
Debt Sustainability and Fiscal Consolidation in a HANK Model

François Langot[⊕] & Selma Malmberg[⊕]* Fabien Tripier[⊕]● & Jocelyn Maillard[⊕] Jean-Olivier Hairault[⊕]♦

EEA 2024 – Rotterdam

ObsMacro CEPREMAP. ENS-Paris PSE. Ecole d'Economie de Paris * GAINS-TEPP & IRA, Le Mans Université LEDa. Université Paris Dauphine

Public debt: the French situation

Why study "Fiscal consolidation"

- 1. Macroeconomic context:
 - Debt-to-GDP ratio has risen steadily over the last decades, with no significant periods of debt reduction.
 - Budget deficit each year whatever the business cycle (recession or expansion).
 - Recent reversal in nominal interest rates after decades of declining trends.
 - * "Across advanced economies, the celebrated (r g) appears to have durably changed sign." Blanchard (2023).
- 2. Political context:
 - The renewed Growth and Stability Pact exerts pressure for a credible debt reduction path for the French economy.

Why study "Fiscal consolidation" with a HANK model

- Fiscal consolidation programs often fail for two reasons.
 - 1. Their recessionary impact may be so substantial that there is no reduction in debt-to-GDP ratio.
 - 2. They tend to exacerbate inequality, potentially leading to electoral outcomes that undermine the continuity of these programs.
- Advantages of using a HANK model for evaluating fiscal consolidation.
 - 1. To get accurate fiscal/budgetary multipliers, which are often inadequately measured in representative agent models.
 - 2. To anticipate the distributional effects of these programs, as they may impact households differently.

Why study "Fiscal consolidation" calls for forecasting

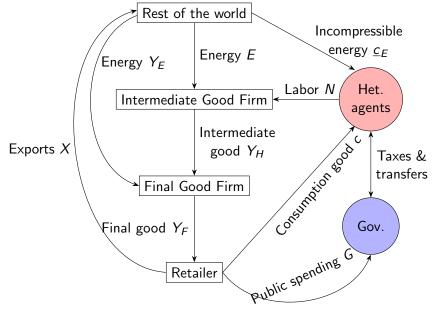
- ► To assess a fiscal consolidation policy, we need:
- #1 A general equilibrium model.
 - ► Fiscal decisions interact with the key drivers of public debt accumulation; e.g. r g = (i π) g.
- #2 A forecast methodology.
 - A fiscal consolidation policy is a forecast of the debt-to-GDP ratio x—years ahead in reaction to current policy change.
- ⇒ We apply the conditional-forecast method to our HANK model using the sequence-space method introduced by Auclert et al. (2021a).

Model

1. We start with a HANK model calibrated and estimated using *past* French data (2003-2019).

- 1. We start with a HANK model calibrated and estimated using *past* French data (2003-2019).
- 2. We use conditional forecasts to identify the sequence of *future* shocks consistent with government forecasts for 2024-2027.
 - Why government forecasts? Based on a large set of information and part of the policy.

- 1. We start with a HANK model calibrated and estimated using *past* French data (2003-2019).
- 2. We use conditional forecasts to identify the sequence of *future* shocks consistent with government forecasts for 2024-2027.
 - Why government forecasts? Based on a large set of information and part of the policy.
- 3. Given this sequence of shocks, we compare the macro. and distributive consequences of alternative policies.
 - All policies are evaluated in the same economic context (the one defined by the government through its forecasts).


- 1. We start with a HANK model calibrated and estimated using *past* French data (2003-2019).
- 2. We use conditional forecasts to identify the sequence of *future* shocks consistent with government forecasts for 2024-2027.
 - Why government forecasts? Based on a large set of information and part of the policy.
- 3. Given this sequence of shocks, we compare the macro. and distributive consequences of alternative policies.
 - All policies are evaluated in the same economic context (the one defined by the government through its forecasts).
- \Rightarrow Reallocation of public spending is key for successful fiscal consolidation policies.
 - Cutting only public consumption is too contractionary and cutting public transfers homogeneously is too unequal.
 - Cutting Bismarckian transfers while increasing Beveridgian transfers reduces debt without penalizing growth or worsening inequalities.

Contribution to the literature

- 1. Quantitative HANK Models.
 - Kaplan et al. (2018), Auclert et al. (2021b) Auclert et al. (2023), Auclert et al. (2023), Pieroni (2023), Bayer et al. (2023) etc.
 - Quantitative HANK for the French economy; see Langot et al. (2023).
- 2. Fiscal consolidation and Debt sustainability.
 - Effect on growth (Blanchard and Leigh (2013, 2014), IMF (2023)), inequality (Ball et al. (2013), Brinca et al. (2021))), and electoral outcomes (Brender and Drazen (2008)).
 - Macroeconomic and distributive effects in general equilibrium with stochastic debt sustainability analysis.
- 3. Conditional forecasts.
 - In VAR models (Waggoner and Zha (1999), Antolin-Diaz et al. (2021)) and RANK (Del Negro and Schorfheide (2013)).
 - Extension to HANK models by Langot et al. (2023) to evaluate the tariff shield and here for fiscal policy.

Model overview

- 1. Household heterogeneity. Utility Budget
 - Idiosyncratic productivity shocks (standard HA assumptions) and skill heterogeneity (low, medium, high skill labor markets).
 - Progressive income taxation, Beveridgian transfers (decreasing with income) and Bismarckian transfers (increasing with income).
- 2. Unions set wages by skill with adjustment costs. Unions
- 3. Production. Labor Intermediate Final Retailers
 - Efficient labor is produced by combining 3-skill labor inputs.
 - Labor is combined with energy to produce intermediate goods.
 - Consumption good is produced using interm. goods and energy.
 - Consumption good is sold by retailers with sticky prices.
- 4. Public authorities.
 - ECB Taylor rule which depends on French inflation. ECB
 - Government public debt dynamics. Government
- 5. Equilibrium: asset, labor, good, and energy markets. Equilibrium

