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Abstract

The role of eradication policies in decreasing drug trade, insecurity, and ultimately
fostering development remains largely debated. This paper examines the unintended
consequences of aerial fumigation of coca on human capital accumulation and its
medium-term socioeconomic impact in Colombia. Employing a spatial regression dis-
continuity design and utilizing newly digitized data on the exact areas subjected to
aerial spraying, we find that eradication increases dropout and failure rates in the
short term. A key mechanism is the negative income shock experienced by households.
Furthermore, we document that even after the ban on aerial spraying in 2015, villages
exposed to eradication exhibit worse socioeconomic outcomes, including lower school-

ing, higher child labor, increased early marriage, and deteriorating living conditions.
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“The space where coca grows and the peasants who grow it - because they have nothing else to
cultivate - is demonized. For you, my country is of no interest except to poisons its jungles, to put
its men in jail and to throw its women into exclusion. You are not interested in a child’s education,

but rather in killing its forest.” Gustavo Petro (Sep, 20, 2022)

1 Introduction

The recent UN World Drug Report for 2023 highlights how illicit drug trafficking and
economies pose significant obstacles for countries to meet their Sustainable Development
Goals (UNODC, 2023b). However, the policy solutions aimed at breaking the negative feed-
back loop between drug trade, conflict, and underdevelopment remain vastly opaque. One
policy that has been frequently advocated for and used around the world — receiving major
foreign investment e.g., by the U.S. — are efforts targeted at eradicating the production of
illicit crops such as coca and poppy.

Whether these eradication policies help countries overcome the negative feedback loop is
highly doubtful. Indeed, these policies may exacerbate underdevelopment and create con-
ditions conducive to further illicit crop production — even if they might be successful at
restricting supply in the short-run. This is primarily because eradication measures dispro-
portionately impact small-scale farmers engaged in illicit crop production by destroying their
crops and sources of income. Evidence from Colombia suggests that farmers use these rev-
enues mainly to meet their basic needs as well as to invest into their children’s education
(Gutiérrez Sanin, 2019). In turn, a lack of education has long been recognized as a factor
contributing to underdevelopment, suggesting that eradication policies might even fail at
achieving their fundamental goal in the medium- to long-term.

In this paper, we investigate the unintended impact of aerial fumigation of coca on
human capital accumulation in Colombia and its socioeconomic implications in the medium
term, along with the underlying mechanisms. Colombia is currently the world’s leading
producer of coca and cocaine; it alone furnishes more than 90 percent of the U.S. supply
(O’Neil et al., 2022). Among the counter-narcotics policies implemented to curb this problem,
aerial spraying with glyphosate standed out as the largest and more costly form of forced
eradication (Mejia et al., 2017). Yet, despite its ban in 2015 for being “probably carcinogenic
to humans” (Huezo, 2017), aerial eradication remains at the center of a fierce debate on
counter-narcotics policies not only in Colombia, but also in other producing countries, such
as Afghanistan (SIGAR, 2018).

We exploit quasi-random variation from the eradication flights, as the planning and ex-

ecution of aerial eradication were intricate and influenced by organizational and natural



constraints, including weather conditions, proximity to airports, time limitations, and id-
iosyncratic decisions of the pilots. Leveraging the exogeneity in demarcating the sprayed
areas, we employ a spatial regression discontinuity design (RDD). We digitized the precise
geographical coordinates of these sprayed areas from 2004 to 2015, using the annual “Colom-
bian Coca Cultivation Survey” published by the United Nations Office on Drugs and Crime
(UNODC). This dataset is then combined with the geolocated universe of schools, allowing
us to compare schools just inside sprayed areas with those just outside them.

We find that aerial spraying does worsen educational outcomes. Specifically, schools situ-
ated within sprayed areas experience an 11% increase in dropout rates and an 8.5% increase
in failure rates when compared to schools just outside the eradication area, i.e., schools lo-
cated less than 5 and 8 kilometers away from the eradication boundary, respectively. Our
results are robust to a number of tests and alternative specifications, including a sensitivity
test for observations near the cutoff, using only schools for which more than 80% of the sur-
rounding area was eradicated, introducing geographic controls, using quadratic polynomials,
and applying different sample splits.

Importantly, we show that there were no significant differences in socioeconomic, geo-
graphic, or eradication-related characteristics prior to the start of the aerial spraying. Specif-
ically, we document that the level of coca cultivation in the vicinity of schools was similar for
both sprayed and non-sprayed schools in the year preceding eradication. We also find that
the likelihood of these schools being subjected to alternative forced eradication programs,
i.e., manual eradication, was the same. We found no statistically significant differences in
slope, nighttime light density and the presence of landmines in the areas surrounding the
schools in 1993. Additionally, using municipality-level data, we showed that the schooling
characteristics were also the same across the eradication boundary. We only observed differ-
ences in elevation and the likelihood of having been sprayed in the previous year, for which
we always control for.

We document that the plausible mechanism through which forced eradication affects
human capital is the negative impact on farmers’ income. First, we find that families respond
to the eradication shock by reducing education expenses — i.e., withdrawing children who are
not of working age — and potentially increasing labor force participation within the household
— i.e., withdrawing children of working age. Second, we demonstrate that aerial eradication
does have a significant negative impact on household income and economic activity by using
nighttime light density.

Next, we rule out health as a potential mechanism for the observed negative effects
on education, considering glyphosate’s known impact on health (IARC, 2017; Camacho &
Mejia, 2017; Zhang et al., 2022; Dias et al., 2023). To investigate this, we employ manual



eradication, which does not impact public health. In our analysis, we use an RDD, comparing
schools inside areas subjected to manual eradication with those just outside. The findings
indicate that manual eradication had a similar adverse effect on dropout and failure rates as
aerial spraying, both in terms of magnitude and statistical significance. This suggests that,
at least in the short term, health does not appear to be a primary factor contributing to the
decline in educational outcomes. Additionally, we rule out conflict — proxied by landmines
— and selective migration — using school transfer rates —as plausible mechanisms.

Having to dropout of or bad performance in school plausibly shapes individual outcomes
throughout their whole life. To study the effects of aerial spraying on socioeconomic con-
ditions and household dynamics on a longer term, we employ an RDD using 2018 census
data at the rural section level' and aggregating all the spraying areas from 2004 to 2015.
We find that rural sections subjected to aerial spraying indeed have lower schooling rates
—in primary, secondary and high school- among the adults who were exposed during their
youth. Again, we do not find significant effects in self-reported health outcomes, nor do we
identify selective migration as a potential long-term mechanism.

Instead, bolstering our short-term income effects, we observe that rural sections within
aerial spraying areas exhibit higher child labor rates for boys, consistent with the observed
increase in dropout rates for working-age children. Yet, we also find that girls are more
involved in household chores.

