export samples, our design features (i) the use of targeted and almost 

targeted technological classes to estimate program effects and (ii) an event-study analysis. As 

the G7P treated different technological classes over the years it operated, we observe “cohorts” 

of targeted technological classes every year from 1992 to 2000.  

 

The two features enable us to address concerns about identification that might threaten our 

regression analysis. The first one relates to selection: perhaps selected technologies were ripe 

to succeed in any case. Though the overall technology selection process was indeed 

endogenous, the technologies we use as controls were perceived as equally promising by G7P 

Experts, as per program records (KISTEP, 2002). Those were not implemented because of 

budget shocks and concerns about the ability of the program to sustain those projects over the 

long-term. Our empirical analysis supports our claim as treatment tells us nothing about 

exports, an explicitly targeted outcome, over the pre-G7P period. Moreover, we find that 
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treatment is not informative about output, value added, output per worker, and capital intensity 

– which are variables policymakers might have considered while selecting the G7P projects. 

 

The second feature, the event-study design, is convenient because it enables the exploration of 

treatment dynamics and exploits the fact that the G7P targeted different classes over time. 

Formally, our identification assumption is that targeted classes would have evolved similarly 

to non-targeted classes, had the G7P not been implemented. This assumption might take 

different forms. For example, it might relate to our previous discussion on selection. In Section 

5, we never reject the null hypothesis that pre-G7P treatment coefficients differ from zero at 

standard confidence levels. Exports and other variables targeted by the selection process tell us 

nothing about G7P treatment before the implementation of the program.  

 

The conditional independence assumption also relates to contemporary shocks to our causing 

variables that might bias our estimates. Given the several G7P cohorts, the coefficients we 

estimate are not derived from single years and are, therefore, less likely to be driven by 

contemporary shocks. Moreover, we impose a relatively stringent set of controls to account for 

possibly correlated shocks.  

 

Patenting  

 

We estimate the effect of the G7P on future-citation-weighed innovation output and industry 

exports. Equation 1 is our baseline specification: 

 
Δ𝑖ℎ𝑠(𝑝𝑎𝑡𝑒𝑛𝑡𝑠)𝑠,𝑔+ℎ = 𝛼 + 𝛽𝑔+ℎΔG7P𝑠,𝑔+ℎ + 𝛿𝑐,𝑡 + ∑ 𝑋𝑠𝛾𝑗

2015
𝑗=1987 + 𝜀𝑠,𝑔+ℎ                (1) 

 

 Δ𝑖ℎ𝑠(𝑝𝑎𝑡𝑒𝑛𝑡𝑠)𝑠,𝑔+ℎ = 𝑖ℎ𝑠(𝑝𝑎𝑡𝑒𝑛𝑡𝑠)𝑠,𝑔+ℎ − 𝑖ℎ𝑠(𝑝𝑎𝑡𝑒𝑛𝑡𝑠)𝑠,𝑔−1                    (2) 

 

ΔG7P𝑠,𝑔+ℎ = G7P𝑠,𝑔+ℎ − G7P𝑠,𝑔−1                                                      (3) 

 

 

Δ𝑖ℎ𝑠(𝑝𝑎𝑡𝑒𝑛𝑡𝑠)𝑠,𝑔+ℎ is the change in (inverse hyperbolic sine, ihs) future-citation-weighed patents 

in an IPC 4-digit level technological class s, h years after G7P-targeting relative to the year g 

– 1, which is the year before targeting. Our coefficient of interest on the right-hand side is 𝛽𝑔+ℎ, 

which captures the average G7P effect on treated classes at different points in time. We include 

𝛿𝑐,𝑡, a calendar year-IPC 3-digit level technological class c fixed effect to account for all shocks 

at this level. All our specifications include the interaction between technological class’ s share 

of patenting output between 1987 and 1991, 𝑋𝑠, and calendar year dummies to account for 
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potentially time-variant unobserved biases towards technologies in which South Korea had an 

existing research capability. We note that by specifying our model in a difference setting, we 

account for unobservable attributes at the IPC 4-digit level that do not change over time.  