- 1. Calibration based on steady-state restrictions for the aggregate economy (standard). Calibration table
- Calibration based on the distributions of income, assets, consumption and transfers by type (Beveridgian vs Bismarckian). Calibration table
 - Beveridgian assistance-based transfers are decreasing with income (as social action and housing transfers).
 - Bismarckian insurance-based transfers are increasing with income (e.g. pension and unemployment insurance transfers).
- 3. Heterogeneous MPCs and energy consumption. MPC and Energy

Appendix

Calibration based on steady-state restrictions Calibration

$$\min_{\Phi_2}[\Psi_{\mathfrak{s}}(\Phi_2)-\Psi_d] W[\Psi_{\mathfrak{s}}(\Phi_2)-\Psi_d]' \quad \text{with $W=Id$}$$

Parameter Φ_2 : firms & productivity		Valu	e	Moment Ψ_z	Data	Model
Dividends rule $\tilde{d}(e) = e^{a_{div}}$	adiv	=	1.775	Dividends D10/D1	66.25	65.34
Productivity-persistence low-skill	ρ_{I}	=	0.97	Gross income D10/D1	11.67	11.64
Productivity-persistence middle-skill	ρ_m	=	0.965	Gross income D5/D1	2.94	2.73
Productivity-persistence high-skill		=	0.94	Average productivity persistence	0.966	0.966
Productivity-variance low-skill	σ_l	=	0.36	Net consumption D10/D1	3.07	3.12
Productivity-variance middle-skill	σ_m	=	0.64	Net Consumption D5/D1	1.49	1.49
Productivity-variance high-skill	σ_h	=	1.4	Net income D10/D1	4.16	3.72

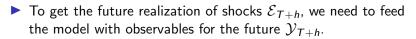
Parameter Φ_2 : Government		Valu	e	Moment Ψ_z	Data	Model
Beveridgian transfer rule $\bar{\tau}(e) = e^{a_{beve}}$	abeve	=	-0.47	Beveridgian Transfer D10/D1	0.36	0.36
Bismarckian transfer rule $\overline{T}(e) = e^{a_{bism}}$	a _{bism}	=	0.815	Bismarckian Transfer D10/D1	5.43	5.43
Level of the income tax $(1 - \lambda)z^{1-\tau_z}$	λ	=	0.089	Net income D5/D1	1.57	1.42
Progressivity of the income tax $(1 - \lambda)z^{1-\tau_z}$	τ_z	=	0.35	Income-tax revenues/GDP	0.115	0.115
Level of VAT	τ_c	=	0.213	VAT revenues/GDP	0.17	0.17
Level of social security contribution	τ_l	=	0.242	Social-security contribution revenues/GDP	0.195	0.195
Level of the corporate tax	τ_f	=	0.27	Corporate-tax revenues/GDP	0.045	0.045

Model estimation using historical data

Given data $\mathcal{Y}_t,$ structural shocks $\mathcal{E}_t,$ calibrated parameters Φ and estimated parameters Θ

 $\begin{aligned} \mathcal{Y}_t &= \mathcal{M}(\mathcal{E}_t | \Theta, \Phi) \text{ with } \underline{\dim}(\mathcal{Y}_t) = \underline{\dim}(\mathcal{E}_t) = 15 \\ &\Rightarrow \quad \widehat{\Theta} = \operatorname{argmax} \mathcal{L}\left(\Theta | \{\mathcal{Y}_t\}_{t=1}^T, \Phi\right) \end{aligned}$

22			Int.	rate	Energy	Gover	nment	Energy	Debt-to-
\mathcal{Y}_t	GDP	Inf	BCE	debt	Price	spend.	trans.	sub.	GDP
\mathcal{E}_t	εβ	ϵ^{μ}	ε	ε^{ϑ}	ϵ^{P_E}	ε ^G	ϵ^{T}	€ ^s H	е
\mathcal{Y}_t				Hours	5		Wages		
\mathcal{Y}_t			1	т	h	1	т	h	
\mathcal{E}_t			ε^{φ_I}	ε^{φ_m}	ε^{φ_h}	ε^{A_l}	ε^{A_m}	ε^{A_h}	


In blue the shocks identified independently to the model

AR(1) estimates

Conditional forecasts for future periods

Method: "Conditional forecasts"

$$\underbrace{\mathcal{Y}_{T+h} = \mathcal{M}(\mathcal{E}_{T+h} | \widehat{\Theta}, \Phi)}_{\text{classical use}} \quad \Rightarrow \quad \underbrace{\mathcal{E}_{T+h} = \mathcal{M}^{-1}(\mathcal{Y}_{T+h} | \widehat{\Theta}, \Phi)}_{\text{inverse use}}$$

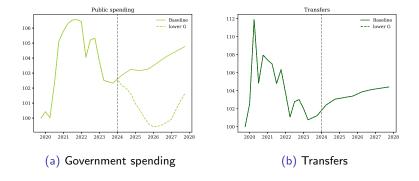
- *𝔅*_{*𝔅*+*h*} ≡ Government forecasts ("consensus of forecasters" + very large information set).
- Alternative policies are assessed in an economic context that is exactly consistent with the government's assumptions.
- We should consider all shocks (and not policy shocks only) to evaluate policies which may change the model's multipliers.

The challenge of fiscal consolidation

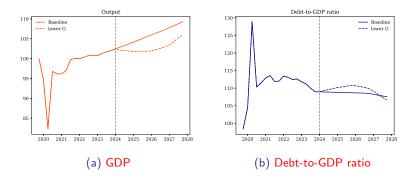
- The threefold objective:
 - 1. Reducing the debt-to-GDP ratio by 5pp between 2023 and 2027 while reducing its variance.
 - 2. Without penalizing GDP growth.
 - 3. Without worsening inequalities.
- Can we do better than the government? Each economy experiences exactly the same business cycle and shares the same initial conditions.
- We assess the potential benefits of adding fiscal rules to government forecasts.

 $Z_t = \rho_Z Z_{t-1} + \tau_Z(b_t - b) + \varepsilon_{Z,t+1}$ where $Z \in \{G, T, T_{Bism}, T_{Beve}\}$

Assessing alternative policies


- We look first at two ways to decrease public spending by €20 billion per year from 2Q2024 to 4Q2027:
- 1. A decrease of public consumption G;
- 2. A homogeneous decrease of public transfers T.