We further investigate the gender differences in responses to the eradication shock by
studying early marriage. A growing body of research indicates that early marriage can be
a coping mechanism for impoverished households facing income shocks (Hoogeveen et al.,
2011; Baird et al., 2011; Corno et al., 2020; Chort et al., 2022). Our findings show that the
percentage of married girls aged 10 to 14, and 20 to 29, is higher in rural sections subjected
to spraying. This suggests that the eradication shock may indeed influence marriage patterns
among young women in these areas, shedding light on the societal consequences of eradication
efforts.

Lastly, we document that the temporary eradication shock results in longer-term house-
hold impoverishment. Rural areas subjected to aerial spraying have, on average, less access to
clean water, sanitation facilities, and waste disposal compared to unsprayed areas. Given the
substantial magnitude of these effects, it is unlikely that they stem solely from the one-time
income shock caused by the inability to sell eradicated crops in the eradication year. Instead,
these effects are likely linked to lower levels of human capital, which subsequently lead to
worse labor market outcomes for individuals, diminishing their lifetime earning potential.

This paper highlights the importance of assessing the downstream consequences on the

n rural areas, the most detailed geographic level available in the 2018 census is the rural section level.



civilian population during the formulation and execution of law enforcement policies. Partic-
ularly, when such policies have the potential to significantly affect the livelihoods of already
marginalized communities. Forced eradication programs should not only aim to mitigate
the adverse effects on communities engaged in coca cultivation but also provide sustainable
economic alternatives.

Our paper is related to several literatures. First, it speaks to research studying how law
enforcement policies impact human capital accumulation (Kalsi, 2018; Ang, 2021; Cameron
et al., 2021; Sviatschi, 2022). We study one of the longest and most expensive programs
targeted at reduce coca supply that ever took place. Our findings highlights how anti-
drug policy enforcement in producer countries can worsen human capital accumulation and
increase impoverishment of rural communities. This effect is not just restricted to the short-
run, but we find evidence of medium-term negative implications.

In particular our paper is related to previous research on forced eradication, using survey
data survey data, in Peru (Rodriguez, 2020) and Colombia (Dammert, 2008). They document
these potential negative implications on child labor markets, but do not find implications
for educational outcomes. The later being particularly important as it leads to long lasting
negative consequences of the eradication programs. We are able to reconcile those findings
having newly collected granular data on precise boundaries of eradicated areas and matching
this information to the entire universe of schools. Further, apart from long-lasting negative
educational and labour market outcomes we also document other negative seriocomic conse-
quences, in particular an entrenchment of more conservative gender-role. We document an
increase in (female) child marriages in areas that had been eradicated.

Second, our study relates to the literature on exposure to illegal markets and the subse-
quent implications for the labor market and educational prospects (Angrist & Kugler, 2008;
Ibanez, 2010; Sviatschi, 2022; Angulo, n.d.). The literature so far has highlighted how these
illegal markets increase child labor in rural areas and through this having negative implica-
tions for human capital accumulation as school attendance declines. However, our findings
highlight that destroying illegal markets are not a solution to this problem, as we show that
policies targeted at forcefully eradicating illegal agricultural activities simply contributed
to the downward spiral in human capital accumulation. The reason for this seems to be
that, at least in the case of coca eradication, the intervention reduces household incomes,
which are commonly invested into education, and consequently these policies hinder overall
development further and plausibly propagate the illegal market in the long-run.

The rest of this paper is structured as follows. Section 2 describes the institutional
background. Section 3 describes the main data sources. In Section 4, we present the empirical

strategy and results for the short-term analysis. Section 5 present the empirical strategy and



results for the medium-term analysis. Section 6 concludes.

2 Institutional background

This section describes the dual role of coca cultivation in Colombia’s rural regions, both as a
source of income and opportunities, and its association with armed groups. We outline the

functioning of forced eradication programs and the educational system in Colombia.

2.1 Coca and eradication programs

Coca has been part of the life of indigenous communities in the Andes for centuries (Thoumi,
2003). Yet, it is also the primary raw material used in the production of cocaine; and Colom-
bia stands as the largest producer of both coca and cocaine in the world (UNODC, 2023a). In
2021, coca cultivation in Colombia increased by 43%, producing a total of 204.000 hectares,
and the potential manufacture of cocaine increased by 14% compared to the previous year,
reaching both global records to the highest levels ever register (UNODC-SIMCI, 2022).

The cultivation of coca is a remarkably stable crop as coca plants exhibit rapid year-round
growth, allowing for frequent harvesting approximately every three months. In contrast,
many other crops have less frequent harvest cycles and significantly longer initial growth
periods. For example, a coca bush requires only six to seven months to yield its first har-
vest, whereas a coffee bush takes between 2 and 4 years to mature and produce its initial
fruits. This rapid growth cycle contributes to relatively high revenues with minimal initial
investment. The cultivation of coca is a remarkably stable crop as coca plants exhibit rapid
year-round growth, allowing for frequent harvesting approximately every three months. In
contrast, many other crops have less frequent harvest cycles and significantly longer initial
growth periods. For example, a coca bush requires only six to seven months to yield its first
harvest, whereas a coffee bush takes between 2 and 4 years to mature and produce its initial
fruits. This rapid growth cycle contributes to relatively high revenues with minimal initial
investment.

Furthermore, coca offers unique advantages within the Colombian agricultural landscape.
It is the only agricultural product that offers a market capable of guaranteeing minimum
prices and the sale of the entire harvest without incurring additional costs. Unlike legal
agricultural products, coca buyers directly acquire the harvest from households, sidestepping
the substantial transportation expenses (Crisis Group, 2021). This distinctive characteristic
makes coca cultivation financially viable and stable for small-scale farmers, making it an

appealing option for impoverished farmers who lack access to financial markets. In 2016, it



was estimated that approximately 215,000 families were engaged in coca cultivation (Crisis
Group, 2021).

However, while coca cultivation is easy to engage in for farmers, its illegality has negative
externalities due non-state armed groups being key to facilitating its trade. The presence
of these exacerbates violence and insecurity in rural areas. In response to this and due
to international pressure, the Colombian government has undertaken significant efforts to
reduce the cultivation of coca. Among the most important measures are aerial spraying of

glyphosate and forced manual eradication.

2.1.1 Aerial spraying of glyphosate:

Glyphosate (commonly marketed as RoundUp) is the herbicide used for eradicating illicit
crops in Colombia. When sprayed, this herbicide targets the leaves of the plants while leaving
the soil unaffected, making it possible to replant a coca bush in the same location following
eradication. The regrowth of coca is especially facilitated by glyphosate not impacting the
coca plant’s stem, allowing the affected plants to sprout new leaves as soon as six months
after (UNODC-SIMCI, 2004). While the intended target of glyphosate spraying is primary
coca leaves, it has also had affected other crops such as yuca, plantains, rice, and fruits
(Corte Constitucional de Colombia, 2017).