 

We allow h to be between -5 and +15 – that is, we investigate our outcome in the period 

comprised between the five years before a class was targeted and up to fifteen years after 

targeting. Our identification assumption is that, conditional on the fixed effects we include and 

other variables on the right-hand side, treated and control classes would have evolved similarly, 

had the G7P not been implemented. We cluster standard errors at the IPC 4-digit level. 

 

We use a standard local projection approach to estimate Equation 1 above (Jordá, 2005; Dube 

et al., 2023). This means that (i) we estimate these regressions using OLS separately for each 

year and (ii) we restrict the sample to comply with the clean-control condition. In practice, we 

keep only “newly treated” technological classes (ΔG7P𝑠,𝑔+ℎ = 1) or clean controls (G7P𝑠,𝑔+ℎ =

0). We prefer this approach to alternatives because it prevents us from doing forbidden 

comparisons where some treated observations are controls to other treated observations. These 

might lead to contaminated coefficient estimates.  

 

Our estimation method choice implies that we do not have to saturate our specification with 

pre-period coefficients to avoid contamination. We allow for a window of 5 years to assess 

differential trends across technological classes. Though we include more pre-treatment lags in 

robustness checks, we choose this timeframe because planning exercises typically consider 

those time horizons. 

 

Exports 

We study exports using our export sample, which is at the IPC 3-digit level. Equation 5 gives 

our baseline specification: 

 

Δ𝑖ℎ𝑠(𝑒𝑥𝑝𝑜𝑟𝑡𝑠)𝑐,𝑔+ℎ = 𝛼 + 𝛽𝑔+ℎΔG7P𝑐,𝑔+ℎ + 𝛿𝑑,𝑡 + ∑ 𝑋𝑐𝛾𝑗
2015
𝑗=1987 + 𝜀𝑐,𝑔+ℎ                        (4) 

 

 Δ𝑖ℎ𝑠(𝑒𝑥𝑝𝑜𝑟𝑡𝑠)𝑐,𝑔+ℎ = 𝑖ℎ𝑠(𝑒𝑥𝑝𝑜𝑟𝑡𝑠)𝑐,𝑔+ℎ − 𝑖ℎ𝑠(𝑒𝑥𝑝𝑜𝑟𝑡𝑠)𝑐,𝑔−1                    (5) 

 

ΔG7P𝑐,𝑔+ℎ = G7P𝑐,𝑔+ℎ −  G7P𝑐,𝑔−1                                           (6) 
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Δ𝑖ℎ𝑠(𝑒𝑥𝑝𝑜𝑟𝑡𝑠)𝑠,𝑔+ℎ is the change in (inverse hyperbolic sine, ihs) of exports in an IPC 3-digit 

level technological class c, h years after G7P-targeting relative to the year g – 1, the year before 

targeting. The coefficient of interest is 𝛽𝑔+ℎ, G7P effect on treated classes at different points 

in time. We include a calendar year-IPC 1-digit technological class d fixed effect to account 

for shocks at that level. All our specifications include the interaction between technological 

class’ c average share of exports between 1987 and 1991, 𝑋𝑠, and year calendar dummies to 

account for potentially time-variant unobserved biases towards technologies in which South 

Korea had an existing export capacity. As in Equation 1, we set up Equation 5 in differences, 

which allows us to control for unobserved characteristics at the IPC 3-digit class level. Here, 

we also allow h to be between -5 and +15. We include more pre-treatment lags in the robustness 

checks in the Appendix.  

 

Our identification assumption is that, conditional on the fixed effects, targeted and control 

classes would have evolved similarly, had the G7P not been implemented. As with patenting, 

we use a standard local projection approach, which implies that (i) we estimate these 

regressions using OLS separately for each year and (ii) we restrict the sample to comply with 

the clean-control condition. Thus, we keep only “newly treated” technological classes 

(ΔG7P𝑠,𝑔+ℎ = 1) or clean controls (G7P𝑠,𝑔+ℎ = 0). We cluster standard errors at the IPC 3-digit 

level, which is the level at which our causing variable changes in this case. 

 

Cross-Country Evidence 

How did G7P-targeted technological classes’ patenting output and exports fare in comparison 

to the rest of the World? We study this question by taking our within-country estimations to 

cross-country samples in a triple-difference setting. Intuitively, we compare our baseline 

within-South Korea estimates to those in other countries – which effectively act as placebos.  