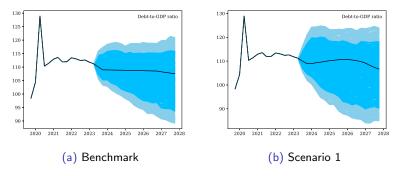
Policy analysis


Appendix

References

Scenario 1: Decrease of government spending

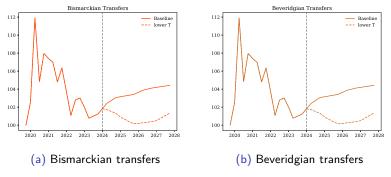
Scenario 1: Decrease of government spending



Inequalities	Top/Bottom	Top/Middle	Middle/Bottom
Benchmark	4.82	2.60	1.86
Scenario 1	4.83	2.59	1.87

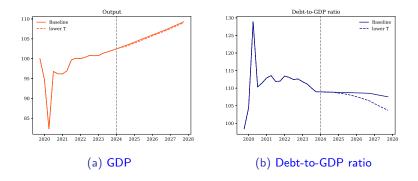
Policy analysis

References


Scenario 1: Decrease of government spending

Decreasing government spending:

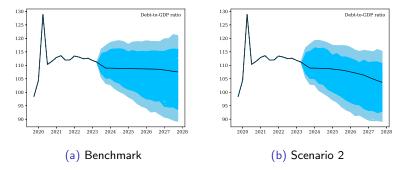
- Fails at reducing the debt-to-GDP ratio enough (-2.7 vs -2.3pp);
- Strongly increases risk (interquantile range at 27.1 vs 20.8pp).


Scenario 2: Homogeneous decrease of transfers

- \in 11.2 billion for Bismarkian transfers;
- \in 8.8 billion for Beveridgian transfers.

Appendix References

Scenario 2: Homogeneous decrease of transfers



Inequalities	Top/Bottom	Top/Middle	Middle/Bottom
Benchmark	4.82	2.60	1.86
Scenario 2	4.99	2.60	1.92

Policy analysis

References

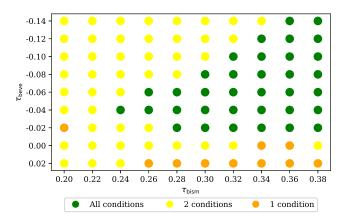
Scenario 2: Homogeneous decrease of transfers

Decreasing transfers homogeneously:

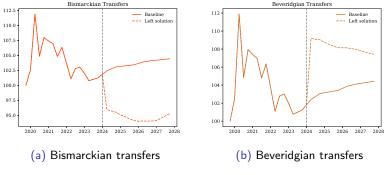
- Succeeds at reducing the debt-to-GDP ratio (-6.1 vs -2.3pp);
- Reduces risk (interquantile range at 17.7 vs 20.8pp).

References

Scenario 3: Decrease of transfers with reallocation

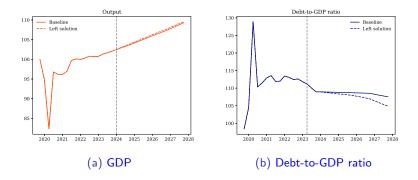

Can we do better than the previous scenarios?

References

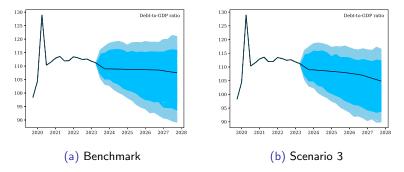

Scenario 3: Decrease of transfers with reallocation

Can we do better than the previous scenarios?

 \Rightarrow Yes, when Bismarkian transfers \downarrow and Beveridgian transfers \uparrow



Scenario 3: Decrease of total transfers with reallocation


- \in 35 billion for Bismarkian transfers;
- $+ \in \! 15$ billion for Beveridgian transfers.

Scenario 3: Decrease of total transfers with reallocation

Inequalities	Top/Bottom	Top/Middle	Middle/Bottom
Benchmark	4.82	2.60	1.86
Scenario 3	4.80	2.59	1.85

Scenario 3: Decrease of total transfers with reallocation

Decreasing Bismarkian transfers while increasing Beveridgian ones:

- Succeeds at reducing the debt-to-GDP ratio (-5.0 vs -2.3pp);
- Reduces risk (interquantile range at 17.8 vs 20.8pp).

► HANK is a relevant framework to assess fiscal consolidation.

- \star To get accurate multipliers and assess the distributive effects.
- Conditional-forecast methods allow to compare various policies in a controlled environment.
 - \star Government forecasts is a valuable input.
- The composition of public spending is key to achieve fiscal consolidation and debt sustainability.
 - \star Essential for achieving the threefold objective.

Model Calibration

Estimation

Policy analysis

Conclusion

References

Model: Households Model overview

- ▶ 3 skills $s \in \{1, m, h\}$: low (1), medium (m), and high, (h)
- ► Within s, idiosyncratic productivity shocks e: P(e, e') Household decisions are deduced from

$$\begin{array}{lll} V_t(e_t, a_{t-1}) & = & \max_{c_t, a_t \geq 0} \left\{ \begin{array}{l} u(c_t) - v(n_t) \\ +\beta_t \sum_{e_{t+1}} \mathcal{P}(e_t, e_{t+1}) V_{t+1}(e_{t+1}, a_t) \end{array} \right\} \\ s.t. & a_t & = & a_{t-1} + y_t(a_{t-1}, e_t) - (1 + \tau_c) [c_t + (1 - s_{H,t}) p_{E,t} \underline{c}_E] \end{array}$$

- Household state (a, e): wealth and productivity
- <u>c</u>: subsistence level for the energy consumption
- ► *s_H*: tariff shield ("bouclier tarifaire")
- *p_E*: relative price of energy
- τ_c : consumption tax

