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Motivation

How can we identify dynamic effects with a time-invariant binary IV?

Examples:
I Dynamic effects of training programs.

Schochet et al. (2008), Alzúa et al. (2016), Hirshleifer et al. (2016), Das (2021), and others.

I Effects of having children on parents’ labor supply.
Bronars and Grogger (1994), Angelov and Karimi (2012), Silles (2015), Lundborg et al.
(2017), and others.

Main challenge: we can have individuals starting treatment at different time periods
(“dynamic compliance”).
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Why Bother?

Common approach: period by period comparisons.

Problem: individuals who are not offered training in the first period but that are trained
afterward “contaminate” these estimates.

⇒ Negative weights for some causal effects in the usual estimands.
I Estimands may be negative even when the treatment makes everyone better off.
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This Paper

Decomposition results for the usual estimands (period by period comparisons).
I Understand when there is contamination and which groups drive it.

Point identification of dynamic effects for first-period compliers.
I Achieved with some types of homogeneity assumptions on causal effects.
I No additional source of exogenous variation is required.

Partial identification when treatment effects are bounded.
I Bounds valid without any homogeneity on causal effects.
I Tighter bounds as a middle ground.
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Two-Period Setting



Treatment and Lottery

For example, consider a two-period evaluation of a training program.
I See paper for the T -period setting.

A lottery determines who gets a training offer in the first period.

Zi is the lottery outcome and Di ,t indicates whether i is treated at t ∈ {1, 2}.

We assume that treatment is irreversible.

Assumption 1
Di ,1 = 1 =⇒ Di ,2 = 1.
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Potential Outcomes

Yi ,t(0) if i is not treated at t.

Yi ,t(1, τ) if i started to be treated τ periods before t.

I At t = 1:
0: not treated at t = 1.
(1, 0): treated at t = 1.

I At t = 2:
0: not treated at t = 2.
(1, 0): treated at t = 2.
(1, 1): treated at t = 1.

Exclusion restriction: the lottery does not affect potential outcomes directly.

Yi ,t is the observable outcome.
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Latent Groups

Potential treatment statuses for observation i at t are denoted by Di ,t(z), z ∈ {0, 1}.

We define the four usual IV latent types by period.

ATtDi ,t(0) = 1

Di ,t(1) = 1

Ft

Di ,t(1) = 0

CtDi ,t(0) = 0 NTt

We say we have “dynamic compliance” if latent groups may change over time.
I Example: (C1,AT2) is someone who is only treated at t = 1 if received Zi = 1, but who will be

treated at t = 2 regardless of Zi .
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Target Parameters

Treatment effects of interest compare treated and untreated potential outcomes:

∆τ
t (g) := E [Yi ,t(1, τ)− Yi ,t(0)|g ] ,

where g is a history of IV types.

We focus on:

I ∆0
1(C1): effect in the first period for C1 units.

I ∆1
2(C1): effect at t = 2 of being treated in the first period for C1 units.

Focus on the dynamic effects over time for a fixed population (compliers from t = 1).
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Basic Assumptions

As a basic requirement, we assume that Zi satisfies the following.

Assumption 2
1 The instrument is excluded from potential outcomes given time period and treatment length.

2 Potential outcomes and potential treatment statuses are drawn independently of Zi .

3 FS1 6= 0.

4 P(F1) = 0.

Notes:
1 For our solutions, we only need relevance of the instrument at t = 1;
2 Also, we only need no defiers at t = 1.
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Period by Period Estimators



Estimands (Period by Period Estimators)

Reduced form and first stage estimands are

RFt := E [Yi ,t |Zi = 1]− E [Yi ,t |Zi = 0] ,

FSt := E [Di ,t |Zi = 1]− E [Di ,t |Zi = 0] .

Moreover,

IV estimand at t :=
RFt
FSt

.
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IV comparisons at t = 1

∆0
1(C1) is identified by RF1/FS1 (Imbens and Angrist 1994).
I At t = 1 we don’t have dynamic compliance problems.