 

Patenting 

Equation 7 below shows the specification we estimate, as above, using a standard local 

projection approach: 

 

Δ𝑖ℎ𝑠(𝑝𝑎𝑡𝑒𝑛𝑡𝑠)𝑠,𝑔+ℎ,𝑘 = 𝛼 + 𝛽𝑔+ℎΔG7P𝑠,𝑔+ℎ ∗ I[South Korea] + 𝛿𝑐,𝑡,𝑘 + ∑ 𝑋𝑠,𝑘𝛾𝑗
2015
𝑗=1987 + 𝜀𝑠,𝑔+ℎ,𝑘        (7) 

 

Note that it is identical to Equation 1 except for the inclusion of country subscript k and an 

indicator variable for South Korea. Here Δ𝑖ℎ𝑠(𝑝𝑎𝑡𝑒𝑛𝑡𝑠)𝑠,𝑔+ℎ is the change in (ihs) future-citation-
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weighed patents in an IPC 4-digit level technological class s for country k, h years after G7P-

targeting relative to the year g – 1, which is the year before targeting. We include 𝛿𝑐,𝑡,𝑘, a 

calendar year-country-IPC 3-digit level technological class c fixed effect to account for all 

shocks at this level. We also include the interaction between technological class’ s share of 

patenting output in country k between 1987 and 1991, 𝑋𝑠,𝑘, and calendar year dummies. As in 

our baseline within-country specifications, we allow for for h to be between -5 and 15. 

 

Exports 

Equation 8 shows the specification we estimate, as above, using a standard local projection 

approach: 

 
Δ𝑖ℎ𝑠(𝑒𝑥𝑝𝑜𝑟𝑡𝑠)𝑐,𝑔+ℎ,𝑘 = 𝛼 + 𝛽𝑔+ℎΔG7P𝑐,𝑔+ℎ ∗ I[South Korea] + 𝛿𝑑,𝑡,𝑘 + ∑ 𝑋𝑐,𝑘𝛾𝑗

2015
𝑗=1987 + 𝜀𝑐,𝑔+ℎ,𝑘              (8) 

 

As with Patenting, Equation 8 is identical to Equation 4 except for the inclusion of the country 

k subscript and an indicator variable for South Korea. Here Δ𝑖ℎ𝑠(𝑒𝑥𝑝𝑜𝑟𝑡𝑠)𝑠,𝑔+ℎ,𝑘 is the change 

in (ihs of) exports in an IPC 3-digit level technological class c in country k, h years after G7P-

targeting relative to the year g – 1, the year before targeting. We include a country-calendar 

year-IPC 1-digit technological class d fixed effect to account for shocks at that level. All our 

specifications include the interaction between technological class’ c average share of exports 

for country k between 1987 and 1991, 𝑋𝑠,𝑘, and year calendar dummies. As in our baseline 

within-country specifications, we allow for for h to be between -5 and 15. 

 

5. Results 

 

We find that G7P-targeted classes substantially increased their forward-citation-weighed 

patenting output and exports relative to non-targeted classes over the long run. The dynamics 

were, however, different: whereas patenting output increased almost immediately following 

targeting, exports started increasing just a few years after targeting. We first discuss our within-

country results, including an expanded discussion on mechanisms and selection concerns, and 

then move to our cross-country findings. 

 

Patenting 

Figure 3 shows the result of estimating Equation 1 using the empirical strategy outlined above. 

We find that G7P-targeted classes increased their quality-adjusted (future-citation-weighed) 

patenting output relative to non-targeted classes. These effects varied over time. Our point 
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estimates suggest that G7P-targeted classes increased their patenting output by 16% the year 

after they first received G7P support relative to control classes in the year before treatment. 

This metric increases to 64% by the 5th year, 123% in the 10th year, and 232% in the 15th year. 

The evolution of treatment effects over time suggests that the program spurred innovation 

relatively quickly and had an important long-term effect on targeted classes. These effects are 

not linear: our point estimates do not vary much between the third and the ninth year after 

targeting. 

 

Figure 3 also shows that our targeted and control groups did not have systematically different 

trends in the years before the G7P targeted a technological class. We cannot reject the null 

hypothesis that those coefficient estimates are equal to zero at standard confidence levels. 