Model: Households Model overview

The net income y(a, e) and the taxable labor income net of social contributions z(a, e) are defined as follows

$$y_t(a_{t-1}, e_t) = r_t a_{t-1} + (1 - \tau_f) d_t \bar{d}(e) + (1 - \lambda) (z_t(e_t))^{1 - \tau_z} + \tau_t \bar{\tau}(e_t)$$

$$z_t(e_t) = (1 - \tau_I) w_t e_t n_t + T_t \bar{T}(e)$$

▶
$$1 + r_t = \frac{1 + i_{t-1}}{1 + \pi_t}$$
 and $\pi_t = \frac{P_t}{P_{t-1}} - 1$

- \blacktriangleright Dividends d_t are distributed across households according to $\bar{d}'(e)>0$
- Tax rate on firms' dividends is τ_f
- Social contributions rate τ_l
- T_t : Bismarckian transfers (pensions and unemployment benefits), with $\overline{T}'(e) > 0$.
- ▶ au_t : Beveridgian transfers (health, family ,...), with au'(e) < 0

Model Calibration

Estimat

Policy analysis

References

Model: Unions Model overview

 $\forall s \in \{I, m, h\}$, a union sets a wage by task $k, \forall e \in E$ and $\forall a \in A$ The union's program for the skill group s is

$$\begin{aligned} U_{k,t}^{s}(W_{k,t-1}^{s}) &= \max_{W_{k,t}^{s}} \left\{ \begin{array}{l} \int_{e} \int_{a} \left[u(c_{i,t}^{s}(e_{i},a)) - v(n_{i,t}^{s}(e_{i},a)) \right] d\Gamma^{s} \\ -\frac{\psi_{W}^{s}}{2} \left(\frac{W_{k,t}^{s}}{W_{k,t-1}^{s}} - 1 \right)^{2} + \beta U_{k,t+1}^{s}(W_{k,t}^{s}) \end{array} \right\} \\ s.t. & N_{k,t}^{s} = \left(\frac{W_{k,t}^{s}}{W_{t}^{s}} \right)^{-\varepsilon^{s}} N_{t}^{s}; \quad W_{t}^{s} = \left(\int_{k} \left(W_{k,t}^{s} \right)^{1-\varepsilon^{s}} dk \right)^{\frac{1}{1-\varepsilon^{s}}} \end{aligned}$$

where the equilibrium distribution satisfies $\sum_s \omega^s \int_e \int_a d\Gamma^s = 1$. The unions' decisions for the nominal wages lead to the NKPCs:

$$\pi_{W,t}^{s} = \kappa_{W}^{s} \left(N_{t}^{s} v'(N_{t}^{s}) - \frac{1}{\mu_{w}^{s}} t d_{t}^{s} \frac{W_{t}^{s}}{P_{t}} N_{t}^{s} \widetilde{u}_{t}'(c^{s}, \overline{\mathcal{T}}^{s}) \right) + \beta \pi_{W,t+1}^{s}$$

with tax distortion $td_t^s = \frac{(1-\tau_{inc})(1-\tau_{ssc})}{1+\tau_c}$, union markup $\mu_w^s = \frac{\varepsilon_s}{\varepsilon_s-1}$, wage rigidity parameters $\kappa_w^s \equiv \frac{\varepsilon^s}{\psi_W^s}$ that are specific to each s and $\overline{\mathcal{T}}$ the average tax rate.

Model: Basic-good producers Model overview

Basic-good producers produce $Y_{{\it N}}$ using only labor and minimize their production costs

$$\min_{\substack{n_{i,t}^{l}, n_{i,t}^{m}, n_{i,t}^{h} \\ s.t.}} \left\{ \begin{array}{l} W_{t}^{l} N_{t}^{l} + W_{t}^{m} N_{t}^{m} + W_{t}^{h} N_{t}^{h} \\ \\ N_{N,t} &\leq \left(\sum_{i} \alpha_{i}^{\frac{1}{\epsilon_{N}}} \left(A_{t}^{i} N_{t}^{i} \right)^{\frac{\epsilon_{N}-1}{\epsilon_{N}}} \right)^{\frac{\epsilon_{N}-1}{\epsilon_{N}}} \\ \\ N_{t}^{s} &= \sum_{i} \omega^{s} \pi_{i}^{s} e_{i,t}^{s} n_{i,t}^{s} \quad \forall s \in \{I, m, h\} \end{array}$$

where ω^s is the fraction of *s*-type in the population, $\sum_i \pi_i^s e_i^s = \omega^s$ is the average productivity of each population Assuming perfect competition leads to:

$$w_{t} = mc_{N,t}, \quad \text{with} \begin{cases} w_{t} = \frac{W_{t}}{P_{t}} \\ MC_{N,t} = \left(\sum_{s} \alpha_{s} \left(\frac{W_{t}^{s}}{A_{t}^{s} \omega^{s}}\right)^{1-\varepsilon_{N}}\right)^{\frac{1}{1-\varepsilon_{N}}} \\ mc_{N,t} = \frac{MC_{N,t}}{P_{t}} \end{cases}$$

Model: Intermediate-good producers Model overview

Intermediate-good producers produce Y_H with energy E and basic goods Y_N while minimizing their production costs

$$\min_{E_t, Y_{N,t}} \{ W_t Y_{N,t} + P_{E_t} E_t \} \qquad s.t. \ Y_{H,t} \le Z_t \left(\alpha_f^{\frac{1}{\sigma_f}} E_t^{\frac{\sigma_f - 1}{\sigma_f}} + (1 - \alpha_f)^{\frac{1}{\sigma_f}} Y_{N,t}^{\frac{\sigma_f - 1}{\sigma_f}} \right)^{\frac{\sigma_f}{\sigma_f - 1}}$$

Assuming perfect competition leads to:

$$p_{H,t} = mc_{H,t}, \text{ with } \begin{cases} p_{H,t} = \frac{P_{H_t}}{P_t} \\ MC_{H,t} = Z_t^{-\frac{1}{\sigma_f}} \left(\alpha_f P_{E,t}^{1-\sigma_f} + (1-\alpha_f) W_t^{1-\sigma_f} \right)^{\frac{1}{1-\sigma_f}} \\ mc_{H,t} = \frac{MC_{H,t}}{P_t} \end{cases}$$