Colombia has employed aerial spraying of herbicides since 1994.2 The scale of this
was considerably expanded in 1999 as the Colombian and U.S. governments launched Plan
Colombia — the largest counter-narcotics intervention in a producer country with expendi-
tures for the program exceeding $10 billion. This decade-long program significantly expanded
eradication and fumigation efforts, reaching its peak in 2006 with more than 172,025 hectares
sprayed (see Figure 1). From 2000 to 2008, approximately 1.15 million hectares were erad-
icated through aerial spraying of glyphosate (O'Neil et al., 2022). Spraying continued after
2008, but on a lower scale. Aerial spraying was fully halted in October 2015 influenced
by the World Health Organization’s International Agency for Research on Cancer (IARC)
classification of glyphosate as “probably carcinogenic to humans” (Huezo, 2017).

Despite the massive efforts and resources allocated to this policy, there is only limited
evidence for it being successful in curbing coca supply. For instance, Bogliacino & Naranjo
(2012), who employ a system of equations where aerial spraying and cultivation are deter-
mined simultaneously, and Reyes (2014), using the distance to the nearest airport as an
instrument for spraying, find that aerial spraying actually increases land used for coca culti-
vation due to the reallocation of crops. Moya Rodriguez et al. (2005), employing matching

on observables to address selection bias, does not observe any significant impact on coca

2Its use against cannabis and poppy crops dates back to 1978 (Vargas Meza, 1999).



cultivation. In contrast, Rozo (2013) — using distance to protected areas that cannot be
sprayed and U.S. antinarcotics expenditures as instrument — find a significant negative effect
reduction in coca cultivation. Mejia et al. (2017), leveraging quasi-experimental variation
due to a diplomatic friction between the governments of Ecuador and Colombia, also docu-
ment a negative effect on coca cultivation, but conclude that these are too small to justify
the cost-effectiveness of aerial spraying as a policy.

The planning and execution of fumigation flights were complex, and influenced by two
factors: organizational and natural constraints. The aerial spraying operations had to be
planned by the Antinarcotics Police (DIRAN). The aircraft used included models such as the
OV-10 Bronco, Air Tractor AT-802, or Turbo Thrush, that were adapted to carry fumigation
equipment instead of weaponry (Reyes, 2014). This adaptions carried inherent risks due to
attempts by non-state groups to shoot down these planes. To mitigate this threat, aircrafts
were accompanied by armed helicopters (Huey 1T and UH-60 Black Hawk). In contrast to the
airplanes, these helicopters had a range of only 80 miles from the airport. These operational
limits to the geographic extent of eradication were further constrained by the fact that there
were only eleven airports from which these operations could take place (Reyes, 2014).

Secondly, while the primary criterion for selecting areas for eradication was the density of
coca crops — identified through satellite imagery and verification flights — there were several
additional constraints that influence the exact location of sprayed areas. For instance, specific
weather conditions had to align for spraying to occur. Wind speeds had to remain below 5
knots, and temperatures needed to be no higher than 35°C. Spraying operations were also
suspended if there was a high likelihood of rainfall or if clouds were too close to the surface
(Comité Técnico Interinstitucional Asesor del CNE (2003)). Lastly, the discretion of the
pilot also played a significant role in determining when and where to halt eradication efforts.
Pilots could choose to suspend spraying if they had doubts about the suitability of an area
or in response to an attack on the aircraft (U.S Department of State, 2002). We argue that
these constraints introduced a degree randomness in the demarcation of eradication areas
that we will exploit later on.

Today, given the unprecedented surge in coca cultivation and mounting pressure from
the U.S. administrations, aerial spraying has taken again a center stage in the ongoing
debate surrounding strategies to counteract drug supply.® In 2021, former President Ivan
Duque issued a decree regulating the possible return of aerial spraying of illicit crops with

glyphosate. However, the Colombian Constitutional Court has prevented attempts to resume

3Particularly during the Trump administration, which repeatedly pressed the Colombian government
to reinstate aerial fumigation and even threatened to blacklist the country for its perceived inaction in
addressing the global drug trade (CBS, 2017).



aerial spraying (El Espectador, 2022).

2.1.2 Manual eradication:

The Eradication Mobile Groups (GME) strategy was established in 2004 as a complementary
approach to the aerial spraying program.* These groups are comprised of around 30 members,
most of them are farmers®, often from different regions than where they operated. Their
primary task involved venturing into the fields to uproot coca plants. These eradication
teams typically spent 30 to a maximum of 45 days at a site, with protection provided by the
police or army.

While this program boasted several advantages, such as relatively low implementation
costs and minimal negative environmental and agricultural impacts — ensuring food security
for local residents (Caballero Farfan, 2019) — it entailed higher risks than aerial spraying.
Eradicators frequently fell victim to illegal armed groups, and clashes between these groups
and the army and police heightened local violence.

Unlike the aerial spraying program, manual eradication fell under the Presidential Agency
for Social Action, specifically managed by the Presidential Program Against Illicit Crops
(PCI, in its Spanish acronym). Nevertheless, DIRAN continued to play a crucial role in
planning and ensuring the safety of eradicators (Caballero Farfan, 2019).

2.2 Education system in Colombia

The Colombian education system is divided into five levels: pre-school (under six years
old), primary (6 to 10 years old), middle school (10 to 14 years old), high school (15 to 16
years old), and tertiary education. Compulsory education, as mandated by Colombian law,
encompasses ten years of study, starting at the age of 5 and concluding at 15. However,
despite this theoretical minimum age when leaving school, in practice many students exit
school much earlier.

The educational landscape in Colombia is characterized by significant disparities between
rural and urban areas. While urban areas boasted an average of 9.3 years of schooling, their
rural counterparts lagged behind with an average of just 6 years (both average below the
minimum years of schooling). Ensuring access to education and retaining students in the

education system, especially in rural areas, continue to be significant challenges in Colombia.

4Manual eradication of coca crops had been employed even prior to the 2000s to a very limited extent.
5 At first, demobilized people were also included in the GME strategy, but due to some problems they
stopped being used in the eradication programs (Caballero Farfan, 2019)



6 were approximately 50% in pre-school, 82%

In 2015, the net enrollment rates in rural areas,
in primary school, 65% in middle school, and a mere 35% in high school (MEN, 2018). These
discrepancies in educational access and attainment shed light on the persistent hurdles faced
by rural students, who are disproportionately impacted by factors such as poverty, armed
conflict, and limited access to essential public services.