AT1

Zi = 1

C1

NT1

AT1

Zi = 0

C1

NT1

13



IV comparisons at t = 1

∆0
1(C1) is identified by RF1/FS1 (Imbens and Angrist 1994).
I At t = 1 we don’t have dynamic compliance problems.

AT1
Yi ,1(1, 0)

Zi = 1

C1
Yi ,1(1, 0)

NT1
Yi ,1(0)

AT1
Yi ,1(1, 0)

Zi = 0

C1
Yi ,1(0)

NT1
Yi ,1(0)

13



IV comparisons at t = 1

∆0
1(C1) is identified by RF1/FS1 (Imbens and Angrist 1994).
I At t = 1 we don’t have dynamic compliance problems.

AT1

���
��Yi ,1(1, 0)

Zi = 1

C1
Yi ,1(1, 0)

NT1

��
��Yi ,1(0)

AT1

���
��Yi ,1(1, 0)

Zi = 0

C1
Yi ,1(0)

NT1

��
��Yi ,1(0)

13



IV comparisons at t = 1

∆0
1(C1) is identified by RF1/FS1 (Imbens and Angrist 1994).
I At t = 1 we don’t have dynamic compliance problems.

AT1

��
���Yi ,1(1, 0)

Zi = 1

C1
Yi ,1(1, 0)

NT1

���
�Yi ,1(0)

AT1

��
���Yi ,1(1, 0)

Zi = 0

C1
Yi ,1(0)

NT1

���
�Yi ,1(0)

RF1 = P(C1)∆0
1(C1),

FS1 = P(C1),

RF1

FS1
= ∆0

1(C1).

13



IV comparisons at t = 2
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IV comparisons at t = 2
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IV comparisons at t = 2
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IV comparisons at t = 2
Yi ,2(0): not treated at t = 2
Yi ,2(1, 1): treated at t = 1
Yi ,2(1, 0): treated at t = 2

RF2 = E[Yi ,2|Zi = 1]− E[Yi ,2|Zi = 0].

AT2
Yi ,2(1, 1)

AT1

Zi = 1

AT2
Yi ,2(1, 1)

AT1

Zi = 0

14



IV comparisons at t = 2
Yi ,2(0): not treated at t = 2
Yi ,2(1, 1): treated at t = 1
Yi ,2(1, 0): treated at t = 2

RF2 = P(AT2) · 0 + ...

AT2

���
��Yi ,2(1, 1)

AT1

Zi = 1

AT2

���
��Yi ,2(1, 1)

AT1

Zi = 0

14



IV comparisons at t = 2
Yi ,2(0): not treated at t = 2
Yi ,2(1, 1): treated at t = 1
Yi ,2(1, 0): treated at t = 2

RF2 = P(AT2) · 0 + ...

Zi = 1

AT2
Yi ,2(1, 1)

C1
C2

Yi ,2(1, 1)

Zi = 0

AT2
Yi ,2(1, 0)

C2
Yi ,2(0)

C1

14



IV comparisons at t = 2
Yi ,2(0): not treated at t = 2
Yi ,2(1, 1): treated at t = 1
Yi ,2(1, 0): treated at t = 2 RF2 = P(C1)∆1

2(C1)− P(C1,AT2)∆0
2(C1,AT2) + ...

Zi = 1

AT2
Yi ,2(1, 1)

C1
C2

Yi ,2(1, 1)

Zi = 0

AT2
Yi ,2(0) + ∆0

i ,2

C2
Yi ,2(0)

C1

Problem: potential outcomes of (C1,AT2) for Zi = 1 and Zi = 0 are not comparable, even though this
group is treated at t = 2 regardless of Zi .
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IV comparisons at t = 2
∆0

2: effect at t = 2, treated at t = 2

∆1
2: effect at t = 2, treated at t = 1

RF2 = P(C1)∆1
2(C1)− P(C1,AT2)∆0

2(C1,AT2)

+ P(NT1,C2)∆0
2(NT1,C2)− P(NT1,F2)∆0

2(NT1,F2)

and

FS2 = P(C1)− P(C1,AT2) + P(NT1,C2)− P(NT1,F2).