Model: Final-good producers Model overview

Calibration

Motivation

Model

Final-good producers combine goods in order to satisfy the households' preferences. They minimize their production costs

Policy analysis

Appendix

References

Estimation

$$\begin{split} \min_{Y_{H,t},Y_{E,t}} & \{ P_{H,t}Y_{H,t} + (1 - s_{H,t})P_{FE,t}Y_{E,t} \} \\ s.t. \qquad Y_{F,t} \leq \left(\alpha_{E}^{\frac{1}{\eta_{E}}} Y_{E,t}^{\frac{\eta_{E}-1}{\eta_{E}}} + (1 - \alpha_{E})^{\frac{1}{\eta_{E}}} Y_{H,t}^{\frac{\eta_{E}-1}{\eta_{E}}} \right)^{\frac{\eta_{E}}{\eta_{E}-1}} \end{split}$$

Assuming perfect competition leads to:

$$p_{F,t} = mc_{F,t}, \quad \text{with} \begin{cases} p_{F,t} = \frac{P_{F_t}}{P_t} \\ MC_{F,t} = \begin{pmatrix} \alpha_E((1 - s_{H,t})P_{E,t})^{1 - \eta_E} \\ +(1 - \alpha_E)(P_{H,t})^{1 - \eta_E} \end{pmatrix}^{\frac{1}{1 - \eta_E}} \\ mc_{F,t} = \frac{MC_{F,t}}{P_t} \end{cases}$$

Retailers produce $y_{i,t}$ differentiated goods. The *i*-retailer's objective is to maximize the profits

$$\Pi(P_{i,t-1}) = \max_{P_{i,t}} \left\{ \frac{P_{i,t} - P_{F,t}}{P_t} y_{i,t} - \frac{\psi_P}{2} \left(\frac{P_{i,t}}{P_{i,t-1}} - 1 \right)^2 Y_t + \frac{1}{1 + r_{t+1}} \Pi(P_{i,t}) \right\}$$

s.t. $y_{i,t} = \left(\frac{P_{i,t}}{P_t} \right)^{-\varepsilon_d} Y_t$

This leads to the following NKPC:

$$\pi_t = \kappa_P \left(mc_t - \frac{1}{\mu_t} \right) + \frac{1}{1 + r_{t+1}} \frac{Y_{t+1}}{Y_t} \pi_{t+1}$$

with $mc_t = \frac{P_{F,t}}{P_t}$ and $\kappa_P = \frac{\varepsilon_d}{\psi_P}$. The firm's profit are distributed through its dividends d Model: ECB and risk premium Model overview

The central bank, here the ECB, follows a monetary rule:

$$\begin{split} i_t^* &= \rho_r i_{t-1}^* + (1 - \rho_r) \left(i_{ss}^* + \phi_\pi (\mu_{FR} + (1 - \mu_{FR})\rho_\pi) \pi_t \right) + \varepsilon \\ \text{with} \quad \pi_t &= \frac{P_t}{P_{t-1}} - 1 \\ \pi_t^{EU} &= \mu_{FR} \pi_t + (1 - \mu_{FR}) \pi_t^{REU} \\ \pi_t^{REU} &= \rho_\pi \pi_t + \pi_t^{REU*} \\ \varepsilon_t &= \tilde{\varepsilon}_t + \phi_\pi (1 - \rho_r) (1 - \mu_{FR}) \pi_t^{REU*} \sim AR(1) \end{split}$$

The interest rate decided by the central bank i_t^* may differ from the effective interest rate on the French-government debt. The effective nominal interest rate is

 $i_t = i_t^* + artheta_t$ with $artheta_t \sim AR(1)$

where ϑ_t is an exogenous wedge that can be either positive (due to risk premium) or negative (due to the maturity composition of government debt).

Model

Appendix

Model: Government Model overview

Public debt (B_t) finances the differences between government revenues R_t and expenditures D_t :

$$\begin{aligned} R_t &= \sum_{s} \int_{a} \int_{e} \mathcal{T}_{I}^{s}(e) d\Gamma^{s}(a, e) + \tau_{I} \sum_{s} \int_{a} \int_{e} w_{t}^{s} n_{t}^{s} e d\Gamma^{s}(a, e) + \tau_{c}(c_{t} + p_{E,t} \underline{c}_{E}) \\ D_{t} &= \left(\int_{i, t} g_{i, t}^{\frac{e_{d} - 1}{e_{d}}} di \right)^{\frac{e_{d}}{e_{d} - 1}} + \Xi_{t} + s_{H, t} p_{E, t} (Y_{E, t} + (1 + \tau_{c}) \underline{c}_{E}) \\ b_{t} &= (1 + r_{t}) b_{t-1} - R_{t} + D_{t} \end{aligned}$$

where b = B/P is the real public debt and Ξ_t the real transfers. To ensure public-debt dynamics's stability, the lump-sum transfer incorporates a fiscal brake

$$\Xi_t = Y_t - \theta \left(\frac{b_{t-1}}{b} - 1 \right) + e_{\tau,t} \quad \text{with } Y_t = \sum_s \int_a \int_e [\tau \overline{\tau}(e) + T \overline{T}(e)] d\Gamma^s(a,e)$$

 Y_t is the observed transfers paid by the government to households (Beveridgian $\int \tau \overline{\tau}(e) d\Gamma^e(e)$ and Bismarckian $\int T \overline{T}(e) d\Gamma^e(e)$ components of transfers) and e_{τ} is a measurement error.

