▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Wages and agglomeration economies: A long-run perspective

Clémence Berson ECB

Pierre-Philippe Combes

Science Po - CNRS

Laurent Gobillon

Paris School of Economics - CNRS and Banque de France

Aurélie Sotura

Banque de France

Intro	Data	Empirics	Conclusion
●000	000	00000000	0000
Motivations			

Steady growth of cities over last decades (Duranton and Puga, 2014) with urban giants concentrating population and employment

Agglomeration economies increase local productivity, and **returns to agglomeration may depend on city size**. If returns are higher for small/medium cities, urban development towards large cities can reduce average productivity

 \implies changes in city sizes may not maximize average productivity

Important for urban policies since some are designed to develop mainly large cities (Glaeser and Gottlieb, 2008)

In France, certain policies influence the size of cities (building constraints, transport development, spatially targeted housing policies)

Intro	Data	Empirics	Conclusion
o●oo	000	00000000	0000
Literature			

Effects of agglomeration economies on productivity

(Combes and Gobillon, 2015; Ahlfeldt and Pietrostefani, 2019; Duranton and Puga, 2020)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Agglomeration economies in a historical perspective

(Combes, Lafourcade and Thisse, 2011)

City-size distribution (Zipf law) (Gabaix and Ioannides, 2004; Dittmar, 2019)

Building constraints and misallocation of factors (Hsieh and Moretti, 2019; Duranton and Puga, 2020)

Intro	Data	Empirics	Conclusion
00●0	000	00000000	0000
Our paper			

We **quantify agglomeration economies** in France over the 1976-2015 period using individual wage data (DADS)

We use a definition of cities that evolves over time

We assess the effects of agglomeration economies and city-size distribution on average daily wages

Intro	Data	Empirics	Conclusion
000•	000	00000000	0000
D f.			

 ■ Elasticity of wages/density: 0.025 (OLS), 0.031 (IV) 1% increase in density ⇒ 0.02% increase in wages (r. 0.03%) Increases over time (x4 between 1976 and 2015)

the results

- Elasticity of wages/market potential: 0.065 (OLS), 0.050 (IV) 1% increase in MP \implies 0.07% increase in wages (resp. 0.05%) Non-monotonic over time
- Negligible role for changes in values, important for changes in returns.
- Local variables matter to some extent for wage disparities and their importance increases over time
- Agglomeration variables play a minor role in the evolution of average wage but a significant one for large cities

Intro	Data	Empirics	Conclusion
0000	●00	00000000	0000
Delineating cities			

Methodology: de Bellefon, Combes, Duranton, Gobillon, and Gorin (2021, *Journal of Urban Economics*), using a dartboard approach

CEREMA-IGN data and BDTOPO: information on all buildings on the territory every year (exact location, footprint, height and construction year) at census years (1975, 1982, ..., 2016)

Urban area: a set of contiguous urban squares

City: urban area with core. In practice, a city is the set of included municipalities

A municipality belongs to a city if more than 50% of its census population is located in the city squares (allocating population to squares proportionally to building volume)

Cities may appear/disappear/change size at census years when they are redefined City employment densities are constructed using administrative data

Intro	Data	Empirics	Conclusion
0000	o●o	00000000	0000
Wage data			

Social security administrative data (DADS) matched employer-employee panel data 1976-2015

- Individual characteristics (age, sex)
- Match characteristics (Part-time/full-time status, number of working days, net wage, occupation, sector)
- Municipality identifiers

6

Our sample: 18,619,578 observations

- Individuals aged 18-65
- Only main full-time job (highest daily net wage) in the non-farm private sector

• Wages are trimmed (drop of wages in the 1st and 99th centiles each year)

City density and market potential computed using DADS

Data	Empirics	Conclusion
000		

Moments of city wage and density distributions, 1976-2015 period

Wage

Density

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Intro	Data	Empirics	Conclusion
0000	000	●0000000	0000
Overview			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Two steps:

1/ Estimation of returns to agglomeration variables on wages, taking into account sorting of individuals across cities

2/ Evolution of average daily wage decomposed into

- effects of agglomeration economies
- individual characteristics/time

Intro	Data	Empirics	Conclusion
0000	000	o●ooooooo	0000
Mara aquation	· First stop		

$$\ln w_{i,t} = X_{i,t}\beta + \mathbb{1}_{\{(i,t)\in C\}} \left[\sum_{ag=1}^{C} \mathbb{1}_{\{ag(i,t)=ag\}}\gamma_{ag,t} \right] + \mathbb{1}_{\{(i,t)\in U\}}\gamma_t^U$$
$$+ \mathbb{1}_{\{(i,t)\in R\}}\gamma_t^R + \mu_{s(i,t),t} + u_i + \epsilon_{i,t}$$

with:

- *i* the individual, *t* the year, s(i, t) the sector
- the location of the worker: C for cities, U urban areas without core and R rural areas, ag(i, t) the city where the worker i works
- w_{i,t} the daily wage
- X_{i,t} time-varying individual characteristics (age squarred)
- u_i individual and $\mu_{s(i,t),t}$ sector fixed effects
- $\epsilon_{i,t}$ the residual