Notes:
I Weights in the IV estimand sum to one; but some may be negative.

I If FS2 < FS1, then there must be negative weights.

I No defiance in all periods does not eliminate all negative weights:

RF2 = P(C1)∆1
2(C1) − P(C1, AT2)∆0

2(C1, AT2) + P(NT1, C2)∆0
2(NT1, C2) −(((

((((
(

P(NT1, F2)∆0
2(NT1, F2).
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When Does the IV Estimand Work?
Compliance is static

∆0
2: effect at t = 2, treated at t = 2

∆1
2: effect at t = 2, treated at t = 1

Compliance is static ⇒ P(C1,AT2) = P(NT1,C2) = P(NT1,F2) = 0.

RF2 = P(C1)∆1
2(C1)−

((((
(((

((((P(C1,AT2)∆0
2(C1,AT2)

+
((((

((((
((((

P(NT1,C2)∆0
2(NT1,C2)−

(((
((((

(((
((

P(NT1,F2)∆0
2(NT1,F2),

FS2 = P(C1)−���
���P(C1,AT2) +���

���P(NT1,C2)−���
���P(NT1,F2).
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When Does the IV Estimand Work?
Treatment length homogeneity

Assumption 3
For any latent group g ∈ {(C1,AT2), (NT1,C2), (NT1,F2)} such that P(g) > 0,
∆1

2(C1) = ∆0
2(g).

Treatment effect may vary with calendar time, but does not depend on length of exposure
to the treatment.

I Also needs homogeneity assumptions wrt latent groups.

RF2 =
[
P(C1)− P(C1,AT2) + P(NT1,C2)− P(NT1,F2)

]
∆1

2(C1)

FS2 =
[
P(C1)− P(C1,AT2) + P(NT1,C2)− P(NT1,F2)

]
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Point Identification Under Alternative Assumptions



Calendar Time Homogeneity

∆0
2: effect at t = 2, treated at t = 2

∆1
2: effect at t = 2, treated at t = 1

Assumption 4
For any latent group g ∈ {(C1,AT2), (NT1,C2), (NT1,F2)} such that P(g) > 0,
∆0

1(C1) = ∆0
2(g).

Treatment effect can vary with length of exposure to treatment (but does not depend on
calendar time).

I More reasonable than previous assumptions if we consider a time range in which economy is
stable.

I Also need homogeneity assumptions wrt latent groups.
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Identification Under Calendar Time Homogeneity

Assumption 4
For any latent group g ∈ {(C1,AT2), (NT1,C2), (NT1,F2)} such that P(g) > 0,
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Identification Under Calendar Time Homogeneity

∆0(C1) is identified by the first-period IV estimand.

Use it to correct the contamination term.
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Identification Under Calendar Time Homogeneity

∆1
2(C1) = ∆1(C1) =

RF2

FS1
+

FS1 − FS2

FS1

RF1
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Comparison with the IV Estimand

IV estimand: calendar time heterogeneity but no time-since-treatment heterogeneity.

Correction: calendar time homogeneity but unrestricted time-since-treatment heterogeneity.

Both assume homogeneous effects for the other groups or that they do not exist (or a
combination in between).

Our correction only requires relevance in the first period.
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Estimation

We can define a just-identified linear IV model in which the solution of the moment
condition is the corrected IV estimand.

Estimate

Yi ,t = γ11(t = 1) + γ21(t = 2) + β1(Di ,t − Di ,t−1) + β21(2 ≤ t)(Di ,t−1 − Di ,t−2) + εi ,t

treating the time dummies as exogenous and using 1(t = 1)Zi and 1(t = 2)Zi as
instruments for the endogenous variables.