Moreover, all estimated coefficients are very close to zero in all cases.  

 

Exports 

Figure 4 shows the result of estimating Equation 4 using the empirical strategy outlined above. 

We find that G7P-targeted classes increased their exports relative to non-targeted classes over 

the long run. Unlikely patenting output, which responded almost immediately to targeting, 

exports took some time to react. Our coefficients are essentially null the first three years after 

treatment and are only statistically different from zero at standard significance levels by the 5th 

year. These point estimates suggest that targeted classes increased their exports relative to 

control sectors by 62% in the 5th year, 245% in the 10th year, and 204% in the 15th year. We 

note that these are real changes. Though we measure exports in nominal dollars, our fixed 

effects absorb price differentials over time. 

 

Figure 4 also shows that treated and control classes did not have differential trends on the years 

anteceding treatment. We are unable to reject the null hypothesis that pre-targeting coefficients 

are equal to zero in all cases. As we hint before, we also interpret these results as a sanity check 

for our research design in the patenting sample. It is widely acknowledged that exports played 

a central role in South Korea’s economic miracle. Conversely, if there was any selection that 

our design does not capture, we should expect to observe it here as external market potential 

was a variable that the “mega-project” selection process explicitly considered. As these results 

confirm, targeted and almost targeted mega-projects passed them. Thus, pre-G7P export 

performance tells us little about selection. 
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We implement an important number of robustness checks to assess the extent to which 

decisions made while collecting data drive our findings. We assess the robustness of our 

findings to the logarithmic transformation of the dependent variable, alternative definitions of 

patent nationality, alternative quality thresholds in our language model exercise, and longer 

pre-treatment lags. We refer the reader to the Appendix while noting that our results are robust 

to alternative choices. 

 

Further Discussion on Selection  

One concern is that our baseline results might reflect successful technology selection. 

However, we discuss in detail how our identification strategy deals with this matter and how 

the lack of differential trends in outcomes is informative about this issue. Further discussion is 

warranted. One way in which selection might occur is comparative advantage. Perhaps our 

estimates reflect that South Korean policymakers chose sectors prone to succeed because they 

built on the underlying strengths of the South Korean economy. An example could be the 

electronics and home appliances sector, where South Korea was a relevant player before the 

G7P. 

 

We emphasize that our estimates control for such types of pre-existing strengths when we 

include pre-G7P shares of patenting and exports – and they are not central to our results. Most 

importantly, however, the G7P supported projects in which South Korea had well-known 

strengths – and others in which it had no tradition, such as nuclear power and high-speed rail. 

In some of our control projects, like the high-speed ship project, South Korea had (and 

continues to have) global relevance. Such choices suggest that comparative advantage was not 

the sole driver of project selection. 

 

Though we are unable to rule out selection on unobservables, we show that selection in 

observable economic variables was unlikely. It is what we expect from the nature of the projects 

that were approved but not implemented. To assess the validity of such expectation, we 

estimate Equation 9 below for our Manufacturing Sample using the standard local projections 

approach used throughout the paper: 

 

Δ𝑌𝑓,c,𝑔+ℎ = 𝛼 + 𝛽𝑔+ℎΔG7P 𝑔+ℎ + 𝛿𝑐,𝑡 + 𝐴𝑔𝑒𝑓 + 𝜀𝑓𝑐,,𝑔+ℎ                                      (9) 
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Where Δ𝑌𝑓,c,𝑔+ℎ is the change in variable Y for plant f in technological class c h years after 

G7P-targeting relative to the year g – 1, the year before the G7P targeted the technological in 

which the plant operates. We include 𝛿𝑐,𝑡, a 3-digit-level technological-class fixed effect to 

account for shocks at that level. 𝐴𝑔𝑒𝑓 is plant f’s age. We allow h to exist between -10 and 0. 

ΔG7P 𝑔+ℎ is defined as before in the paper. Our coefficient of interest is 𝛽𝑔+ℎ, which is 

informative about differences between the targeted and almost-targeted groups in the variables 

we look at. Though it wouldn’t necessarily invalidate our identification strategy, evidence of 

systematic differences between targeted and almost-targeted classes might raise concerns about 

our baseline findings. They might indicate that there could be some selection that was not 

addressed by our strategy. 