In this context, some have argued that coca cultivation has to some extent improved
opportunities for social mobility, access to education, and access to healthcare for impov-
erished farming households (Crisis Group, 2021). A survey conducted among 412 coca-
growing households in southern Colombia, shows that 52% of the people interviewed con-
sidered education as their top investment priority, second only to investments in land (19%)
(Gutiérrez Sanin, 2019). While this underscore some positive aspects of coca cultivation,
it is important to note that coca cultivation has also boosted violence and conflict in these

rural areas.

3 Data

This section describes our primary data sources and supplemental datasets utilized for ex-
ploring potential mechanisms and testing key identifying assumptions. Further information
regarding the data can be found in Appendix A.1. Tables A.1 and A.2 present the summary

statistics for the main variables.

Eradication Areas: Since 2004, the UNODC Global Illicit Crop Monitoring Programme
(SIMCI, by its Spanish acronym), in collaboration with the Colombian Government, has
conducted the Colombian Coca Cultivation Survey. These encompass a wide range of data,
including information on regions engaged in illicit crop cultivation, estimations of the illicit
drug market, and detailed maps outlining the areas subject to eradication (see Figure A.1).
Aerial spraying maps are produced by UNODC with information provided directly by DI-
RANT, the institution responsible for the aerial spraying program. Manual eradication maps
are produced with information from the PCI.

We have meticulously digitized and georeferenced these maps for all available years.
Accordingly, our data covers the yearly-geographic extent of aerial spraying 2004-2015 and
manual eradication 2006-2015. This has yielded fine-grained data on Colombia’s regions

that underwent eradication. Figure A.2 illustrates the digitized maps of aerial spraying from

5The net enrollment rate measures the percentage between the students enrolled in the corresponding
level who are of the expected age for that level and the population of the theoretical age to attend that level.

"Geospatial information of the areas sprayed was done through a GPS located in the airplanes. This
GPS system records the location when valves are open (Mejia et al., 2017)



2004 until 2015.
Our data collection has identified 1293 individual areas (polygons) that were sprayed
with an average size of 777km?. 767 polygons were manually eradicated with the average

size being 483km?.

School census: The annual school census is collected by the Statistics Bureau (DANE)
and the Ministry of Education. This dataset is publicly available in DANE’s web page. It
contains school-level information such as enrollment, dropout, failure, and records of stu-
dent transfers to other educational institutions®. These measures provide the main outcome
variables of interest for our analysis. We link this data to eradication via information for the
exact location of schools provided by DANE.

Figure 2 provides an example showing the extent of eradication that occurred in 2006
and school locations. In the average year, we observe 900 schools situated within sprayed
areas. For comparison, on average 1175 schools are located just outside the sprayed areas
(within a radius of 5 Km). We restrict our analysis to schools with enrollment exceeding 20
students. Outcomes for schools below this threshold are sensitive to random behaviour of
individual students, i.e. observed outcomes are subject to considerable measurement error
from year to year. We exclude these schools which account for less than 1% of the total

student population from our baseline analysis.
Additional data sources:

- Geographic characteristics: To assess balance across geographic characteristics, such
as elevation and slope, we rely on data from the United States Geological Survey (USGS),
specifically utilizing the Shuttle Radar Topography Mission (SRTM) at a resolution of 1

arc-second (i.e., approximately 30 meters).

- Coca Clltivation Density: This data is derived from two sources: satellite images
collected and processed by UNODC-SIMCI, and verification flights with GPS-equipped air-
planes (UNODC-SIMCI, 2006). We use coca cultivation density to evaluate whether schools

inside and outside eradicated areas exhibit similar levels of coca.

- Nighttime light density:To investigate potential mechanisms, we employ nighttime light
density as a proxy for economic activity. This dataset is provided by the Defense Meteoro-
logical Satellite Program-Operational Linescan System (DMSP-OLS), spanning from 2004 to

2013. We calculate the average luminosity within different radii around each school location.

8Note that due to the absence of individual-level data, we cannot determine whether students return to
studies after dropping out or identify the specific institutions to which they were transferred.

10



- Landmines: The data on anti-personnel landmines is sourced from the Information
Management System for Mine Action (IMSMA) within the Geneva International Centre
for Humanitarian Demining (GICHD). This dataset contains precise details regarding the
coordinates of events’ related to landmines. For our analysis spanning the years 2004 to
2015, we employ the average count of all events related to landmines in the vicinity of

schools providing a proxy for the presence of conflict.

- Population and household census 2018: To analyze longer-term outcomes, we utilized
the 2018 census data, which provide socioeconomic characteristics (e.g., dwelling conditions,
education, labor force participation, etc.) for all Colombian households. Although we don’t
have the exact location of the households, we are able to locate them at the rural section
level, which is a statistical division in rural areas, with an average size of approximately 20

square kilometers.

- Data at the municipality level: We got data from the Municipality Panel Dataset from
CEDE, Universidad de los Andes (Acevedo & Bornacelly, 2014).

4 Short-term effects of aerial spraying

In this section, we examine the short-term impact of aerial spraying on educational out-
comes. We find that schools located just inside the sprayed area exhibit, on average, poorer
educational outcomes compared to schools located just outside of those areas. This effect is
robust to different specifications, i,e., excluding observations near the cutoff, narrowing the
treatment definition, introducing geographic controls, and applying different sample splits.
We rule out migration, health, and conflict as drivers of this negative impact on educa-
tion. Instead, we provide evidence that the decrease in household income is the primary

mechanism behind this effect.

4.1 Empirical strategy

To estimate the causal effects of forced coca eradication on educational outcomes we use a
regression discontinuity (RD) design, where we compare schools located just inside an area

sprayed to schools located just outside them. We employ the following specification:

vir = BErad;y + f(location;y) + X; + M + €4 fori € bw (1)

9These events include: explosions, stored arsenal, demining, seizures, unexploded ordnance, fabric of
landmines and suspicion of presence of landmines.
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where y; ; is our outcome of interest for school ¢ in year ¢: dropout and failure rates. Erad,; is
dummy variable equal to one if the school is inside a sprayed area, and equal to zero otherwise.
X; is a school level vector of covariates (e.g. slope, elevation, eradication controls). A; denotes
year fixed effects.’® f(location;,) is an RD polynomial, which controls for smooth functions
of location of school . We use a linear polynomial of distance of school to the closest border
of a sprayed area (see Gelman & Imbens, 2019; Cattaneo et al., 2019). Following Cattaneo
et al. (2019), we compute the optimal bandwidth using the MSE-minimizing procedure and
we use a triangular weighting kernel. ¢;, is the error term with standard errors clustered at
the school level, i.e., the treatment level.