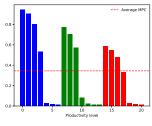
Motivation Model Calibration Estimation Policy analysis Conclusion Appendix References
Model: Equilibrium Model overview

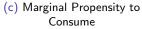
Market-clearing conditions used to determine the unknowns $\{N, w, p_{FE}\}$ are

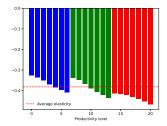
asset market:
$$b_t = A_t \equiv \sum_s \int_{a_-} \int_e a_t^s(a_-, e) d\Gamma^s(a_-, e)$$

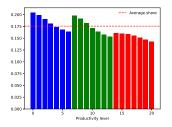
labor market: $N_t = \mathcal{N}_t \equiv \sum_s \int_{a_-} \int_e n_t^s(a_-, e) d\Gamma^s(a_-, e)$
energy market: $\overline{E}_t = \mathcal{E}_t \equiv Y_{E_t} + \underline{c}_E + E_t$

and the market clearing condition on the goods market can be used to check the Walras law:

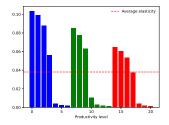

$$Y_t\left(1-\frac{\psi_P}{2}\pi^2\right)=\rho_{E_t}\overline{E}_t+\mathcal{C}_t+G_t$$


Calibration based on external information Calibration


Preferences	Values	Targets	
Discount factor β	0.9888	Real interest rate $r = 0.74\%$ per quarter	
Frisch elasticity of labor supply φ	1	Chetty et al. (2012)	
Elasticity of intertemporal substitution σ	1	Log-utility for consumption	
Incompressible energy consumption \underline{c}_F	0.041	20% of households' energy consumption	
Wage markup μ_w	1.1	Auclert et al. (2021a)	
Low-skill labor desutility ϕ_l	0.3634	Low-skill wage	
Middle-skill labor desutility ϕ_l	0.3278	Middle-skill wage	
High-skill labor desutility ϕ_l	0.1482	High-skill wage	
Elasticity of substitution between production inputs η_E	0.5	Negative impact on GDP of energy-price shock	
Share parameter (energy, intermediate good) α_E	0.043	Sharing rule: 40% of energy to households	
Production	Values	Targets	
Elasticity of substitution between production inputs σ_f	η _E	Simplifying assumption	
Share parameter (energy, labor) α_f	0.056	Sharing rule: 60% of energy to firms	
Firm markup μ	1.2	Auclert et al. (2021a)	
Productivity parameters A _s	1	Normalization	
Energy price	0.105	Share of energy in GDP of 3.18%	
Nominal rigidity	Values	Targets	
Price rigidity κ	0.95	Arbitrary higher than Auclert et al. (2018)	
Wage rigidity κ_w	0.1	Auclert et al. (2018)	
Monetary policy	Values	Targets	
Taylor rule coefficient $\phi_{\pi}(\mu_{FR} + (1 - \mu_{FR})\rho_{\pi}))$	1.2	With $\phi_{\pi} = 1.5$, $\mu_{FR} = 20\%$, and $\rho_{\pi} = 0.75$	
Persistence of monetary policy ρ_r	0.85	Carvalho et al. (2021)	


Government	Values	Targets
Public debt B	5.418	Debt-to-GDP ratio = 100%
Public spending G	0.236	Public spending-to-GDP ratio = 17.5%
Transfers (Bev. + Bism.)	0.192+0.242	Transfers-to-GDP ratio (Bev. + Bism.) = 32.1%

Calibration: Behaviors Calibration



(d) Share of Energy in Consumption

References

Estimation: AR(1) processes for 2003-2019 (back)

	Ζ	Persistence ρ^Z	Standard dev. σ^Z	Variance
Shock		Mean	Mean	$rac{(\sigma^Z)^2}{1-(ho^Z)^2} imes 100$
Preference	β	0.729671	0.013046	0.0363997672356
		(0.029348)	(0.002123)	
Price markup	μ	0.789200	0.034667	0.3186420040907
		(0.027489)	(0.003339)	
Energy price	PE	0.826006	0.110864	3.8685179416384
		(0.018871)	(0.008170)	
Monetary policy	ε	0.594361	0.006363	0.0062603336598
		(0.042767)	(0.000537)	
Spread	θ	0.833475	0.001173	0.0004483501182
		(0.033896)	(0.000118)	
Disutility /	φ_{l}	0.789716	0.021579	0.1237292213442
		(0.044887)	(0.002791)	
Disutility m	φ_m	0.796583	0.020735	0.1176450201556
		(0.042019)	(0.00257)	
Disutility h	φ_h	0.702865	0.031981	0.2021389700213
		(0.058066)	(0.004064)	
Productivity /	A'	0.797419	0.016618	0.0758419464546
		(0.031630)	(0.001469)	
Productivity m	A ^m	0.788554	0.015493	0.0634701479995
		(0.031699)	(0.001395)	
Productivity h	A^h	0.852304	0.017113	0.1070462117039
		(0.030063)	(0.001516)	
Government spending	G	0.708019	0.004230	0.0035878431247
		(0.057510)	(0.000373)	
Transfers	Т	0.787820	0.005321	0.0074637705758
		(0.043248)	(0.000467)	
Measurement error	e_{τ}	0.775047	0.017671	0.0782024947092
		(0.045756)	(0.004227)	

Policy analysis

References

Changes in Model Multipliers and Policy Evaluation **Deck**

Let \emptyset denotes the benchmark policy and \mathcal{P} the alternative one (with parameter changes and additional shocks ε^{ς}).

$$dY_{\emptyset,t} = \sum_{s=0}^{\infty} \sum_{Z \in \mathcal{Z}} m_{\emptyset,s}^{Y,Z} \varepsilon_{t-s}^{Z}$$
$$dY_{\mathcal{P},t} = \sum_{s=0}^{\infty} \sum_{Z \in \mathcal{Z}} \left[m_{\mathcal{P},s}^{Y,Z} \varepsilon_{t-s}^{Z} + m_{\mathcal{P},s}^{Y,\varsigma} \varepsilon_{t-s}^{\varsigma} \right]$$

where Y are endogenous variables, m multipliers, ϵ shocks. The evaluation of the alternative policy is given by

$$dY_{\mathcal{P},t} - dY_{\emptyset,t} = \sum_{s=0}^{\infty} \sum_{Z \in \mathcal{Z}} \left[(m_{\mathcal{P},s}^{Y,Z} - m_{\emptyset,s}^{Y,Z}) \varepsilon_{t-s}^{Z} + m_{\mathcal{P},s}^{Y,\varsigma} \varepsilon_{t-s}^{\varsigma} \right]$$

As all multipliers $m_{\mathcal{P},s}^{Y,Z}$ have changed, evaluating policy \mathcal{P} depends on the sequences of all shocks by combining all IRFs.