 

We look at (log) output, (log) value-added, (log) output per worker, and relative capital 

intensity. We choose these variables because policymakers might have targeted them while 

selecting the projects.  Figure 5 shows the results of estimating Equation 9. We find that 

targeting is not informative about these variables as our coefficient estimates are typically very 

close to zero and are not statistically significant in any case for the years we investigate. Though 

we are unable to rule out selection on unobervables, these findings alleviate remaining selection 

concerns. 

 

Mechanisms 

To further understand the economics behind the G7P, we study the nature of the sectors that 

drive our baseline results. Different theories in economic growth (Romer, 1990) emphasize the 

role of knowledge spillovers in spurring innovation. Indeed, these spillovers often justify policy 

interventions to address market failures and align private incentives with societal goals. At the 

same time, the practice of industrial policy has often (though not always) been associated with 

creating “national champions” able to exploit scale. For example, Draghi (2024) pushes for 

such an industrial policy. However, one concern is that with scale and concentration might 

come more limited spillovers. What can we learn about this tension from the application of the 

G7P? 

 

We measure the level of concentration of scientific output by computing the Hirschman- 

Herfindahl Index (HHI) for citation shares at the technological class level in the pre-G7P 

period. To do so, (i) we retrieve the number of citations that any South Korean assignee 
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received for patents linked to a technological class over the pre-G7P period, (ii) we compute 

each assignee’s share of citations for each class, and (iii) we compute the HHI for each 

technological class using those shares. We use incorporate this measure in the interaction of 

this measure with G7P-year dummies. 

 

Figure 6 shows the results of such exercise. For ease of interpretation, we present the results 

for the HHI normalizing for a change of 6380, which is the difference between the 25th and 75th 

percentile of the HHI distribution. Our findings suggest that sectors with lower levels of 

concentration in terms of scientific output performed much better than those with higher 

concentration. An HHI change of 6380 leads to a reduction in the baseline program effect of 

about three-quarters by the tenth year after receiving program support. These effects are 

substantial and underline the relevance of spillovers in determining program success. 

Moreover, these might serve as a cautionary tale for pushes for scale in industrial policy. 

 

Cross-Country Evidence 

Patenting 

Figure 7 shows the result of estimating Equation 7. Though slightly lower in magnitudes, our 

findings here are like those in our within-country comparison. We find that South Korea’s 

patenting output in G7P-targeted technological classes increased relative to other countries’ 

following G7P support. The point estimates suggest that the increase was of 34.8% by the 5th 

year, 82.2% by the 10th year, and 111.7% by the 15th year. Figure 7 also shows that targeted 

technological classes in South Korea followed similar trends as those in other countries before 

receiving program support.  

 

Exports 

Figure 8 plots our findings after estimating Equation 8. Our results here are very similar, both 

in direction and magnitude, to those in our within-country regressions. We find that exports 

South Korea’s exports in G7P-targeted technological classes increased when compared to other 

countries’ after receiving program support, though it took time for those effects to materialize. 

We find negligible effects the first three years and only detect a statistically significant increase 

in exports by the 4th year. Our point estimates imply that exports increased, relative to the year 

before receiving program support, by 64.8% on the 5th year, by 171.8% on the 10th year, and 

215.8% on the 15th year. We also fail to find differential trends in South Korean exports in 
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G7P-targeted technological classes relative to other countries before receiving program 

support. 

 

Discussion 

Our results highlight that the G7P shifted the direction in which the South Korean economy 

innovated. The quality-weighed patenting output of G7P-targeted technological classes grew 

substantially faster than control classes after treatment. These effects were quick and remained 

over time, suggesting that relative innovation levels in these classes changed permanently, 

even after the G7P ended operations in 2001. We find similar results when we estimate a triple 

difference model in which we compare South Korean patenting output in G7P-targeted 

technological classes to patenting output in other countries of the World, suggesting important 

absolute level effects. Overall, our analysis shows that the program successfully spurred high-

quality innovation in targeted technological classes. Our work rationalizes how South Korea 

caught up with technological frontier over the 1990s and 2000s (Kwon et al., 2017). 