Our coefficient of interest is 5, which shows the effect of being just inside of an eradica-
tion area on educational outcomes. Importantly, we rely on the exogeneity of the sprayed
area borders to interpret the effect as causal. As detailed in Section 2.1.1, the demarca-
tion of sprayed areas is contingent on several criteria and conditions, including factors such
as weather, distance to airports, time constraints, and idiosyncratic decisions of the pi-
lots. Thus, it is unlikely that the areas that ended up just within the eradication border —
along with the schools located within them — differ structurally from neighboring areas just
outside. However, this reliance hinges on two identifying assumptions. First, schools had
similar characteristics before the eradication took place. This assumption ensures that, in
the absence of aerial eradication, non-sprayed schools serve as an appropriate counterfactual
for those situated just inside the sprayed area. Second, there was not selective migration
across the RD boundaries before treatment occurred, i.e., students from sprayed schools did
not selectively out-migrate to non-sprayed areas due to them being able to anticipate aerial
spraying occurring in the future.

To assess the first assumption, we estimate specification (1) for several pre-existing char-
acteristics surrounding schools (elevation, slope, nighttime light density, and landmines) and
coca-related characteristics in the preceding year of eradication (square kilometers of coca
crops and eradication in previous years). We present the results using both an optimal
bandwidth and a fixed bandwidth of approximately 6 kilometers — the optimal bandwidth
for our primary outcome. Table 1 Panel A displays the results.

Overall, we observe that a number of relevant characteristics of both non-sprayed and
sprayed schools do not exhibit discontinuous changes at the boundaries of sprayed areas.
We find no statistical differences in pre-existing socioeconomic development around schools
— proxied by nighttime light density (see Chen & Nordhaus, 2011; Henderson et al., 2012).

Neither do we find differences in the occurrence of landmine events before the eradication

OFor recent work using time-varying RD settings see Cellini et al. (2010); Grembi et al. (2016); Hsu &
Shen (2021); Méndez & Van Patten (2022); Cattaneo & Titiunik (2022)
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programs started — which serve as a proxy for conflict and presence of illegal armed groups.
Importantly, we find no differences in the number of square kilometers of coca surrounding
schools in the year preceding eradication. The probability of having been in an area subjected
to manual eradication at time ¢ or ¢-1 is also not statistically different between treated
and untreated schools. On average, schools are situated at the same slope. This provides
empirical evidence supporting that the exact border of eradication was indeed exogenously
defined by a multitude of idiosyncratic factors as discussed in Section 2.1.1.

We document only one statistically significant geographic difference between treated and
non-treated schools, which is that the former are located at lower elevation. However, this
difference is not big when considering that coca is cultivated in places between between 3,300
and 6,600 feet above the sea (1,000 to 2,000 meters above the sea) (U.S Department of State,
1991)). Then, we include altitude in our baseline controls to rule out that our results are
driven by this difference rather than eradication. Further, we observe that the probability of
having been treated at t-1 is marginally associated with treatment at time ¢ in a subset of
balance checks. Out of caution we also include this variable in our baseline controls. Indeed
it is interesting here that our evidence suggests that areas were neither targeted more or less
based on previous spraying efforts (notably this is the case even without controlling for coca
cultivation here). This seems to support that many idiosyncratic factors played a key role
in defining the exact extent of the spraying efforts from year to year.

We continue our balance check by looking at pre-eradication educational characteristics.
Unfortunately, school census data does not extend to pre-2004 — so that we are unable to
observe education outcomes at the school-level before treatment started. We instead provide
evidence for this using municipality-level from (Acevedo & Bornacelly, 2014). This data
provides municipality characteristics from the 1993 census and administrative records from
1996. In this exercise, we maintain the school as our unit of observation, but we base
our analysis on the outcomes associated with their respective municipalities. Similarly, we
present evidence on the land suitability differences for three agricultural products commonly
cultivated in those areas: oil palm, plantain, and coffee!’ (MJD & UNODC, 2012). This
data comes from the Global Agro-Ecological Zones (GAEZ). Table 1, Panel B, displays the
results.

We document no statistically significant differences in any of the pre-existing educational
outcomes, including school-age population, population in primary and secondary education,
years of schooling, illiteracy rate, and the number of teachers and students. Moreover, we do
not observe disparities in land suitability for the three main agricultural products. We also

conducted the balance check using the municipality as the observation unit and considering

1 Please refer to subsection A.1.6 of the appendix for a detailed explanation of the suitability variables
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the distance from its centroid to the spraying border. We obtained consistent results (see
Table A.3).

Lastly, even as it seems unlikely that students can anticipate eradication considering the
complexity of eradication flights, we provide supportive evidence for this second assumption
(no selection into treatment) using transfer rates across schools. Accordingly, we estimate
specification (1) studying the relationship between eradication (¢) and transfer rates in the
year preceding eradication (¢-1). Reassuringly, Table 2 confirms that there is no statistically
significant difference in past transfer rates between areas exposed to eradication and those
that are not. This is the case when using baseline controls (in columns (1) and (2)), extended
controls (in columns (3) and (4)), and different bandwidths.

4.2 Results

Before presenting the primary findings on education, we aim to examine whether aerial
spraying achieves its core objective: the reduction of coca cultivation. Table 3 compares
the coca presence around schools at t+1 for both sprayed and non-sprayed schools at t.
No statistically significant differences were observed, even when employing controls. This
may be attributed to families choosing to retain their affected but recoverable coca plants
or opting to cultivate new ones. However, the absence of significant differences does not
negate the possibility of a negative income shock, a point we elaborate on in Section 4.7,
while concurrently presenting the education-related results.

Table 4 presents the results of aerial spraying on human capital accumulation — dropout
rate — and academic performance — failure rate.

Column (1) presents the effect of aerial eradication on the dropout rate controlling only for
year fixed effects. We find that schools located within sprayed areas exhibit a 0.6 percentage
point higher dropout rates compared to schools situated just outside these areas. We observe
similar effects after accounting for our baseline controls (elevation and having been sprayed
at t-1) in column (2). The magnitude of the estimate slightly increases to a one percentage
point higher dropout rates. This translates to an 11.4% increase in dropout rates compared
to non-treated schools as the mean dropout rate for non treated schools is 9.4 percentage
points. For academic performance, in column (3), we observe a 0.4 percentage point increase
in school failure rates within the aerial spraying polygons. Again the effect is slightly higher
after including the baseline controls in column (4) suggesting a 0.6 percentage points increase
in school failures. This suggests an 8.5% increase in the likelihood of students repeating a
year compared to the non-sprayed schools average of 7.2 percentage point. Figure 3 illustrates

the RD plot for our baseline results.
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We do not find evidence of a persistent effect of aerial eradication on educational outcomes
in the year following exposure to spraying, as shown in Table 5. This suggests a relatively
short-term impact of this policy. However, it is important to note that even short-term effects
can have significant long-term implications, especially in the context of dropout rates,when
students temporarily leave school, they are at a high risk of permanently exiting the education

system.