Conditional forecasts and Lucas critique **Gark**

In our Just-identified model

$$\mathcal{Y}_{T+h} = \mathcal{M}(\mathcal{E}_{T+h}|\widehat{\Theta}, \Phi) \text{ with } \dim(\mathcal{Y}_{T+h}) = \dim(\mathcal{E}_{T+h}) = 15$$

Case 1: If the parameters are stable

$$\Rightarrow \quad \mathcal{E}_{\mathcal{T}+h} = \mathcal{M}^{-1}(\mathcal{Y}_{\mathcal{T}+h} | \widehat{\Theta}, \Phi) \quad \text{with } \mathcal{E}_{\mathcal{T}+h} \in \mathit{CI}$$

Case 2: If the parameters are unstable i.e. $\mathcal{E}_{T+h} \notin CI$

$$\begin{split} \widetilde{\Theta}_{x} &= \operatorname{argmax} \, \mathcal{L}\left(\Theta_{x} | \{\mathcal{X}_{T+h}\}_{h=T}^{T+H}, \Phi\right) \quad \text{for} \, \, \mathcal{X}_{T+h} \in \mathcal{Y}_{T+h} \\ \\ &\Rightarrow \quad \mathcal{E}_{T+h} = \mathcal{M}^{-1}(\mathcal{Y}_{T+h} | \{\widehat{\Theta}_{-x}, \widetilde{\Theta}_{x}\}, \Phi) \end{split}$$

where x are the variables controlled by the government

References

Conditional forecasts and the Lucas critique

• Government's decision rules are unstable if $\mathcal{E}_{T+h} \notin CI$:

$$y_t^g = \begin{cases} \widehat{\rho}_g y_{t-1}^g + \widehat{\sigma}_g \varepsilon_t^g & \text{if } t \leq T & \text{Old policy rule} \\ \widetilde{\rho}_g y_{t-1}^g + \widetilde{\sigma}_g \varepsilon_t^g & \text{if } t > T & \text{New policy rule} \end{cases}$$

▶ The parameters $\widetilde{\Theta}_g = \{\widetilde{\rho}_g, \widetilde{\sigma}_g\}$ can be re-estimated using the government commitments $\{y_{T+h}\}_{h=1}^{H}$ and identification is:

$$\star \ \varepsilon_{T+h} = \frac{1}{\widetilde{\sigma}_g} (y_{T+h} - \widetilde{\rho}_g y_{T+h-1}).$$
$$\star \ \mathcal{E}_{T+h} = \mathcal{M}^{-1} (\mathcal{Y}_{T+h} | \{ \widehat{\Theta}_{-g}, \widetilde{\Theta}_g \})$$

Estimation outcome

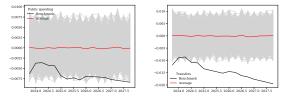
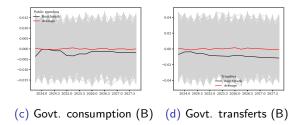
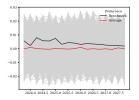
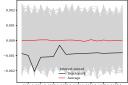

Ζ	G	Т
$\widetilde{\rho}^Z$	0.95953	0.90391
$\tilde{\sigma}^Z$	0.00867	0.02299

Table: Estimated parameters over 4Q-2019 to 4Q-2027

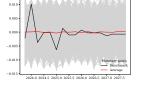

Policy analysis

References

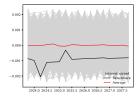

Innovations. (A) before and (B) after re-estimation **Galaxies**


(a) Govt. consumption (A) (b) Govt. transferts (A)

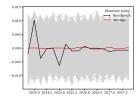
Innovations. (A) before and (B) after re-estimation **Galaxies**

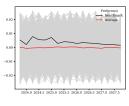


(a) Discount rate (A)



2024.0 2024.5 2025.0 2025.5 2026.0 2026.5 2027.0 2027.5

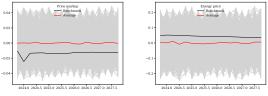

(c) Spread (A)


(b) Nominal rate (A)

(f) Spread (B)

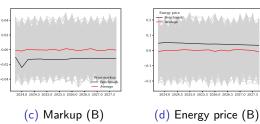
(e) Nominal rate (B)

(d) Discount rate (B)


0.04 0.02

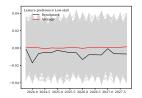
-0.02

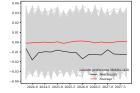
-0.04

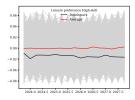

Policy analysis

Innovations. (A) before and (B) after re-estimation

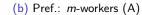
(b) Energy price (A)

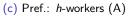


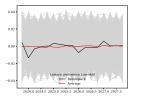

Policy analysis

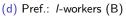

References

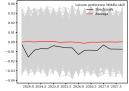
Innovations. (A) before and (B) after re-estimation **Galaxie**



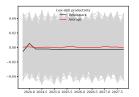

Model

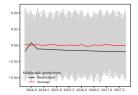


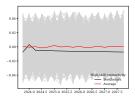



(a) Pref.: *I*-workers (A)

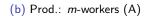


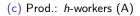

(e) Pref.: *m*-workers (B)

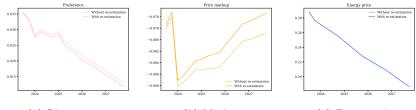

(f) Pref.: h-workers (B)

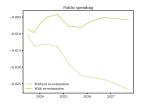

References

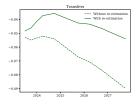
Innovations. (A) before and (B) after re-estimation **back**




Model


(a) Prod.: *I*-workers (A)