 

These shifts in the direction of innovation had important impacts on the real economy, even if 

they took time to materialize. We can only detect a statistically significant effect on exports in 

the 5th year after the program targeted a technological class. These results contrast with the 

relatively rapid impact on innovation output. Our findings are similar when we estimate a 

triple-difference model, suggesting that South Korea, already an export powerhouse in some 

sectors, managed to improve its standing relative to other countries after the implementation 

of the G7P. 

 

We find that the program was substantially more effective in spurring high-quality innovation 

in technological classes where scientific output was less concentrated in the advent of the G7P. 

We interpret this finding as indicative of the relevance of knowledge spillovers as determinants 

of successful innovation policy. Moreover, it might also act as a cautionary tale against 

excessive concentration, which might be a by-product of certain policies that, for instance, 

might look to create “national champions” able to exploit economies of scale. A possible cost 

from higher concentration might be, for example, more limited spillovers. 

 

Taken together, our results imply that the policy embedded in the G7P was relevant to South 

Korea’s transition into a knowledge-intensive economy. This leap is one that countries often 

fail to accomplish. Most of the debate about East Asia’s economic miracles focused on the role 
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that industrial policy played in enabling heavy industry over the 1970s. Yet, as countries like 

Brazil or Mexico suggest, the obstacles facing productive development do not stop there. We 

show that technology policy played a role in increasing the sophistication of the South Korean 

economy after it developed a sizeable (heavy) manufacturing sector. Economic development, 

as Hirschman (1958) argues, is a complex process that necessitates a strategy, not a plan, and 

shifting policies to address the ever-changing nature of the hurdles that developing economies 

face. Our findings are consistent with the story of a developmental state that opportunely 

shifted its industrial strategy to overcome those ever-changing hurdles. 

 

Conclusion 

 

We study how South Korea's first “mission-oriented” R&D program, the G7 Program, shaped 

innovation and economic outcomes after its implementation between 1992 and 2001. We 

establish that the program shifted the direction in which the South Korean economy innovated 

over the 1990s and 2000s, when South Korea caught up with the frontier of knowledge. 

Targeted technological classes doubled their forward-citation-weighed patenting output ten 

years after receiving program support, relative to control classes. The program effects were not 

limited to patenting: though less immediate than in innovation activities, targeted sectors tripled 

their real exports ten years after they were targeted, relative to control classes. Our results point 

out that the G7P had an important role in transforming South Korea's industrial economy into 

an innovation-driven economy. 
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Figures 
 

Figure 1 

Selection Process 

 

 

 
 

 

Source: KISTEP (2002, 2003) 
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Figure 2 

Typical Record of the G7P Yearly Project List - 선도기술개발사업 과제목록 (G7 프로젝트) 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

Cross-Country Regressions 
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Figure 8 

Cross-Country Regressions 
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Tables 

 
Table 1 

List of G7 Projects 

Type Project Name Implementation Period 

Product 

HDTV  1992 - 1994 

High-capacity semiconductor 1995 - 1999 

Next-generation car (electric vehicle) 1992 - 2001 

Next-generation flat panel display 1995 - 2000 

B-ISDN - Broadband Comprehensive Information and Communication Network Devices for 10GB 
environments 1992 - 2001 

New medicines and agrochemicals 1992 - 1997 

Medical Engineering 1995 - 2001 

Ultra-compact precision machinery 1995 - 2001 

High-speed train 1996 - 2001 

Base 

Advanced energy and informatic materials 1992 - 2001 

New functional biomaterials 1992 - 2001 

Advanced production system 1992 - 2001 

Next-generation semiconductor 1993 - 1996 

Environmental engineering 1992 - 2001 



 10 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

New energy (Fuel-cell) 1992 - 2001 

Next-generation nuclear reactor 1992 - 2001 

“Emotional” Engineering 1995 - 2001 

Next-generation superconducting nuclear fusion device 1995 - 2001 
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Appendix  

 

Robustness Checks 

 

We assess the robustness of our findings to alternative definitions of patent nationality, logarithmic transformation of the dependent variable, and 

alternative quality thresholds in our language model exercise. 

 

Figure A1 
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Figure A2 
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Figure A3 
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Figure A4 
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Figure A5 
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Figure A6 
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Figure A7 
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