4.3 Robustness checks

Sensitivity to observations near the cutoff — We start our robustness analysis
estimating results using the “donut hole” approach. We use specification (1) excluding
observations around 100, 200, 300 400 and 500 mts from the RD cutoff. Table 6 presents the
results. On average, we observe results consistent with our baseline findings, both in terms
of magnitude and statistical significance. This analysis serves two key purposes: i) it allows
us to show that our results are robust to potential inaccuracies in pinpointing the exact
location of the aerial spraying borders. For example, an area might have been intended
to be sprayed by an airplane but the herbicide actually eradicated crops further afield in
closely neighbouring locations due to the herbicide being spread slightly more or less than
anticipated by wind and other weather conditions. However, it seems unlikely here that this
would affect areas more than 1km away from the intended target. ii) we can assess that
there are not potential non-compliers near the cutoff driving the results. As we lack precise
information regarding the locations of students’ households, we rely on the assumption that
school locations approximate the areas where households are situated. Again we can rule
this out with our up to 500 mts donut approach as calculations using census data suggest
that rural sections — plausibly the max extent of student’s commute to school — are located
no further than 1.3km away from the nearest school'? and the average rural section has 4

schools.

Refining treatment and control group— We investigate the second point further
making sure that results do reflect exposure to eradication by comparing treated schools for
which 80% of the surrounding area within a 1 km radius was eradicated with non treated
schools that were not sprayed within a 1 km radius. Table 7 presents the results which are

similar to our baseline results.

Geographic controls — A potential concern is that the findings presented in Table 4
may be driven by spatial differences across eradication polygons or unobserved character-

istics that vary over time and geographical areas. To address this concern, in Table 8 we

12This is the average distance between the rural section centroid to the nearest school
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present the results of specification 1 including municipality fixed effects and the interaction
of municipality and year fixed effects for both dropout and failure rate (see columns (1) and
(3)). The results of this exercise demonstrate that, even with the inclusion of these large
battery of fixed effects, the estimates remain similar to the baseline results. In columns (2)
and (4) we performed a similar analysis using a larger geographic unit, i.e., departments,

and once again, the results remained largely consistent with those of Table 4.

Quadratic polynomial and additional controls — In Table 9, we show that our
results for dropout and failure rate are robust to using local quadratic polynomials, as
shown in columns (1) and (3), respectively. In columns (2) and (4), we add extended control
variables: slope, a binary indicator for whether the school was located within a manual
eradication area, and the number of hectares of coca within a 1 km buffer in the preceding

year. The results remain very similar to the ones presented in Table 4.

Sample restrictions — As outlined in section 3, we initially restricted our sample to
schools with more than 20 students (representing > 99% of students). To provide evidence
that our results hold even when varying enrollment of the sample, we use specification (1)
for schools with enrollments ranging from 10 to 30 students. Figures 6 shows the results.
Importantly, we show that the coefficients across these different specifications remains posi-

tive and significant throughout for dropout rates (sub-figure a) and failure rates (sub-figure
b).

Two-way Fixed Effects — Finally, we use a simple two-way fixed-effects model where
we consider all schools in rural municipalities with coca crops at any point between 1994
and 2015, rather than solely those schools in proximity to the border.!® In this analysis, we
include school and year fixed effects, effectively controlling for unobservable time-invariant
school-specific factors and time-varying differences across years. In Table 10, columns (1)
and (3), we use a binary variable of school i being within sprayed area in year ¢. Our findings
confirm a significant increase in dropout and failure rates, respectively, due to schools being
within the sprayed area. In columns (2) and (4), we use the continuous treatment variable,
i.e., the percentage of eradicated area within a 5 km radius of the school. We again observe

an increase in dropout and failure rate, respectively.

13We estimate the following equation:

Yit = o+ fEradication treatment; ; + v + At + €i (2)
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4.4 Heterogeneity along education levels and gender

Education Levels — We investigate how the effects of aerial eradication differ along
children’ educational level. This analysis will not only highlight the most affected group
but also sheds light on some of the underlying mechanisms driving these effects. Table 11
presents the results.

First, column (1) presents a significant and positive impact of aerial spraying on pre-
school dropout rates, representing an increase of approximately 12% of the dropout rates
when compared to the schools in the control group. This effect provides insights into how
families adapt to such shocks without further implications in the child labor market — as the
youngest children are typically not able to work. In this case, we document how families
might simply opt to stop investing in the education of very young children or alternatively
might no longer require these care services and lock after the child themselves. This should
be solely a means to offset the income shock and maintain consumption levels (e.g. reducing
time and monetary costs for transport to school and school meals), while children at this
age are unlikely to be providing any additional labor.

Second, when child labor is a factor, we expect the largest impact at the primary school
level. Indeed, we find a sizable effect on the dropout rates of children in primary education,
with a 9% increase compared to schools located just outside the sprayed areas (column (2)).
Primary represents a particularly vulnerable point in the education system, as it is common
for children in rural areas to dropout right after, often because they transition into the labor
market or assist with household chores. Children aged 6 to 12 are already integral to the
labor force in coca-producing regions, engaging in various forms of work, including direct
involvement in coca fields (e.g., picking coca leaves) and other agricultural activities (MJD &
UNODC, 2012) Lastly, in column (3) we study the effect on secondary education. We have
aggregated the educational outcomes of secondary and high school. While older students are
plausibly also an important source of labor in rural households, we do not see any effect. A
plausible reason for this is that rural areas generally have few secondary schools and lower
enrollment rates in the first place. Accordingly, we might simply not be able to measure any
effect as households relying on coca crops do not send their kids to that level of schooling.

Regarding school performance, we find that our results are entirely driven by students at
the primary level. Specifically, being within a sprayed area leads to an increase in the failure

rate of approximately 8% when compared to schools located just outside these areas.