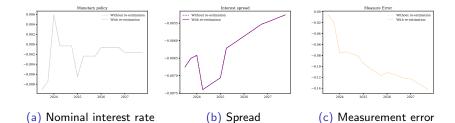

Shocks Dynamics **back**


(a) Discount rate

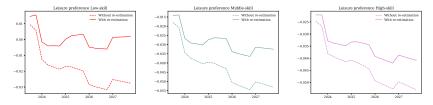
(b) Mark-up

(c) Energy price

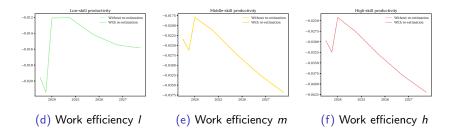
(d) Govt. consumption

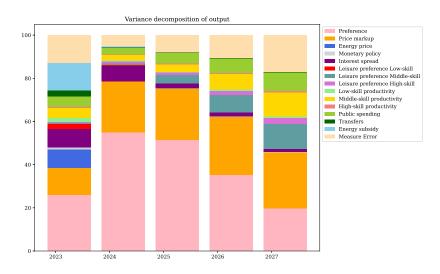


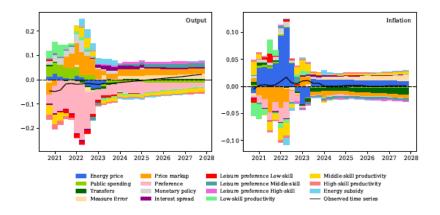
(e) Govt. transfers


Energy subsidy 0.12 0.13 0.04 0.06 0.06 0.04 0.04 0.02 0.

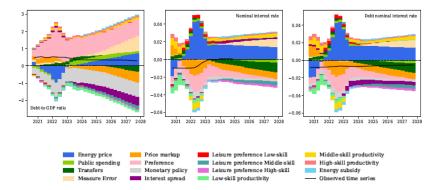
(f) Tariff shield


Shocks Dynamics **Deck**

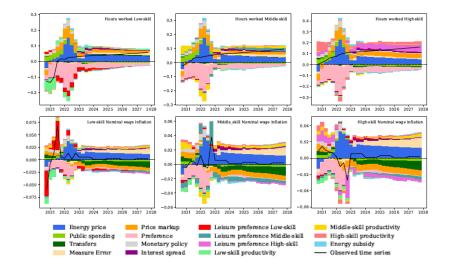

Shocks Dynamics **back**


(a) Disutility of working I (b) Disutility of working m (c) Disutility of working h

Variance decomposition: Output Lack

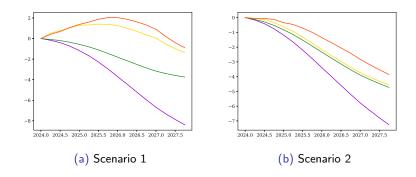


Historical decomposition: Output and Inflation **Geometry**



References

Historical decomposition: Debt-to-GDP, Interest rates **back**



Historical decomposition: Labor markets **Gark**

References

DSA: Partial versus general equilibrium effects **DSA**:

References I

- Antolin-Diaz, J., Petrella, I., and Rubio-Ramirez, J. F. (2021). "Structural scenario analysis with SVARs". *Journal of Monetary Economics*, 117:798–815.
- Auclert, A., Bardoczy, B., Rognlie, M., and Straub, L. (2021a). "Using the sequence-space Jacobian to solve and estimate heterogeneous-agent models". *Econometrica*, 89(5):2375–2408.
- Auclert, A., Monnery, H., Rognlie, M., and Straub, L. (2023). "Managing an Energy Shock: Fiscal and Monetary Policy". Mimeo, *Stanford*.
- Auclert, A., Rognlie, M., Souchier, M., and Straub, L. (2021b). "Exchange Rates and Monetary Policy with Heterogeneous Agents: Sizing up the Real Income Channel". Mimeo, *Stanford University*.
- Auclert, A., Rognlie, M., and Straub, L. (2018). "The intertemporal Keynesian cross". Working paper 25020, *National Bureau of Economic Research*.
- Ball, L. M., Furceri, D., Leigh, M. D., and Loungani, M. P. (2013). The distributional effects of fiscal consolidation. International Monetary Fund.
- Bayer, C., Kriwoluzky, A., Muller, G., and Seyrich, F. (2023). "Hicks in HANK: Fiscal Responses to an Energy Shock". Discussion papers 18557, *CEPR*.

References II

- Blanchard, O. J. and Leigh, D. (2013). Growth forecast errors and fiscal multipliers. American Economic Review, 103(3):117–120.
- Blanchard, O. J. and Leigh, D. (2014). Learning about fiscal multipliers from growth forecast errors. *IMF Economic Review*, 62(2):179–212.
- Brender, A. and Drazen, A. (2008). How do budget deficits and economic growth affect reelection prospects? evidence from a large panel of countries. *American Economic Review*, 98(5):2203–2220.
- Brinca, P., Ferreira, M. H., Franco, F., Holter, H. A., and Malafry, L. (2021). Fiscal consolidation programs and income inequality. *International Economic Review*, 62(1):405–460.
- Carvalho, C., Nechio, F., and Tristao, T. (2021). "Taylor Rule Estimation by OLS". *Journal of Monetary Economics*, 124:140–154.
- Chetty, R., Guren, A., Manoli, D., and Weber, A. (2012). "Does Indivisible Labor Explain the Difference between Micro and Macro Elasticities? A Meta-Analysis of Extensive Margin Elasticities". *NBER Macroeconomics Annual*, 27:1–56.

References III

- Del Negro, M. and Schorfheide, F. (2013). DSGE Model-Based Forecasting. In *Handbook of economic forecasting*, volume 2, pages 57–140. Elsevier.
- IMF (2023). Chapter 3: Coming down to earth: How to tackle soaring public debt.
- Kaplan, G., Moll, B., and Violante, G. L. (2018). "Monetary policy according to HANK". American Economic Review, 108(3):697–743.
- Langot, F., Malmberg, S., Tripier, F., and Hairault, J.-O. (2023). "The Macroeconomic and Redistributive Effects of Shielding Consumers from Rising Energy Prices: the French Experiment". Working paper 2305, Cepremap.
- Pieroni, V. (2023). "Energy shortages and aggregate demand: Output loss and unequal burden from HANK". *European Economic Review*, 154:104428.
- Waggoner, D. F. and Zha, T. (1999). "Conditional forecasts in dynamic multivariate models". *Review of Economics and Statistics*, 81(4):639–651.