Intro	Data	Empirics	Conclusion
0000	000	oo●oooooo	0000
Wage equation: Sec	ond step		

$$\gamma_{ag,t} = Z_{ag,t}\theta_t + \delta_t + \eta_{ag,t}$$

with:

- t the year, ag the city
- $\gamma_{ag,t}$ the location effect of the city ag of the previous equation
- $Z_{ag,t}$ time-varying city characteristics (employment density, area, market potential)
- δ_t time fixed effects
- $\eta_{\textit{ag},t}$ the residual

Data	Empirics	Conclusion
	0000000	

Second stage regression - constant agglomerations

	(1)	(2)	(3)	(4)	(5)	(6)
Density	0.051*** (0.002)		0.044*** (0.002)	0.033*** (0.002)		0.025*** (0.001)
Area	0.024*** (0.001)	0.037*** (0.001)	0.024*** (0.001)	0.014*** (0.001)	0.021*** (0.001)	0.014*** (0.001)
Market potential		0.111*** (0.005)	0.062*** (0.003)		0.093*** (0.005)	0.065*** (0.003)
Individual FE	No	No	No	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.859	0.810	0.872	0.934	0.931	0.945
N	10926	10922	10922	10921	10917	10917

Standard errors in parentheses

The dependent and explanatory variables are all in logarithm. * p < 0.5, ** p < 0.02, *** p < 0.01

Data	Empirics	Conclusion
	0000000	

IV 2nd stage regressions - constant agglomerations

	(1)	(2)	(3)	(4)	(5)	(6)
Density	0.043*** (0.002)	0.049*** (0.002)	0.043*** (0.002)	0.027*** (0.003)	0.046*** (0.003)	0.031*** (0.002)
Area	0.012*** (0.001)	0.013*** (0.001)	0.012*** (0.001)	0.016*** (0.001)	0.013*** (0.001)	0.014*** (0.001)
Market potential				0.050*** (0.003)	0.015*** (0.005)	0.050*** (0.003)
Historical IV	Yes	No	Yes	Yes	No	Yes
Soil IV	No	Yes	Yes	No	Yes	Yes
KP F-stat.	95.71	96.07	88.81	59.55	62.15	68.50
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
N	10679	10921	10679	10679	10917	10679

Standard errors in parentheses

The dependent and explanatory variables are all in logarithm *: p<0.5, **: p<0.02, ***: p<0.01

Data	Empirics	Conclusion
	00000000	

2nd stage regression - moving agglomerations

Intro	Data	Empirics	Conclusion
0000	000	oooooo●oo	0000
Wage growth	decomposition		

The evolution of average log-wages in a given city ag, $\overline{\log w}_{ag,1} - \overline{\log w}_{ag,0}$ can be decomposed into the effects of:

- A change in individual characteristics/time effects (labelled "composition effects")
- A change in the returns to agglomeration variables
- A change in the values of agglomeration variables
- A change in the unobservables

A similar decomposition can be made at the national level

Data	Empirics	Conclusion
	00000000	

Decomposition of the cumulative wage growth

Decomposition of the cumulative wage growth

Decomposition of city wage growth

Intro	Data	Empirics	Conclusion
0000	000	oooooooo●	

Spatial contributions to wage growth

Spatial contributions to wage growth

Contributions of changes in returns

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Intro	Data	Empirics	Conclusion
0000	000	00000000	●000
Conclusion			

- Elasticity of wages/density: 0.025 (OLS), 0.031 (IV), increasing over time
- Elasticity of wage/market potential: 0.065 (OLS), 0.050 (IV), non-monotonic over time
- Positive sorting of productive individuals into dense cities, it decreases over time
- Local variables matter to some extent for wage disparities, their importance increases over time
- Agglomeration variables play a minor role in the evolution of average wage but a significant one in large cities

Intro	Data	Empirics	Conclusion
0000	000	00000000	○●○○
Possible extensions			

Going further:

Inclusion of industry-city variables (i.e., specialization)

Decompose effects of changes in city population into effects of:

- Differential fertility rates
- Internal migrations
- International migrations
- Role of agglomeration economies in wage disparities and aggregate productivity

・ロト・西ト・ヨト・ヨー うへで

Data	Empirics	Conclusion
		0000

City delineations - Marseilles and Lyon, 1975 and 2015

Marseilles

1975

2015

Lyon

2nd stage regression - moving agg., log-density effects

OLS

IV

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□■ のへの

Moments of city MP distribution, 1976-2015 period

Market potential:
$$MP_{ag,t} = \sum_{z \neq ag} \frac{den_{z,t}}{dist_{z,ag}}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

2nd stage regression - moving agg., log-area effects

OLS

(4日) (월) (불) (불) (월) (4日)

2nd stage regression - moving agg., log-MP effects

OLS

Decomposition of wage growth: Paris and Marseille

Marseille Aix-en-Provence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ の00

Decomposition of wage growth: Lyon and Lille

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

Robustness

• Different measures of agglomerations:

- City size constant over time.
- Urban area (Insee definition)
- Urban units (Insee definition)
- Smaller kernel
- Learning effects (cf. De la Roca and Puga, 2017)