Gender — In rural areas, traditional role models are still prevalent with boys and girls
assuming different roles and responsibilities within households and communities. These

roles are often shaped by cultural norms, socioeconomic factors, and traditional gender
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biases. For instance, girls are frequently tasked with domestic and caregiving duties such
as cleaning chores, cooking, and childcare. In contrast, boys typically play a more active
role in agricultural labor, as it is more physically demanding, such as farming and livestock
care (Aspiazu & Labrunée, 2021). These deeply ingrained cultural norms can influence
how families prioritize education and allocate their children’s time in response to shocks
(Lgken (2010) and Dessy et al. (2023)). Thus, in Table 12, we study whether the eradication
shock affects girls’ and boys’ educational outcomes differently. We do not observe gender
differences in the effect of aerial eradication for dropout rates and academic performance.
Aerial spraying negatively affects boys’ and girls’ educational outcomes equally. This again
points towards child labor being not a key way of shaping the response — neither in the form
of increasing or decreasing labor demand for boys in agriculture differently from the effect
the shock had on girls.

4.5 Mechanisms

4.6 Selective migration

In section 4.1, we showed that students did not anticipate treatment and beforehand trans-
ferred to schools outside the sprayed areas. However, outmigration and school transfers
might be a consequence of eradication and one type of coping mechanism. For instance,
wealthier families might be able to out migrate from sprayed zones once they were treated as
a coping mechanism. Alternatively, high transfers out of schools might reflect the movement
of academically successful students to better schools or the movement of families from rural
to urban areas.

We study the effect on transfer rates in Table 13. We observe that transfer rates decrease
in the treated schools. First, this rules out that migration is used as a coping strategy
to escape the negative consequences of aerial spraying. Second, this can be interpreted as
further evidence of the negative effect of aerial spraying on students that are less likely to
transfer out of schools in impoverished rural areas to better establishments than students
from non-sprayed areas. This actually seems consistent with and a consequence of the income

effects we document as the main mechanism. Sub-figure 7a presents the RD plot.

4.7 Income effect

Previous results have already suggested that one important way coca spraying negatively
impacted educational outcomes is via the negative effect on farmers income. Plausibly,

aerial spraying represents a substantial shock to the income of the thousands of families
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who rely on coca as their primary agricultural product. Small-scale coca farmers — while
seeing only a fraction of the profits the illicit market for cocaine generates — do rely on
selling their coca production to meet their basic needs (UNODC-SIMCI, 2006). And while
criminal organisation are unlikely to be financially hit by eradication as demand for cocaine
is inelastic and prices rise when supply is restricted, crop eradication does lead to small scale
farmers losing their income as they no longer have anything to sell.

From a theoretical perspective the income shock can have positive and negative implica-
tions for education as either the income or substitution effects could dominate. On one hand,
the income effect predicts that schooling will decrease following a negative income shock as
families respond by withdrawing their children from school, either to alleviate the financial
burden of education or to send children to work, to maintain their minimum consumption if
credit constrained (see e.g., Beegle et al., 2006; Dammert, 2008; Cogneau & Jedwab, 2012).
On the other hand, the substitution effect suggests a potential increase in schooling. If labor
income derived from coca cultivation declines due to aerial spraying (e.g., by reducing work
demanded for harvesting the leaves) the opportunity cost of attending school might also de-
crease if child labor is an important factor in coca production. This may result in an upturn
in human capital accumulation as families opt for increased schooling rather than sending
children to participate in labor activities (see e.g., Duryea & Arends-Kuenning, 2003; Shah
& Steinberg, 2017). Considering the negative educational effects we focus on the former
income shock effect, still this effect might be through the decline on spending for education
or the need for increasing child labor to compensate the lower income.

In the heterogeneity analysis, we documented that families respond to the eradication
shock by reducing education expenses — withdrawing their pre-school children— while also
potentially increasing labor force participation in the household — withdrawing children of
working age— to compensate for the income loss resulting from the eradication. To further
confirm the income effect as mechanism we aim to demonstrate that the exposure to aerial
spraying indeed exerts a significant negative impact on household incomes and economic
activity. To do so, we rely on nighttime light density as a proxy for economic activity, which
has been shown to be a useful measure in cases where subnational income data may be
limited or unavailable (Chen & Nordhaus, 2011). We employ specification (1) to examine
the luminosity within 1 km, 3 km, and 5 km radii around schools. As presented in Table 14,
the results show a significant reduction in nighttime light density in areas located just inside
the eradication zone. This effect remains consistent across the different radii. These findings
suggest that the income shock is indeed one of the contributing factors to the decrease on

human capital accumulation and academic performance. Sub-figure 7b presents the RD plot.
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4.8 Health shock

Good health is a key determinant of education (Miguel & Kremer, 2004; Sorensen et al.,
2019). Recent evidence points to the adverse effects of herbicides, especially glyphosate,
on health outcomes. For instance, the International Agency for Research on Cancer has
identified evidence linking glyphosate usage to an increased risk of cancer (IARC, 2017).
Camacho & Mejia (2017) show a positive relation between aerial spraying of glyphosate and
medical consultations with dermatological and respiratory diagnoses. Dias et al. (2023) find
that the use of glyphosate in agriculture in Brazil has a negative impact on birth outcomes.

To assess whether health acts as an additional mechanism in the relationship between
exposure to aerial spraying of glyphosate and adverse educational outcomes, we utilize man-
ual eradication which has only a negative income effect for farmers but does not impact
health. Therefore, if the coefficient for manual eradication closely mirrors the one for aerial
eradication, it would suggest that health plays a minor role in the effects we have identified
— at least in the short term for school age students. Conversely, if we observe a significantly
larger coefficient for aerial eradication, it would point to a substantial role of health on the
increase in dropout and poor academic performance.

In this analysis, we also employ a Regression Discontinuity (RD) design, comparing
schools situated just inside areas subject to manual eradication with those just outside these
areas. Table A .4 shows that geographic and economic characteristics on the border are not
balanced. This makes it difficult to claim the randomness of the border. However, we did not
come across any evidence that would suggest that manual eradication was targeted at areas
based on their educational performance nor do we see significant differences in educational
outcomes before eradication in 1993/1996 across the discontinuity.

Table 15 shows that manual eradication had a similar negative effect on dropout and
failure rates as the one we observe for aerial spraying. This is the case even after including
an extensive list of additional controls (pre-eradication socioeconomic conditions, eradication
controls, and geographic characteristics). Sub-figures 7c and 7d present the RD plot of the
results. These results suggest that health does not appear to be an important mechanism
that can explain the negative effect on educational outcomes caused by aerial spraying.
Instead, it further bolsters the evidence indicating that the income shock following forced
eradication is the primary driver behind the increase in dropout and failure rates if coca

plants get eradicated, at least in the short run.
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4.9 Conflict exposure

As mentioned before, coca cultivation is deeply entwined with illegal armed groups. One of
their strategies to protect coca crops involves the deployment of landmines (Crisis Group,
2021). While this tactic may be more prevalent in areas subjected to manual eradication,
there is a concern that, even after experiencing aerial eradication, illegal armed groups might
escalate the use of landmines to deter further military interventions in the regions. This poses
a direct threat to the civilian population and can hinders human capital accumulation. It
may result in children avoiding school due to the fear of falling victims of landmines, or they
may become direct victims themselves. However, while eradication efforts might increase this
type of conflict in general, it is not necessarily clear why eradicated areas would be mined
more than coca producing areas that have not yet been eradicated (rather the opposite might
be the case).