Estimation using standard GMM or two-stage least squares software gives valid inference.
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Empirical Illustration



Lundborg et al. 2017
“Can Women Have Children and a Career? IV Evidence from IVF Treatments”

Di ,t : fertility;
Zi : in vitro fertilization (IVF) treatment success;
Yi ,t : labor force participation.

First stage Reduced form

Figures from Lundborg et al. 2017 25



Lundborg et al. 2017
“Can Women Have Children and a Career? IV Evidence from IVF Treatments”

Challenge: we don’t have access to the microdata.

Construct a dataset that matches the FS and the RF for all periods.

Limitation 1: we cannot get the exact trajectories of Yi ,t for each observation.
I Trajectory does not affect our point estimates;

I Very minor differences on se’s; we use worst case over 1000 possible datasets.

Limitation 2: we don’t have information on E[Yi ,t |Zi = 0].
I se’s are maximized when E[Yi,t |Zi = 0] = 0.5;

I We use E[Yi,t |Zi = 0] = 0.8 as a conservative estimate.

Limitation 3: we don’t have information on covariates.
I se’s for our correction are higher than they would be if we had covariates.
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Lundborg et al. 2017
“Can Women Have Children and a Career? IV Evidence from IVF Treatments”

Per-period vs Corrected IV.
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Partial Identification



Partial Identification

Under Assumptions 1 and 2 only,

FS1∆1
2(C1) = RF2 − P(NT1,C2)∆0

2(NT1,C2)

+ P(C1,AT2)∆0
2(C1,AT2) + P(NT1,F2)∆0

2(NT1,F2).

I We want to identify the target parameter ∆1
2(C1).
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Partial Identification

Under Assumptions 1 and 2 only,

FS1∆1
2(C1) = RF2 − P(NT1,C2)∆0

2(NT1,C2)

+ P(C1,AT2)∆0
2(C1,AT2) + P(NT1,F2)∆0

2(NT1,F2).

I We want to identify the target parameter ∆1
2(C1).

I We observe directly the first stage and the reduced form.

I Assume bounds on the treatment effects, ∆ and ∆ (natural if Y is bounded).

I Bounds on the probabilities:
F P(NT1,C2): at most, prob of switching into treatment at t = 2 given Zi = 1;

F P(C1,AT2) + P(NT1,F2): at most, prob of switching into treatment at t = 2 for Zi = 0.
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Partial Identification

Given that,

RF2

FS1
−

P (Di ,2 > Di ,1|Zi = 1)

FS1
∆ +

P (Di ,2 > Di ,1|Zi = 0)

FS1
∆

is a lower bound for ∆1
2(C1), and

RF2

FS1
−

P (Di ,2 > Di ,1|Zi = 1)

FS1
∆ +

P (Di ,2 > Di ,1|Zi = 0)

FS1
∆

is an upper bound.
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Partial Identification: Tighter Bounds

Assumption 5
For all g , g ′ ∈ {(C1,AT2), (NT1,C2), (NT1,F2)} with P(g) > 0 and P(g ′) > 0,
∆0

2(g) = ∆0
2(g ′).

If Assumption 5 holds,

RF2

FS1
+

[
1(FS2 ≤ FS1)∆ + 1(FS2 > FS1)∆

]
FS1 − FS2

FS1
,

is a lower bound for ∆1
2(C1) and

RF2

FS1
+

[
1(FS2 ≤ FS1)∆ + 1(FS2 > FS1)∆

]
FS1 − FS2

FS1

is an upper bound.

These bounds are (weakly) tighter than the previous ones.
I Intuition: under these assumptions, we don’t need bounds on the probabilities. 31



Conclusion

Setting:
I Static instrument and dynamic compliance.

Results:
I Decomposition: possibility of negative weights.

I Identification: require a different type of treatment effect homogeneity assumption.

I Partial identification: relax these assumptions.
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