We assess whether aerial spraying is associated with an change in incidences of landmine
events in Table 16. Utilizing geolocated data on landmines, we calculate the occurrences of
landmine events within 1km, 3km, and 5km of the schools. We find that aerial spraying is
associated with a decrease in these. This effect remains regardless the radius. Sub-figure 7e
presents the RD plot. Thus, it does not appear to be the case that increased conflict due to

eradication is what drives the increase of dropout and failure rates that we document.

5 Lifetime effects of aerial spraying

Having to drop out of or bad performance in school plausibly shapes individual outcomes
throughout their whole life. In this section, we delve into whether the “short-term” educa-
tional effects have lasting implications for education, socioeconomic conditions, and house-

hold dynamics in areas that have once been eradicated.

5.1 Empirical strategy

To assess the causal effects of aerial spraying on longer-term outcomes, we aggregate all the
spraying areas spanning from 2004 to 2015 — mapping the most extensive geographic extent
of aerial spraying. We combine this with geocoded data from the 2018 census — conducted
three years after the complete prohibition of aerial spraying.

We will compare rural sections that were fully within the area that has ever been sprayed
(in the period 2004-2015) to those located just on the opposite site of this boundary and

have never been sprayed (see figure 8). We employ the following specification:
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y. = fErad, + f(location,) + €, forr € bw (3)

where ¥, is our outcome of interest for rural section . Our outcomes of interest are schooling,

dwelling conditions, child labor market, health and early marriage '4

. Erad, is a dummy
variable equal to one if the centroid of the rural section r is inside a sprayed area, and equal
to zero otherwise. f(location,) is an RD polynomial, which controls for smooth functions
of location for rural section 7. We use a linear polynomial in distance of the centroid of the
rural sections to the closest part of the border of a sprayed area. Following Cattaneo et al.
(2019), we compute the optimal bandwidth using the MSE-minimizing procedure and we
use a triangular weighting kernel. Standard errors are clustered at the rural section level,
i.e., the treatment level.

Consistent with the yearly-changing extent of eradication the maximum extent of eradi-
cation appears as good as randomly assigned. We only find a discontinuity in the elevation,

for which we control for in all the regressions.

5.2 Medium term results

Migration — For the interpretation of our results it is important that the composition
of the population developed in the same way in treated and non-treated areas. Table 18
studies how aerial eradication influenced migration across rural sections. We observe that
the inflow of migrants in the year prior to the census, as well as over the previous five years,
is not significantly different between sprayed and non-sprayed rural sections. We do find
that the proportion of individuals who have never left the municipality of their birth is
notably higher in areas that were subjected to aerial spraying. This result aligns with the
short-term findings and indicates the lower out-migration rate of individuals in sprayed areas
while eradication occurred. Still considering that there is no evidence for differential migra-
tion between treated and non-treated areas over as much as the last 5 years is reassuring in

that our results should reflect the effect on the population that was treated by aerial spraying.

Acerial Eradication reduces longer-term human capital — We examine whether the
short-term adverse effects on education have lasting implications for human capital. Specif-
ically, we estimate specification (3) for the proportion of individuals 25 to 29 years old, a
group that has completed their education when we measure these outcomes in 2018, but has
been affected by aerial spraying during their youth. The results in Table 19 indicate a last-

ing negative effect on human capital accumulation in areas subjected to aerial spraying. On

14Gee A.1.2 for a further information about the variables used in this section.
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average, sprayed areas exhibit a 12pp decrease in the proportion of individuals with primary

education, and a 10pp decrease for secondary education.

Child labor market effects — In section 4.4, we documented lower educational out-
comes among working-age children, which plausibly lead to children entering the labor mar-
ket. With the census data, we evaluate whether children in rural sections where eradication
occurred were indeed more likely to have a job or do household chores'®, compared to neigh-
boring areas. The results are presented in Table 20. In Column (1), we observe that the
share of children between 10 and 19 years old with a job in sprayed rural sections is ap-
proximately 0.5 percentage points higher than those in non-sprayed areas. This result is
primarily driven by boys, as indicated in Column (2). Interestingly, and in line with the
short-term results, this does not imply that girls are unaffected. In contrast, in Column
(6), we observe that girls are predominantly staying at home performing household chores.

This effect is of approximately 27% in magnitude compared to the mean in non-sprayed areas.

Early marriage — In Colombia, the age of majority is 18. However, it is legal that girls
between 14 and 17 years old get married, only if they had the approval of their parents.
UNICEF (2022) has found that even if it is illegal, around 1.8% of girls between 10 to 14
years old was married or in a civil union in 2018. In our sample, we have found that around
5% of girls 10 to 14 years old were not single.

A growing body of literature has highlighted early marriage as a coping mechanism for
impoverished households when they face income shocks (see Hoogeveen et al., 2011; Baird
et al., 2011; Corno et al., 2020; Chort et al., 2022). However, limited research has explored
whether this coping mechanism exists even in contexts without dowries (bride prices), as is
the case in Colombia and Latin America more broadly. We investigate whether the erad-
ication shock affects marriage rates among young women. We estimate specification 3 on
the share of single'® women within age cohorts. The results are presented in Table 21. On
average, we observe a higher (though weakly significant) share of married women in rural
sections that were subjected to aerial eradication. Although the percentage of married girls

within the 10 to 14 age cohort (below the age of majority in Colombial?) is relatively low,

15The definition we used for having a job includes: 1) the individual worked at least 1 hour last week,
and got a payment; 2) the individual worked or helped in a business at least one hour last week without
payment; and 3) the individual didn’t work last week but has a job or business, and receives a payment.

The definition we used for doing chores at home is whether the individual said that he/she did chores at
home during last week. These two definitions are done using the 2018 census.

16 Acording to the 2018 census, the individual is single if he/she is not in a civil union, married, divorced
or widowed.

17Colombia is the only Latin American country that allows marriage from 14 years old (Semana (2022).
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our findings indicate that being inside a spraying area decreases the share of unmarried girls
by 6pp compared to non-sprayed areas. We also find that marriage rates are generally higher
for women aged 20 to 29 in sprayed areas compared to non-sprayed areas. This suggests
that the eradication shock may indeed influence marriage patterns among young women in

these regions, shedding light on the societal consequences of eradication efforts.

The income shock is persistent — Next, we investigate whether the temporary erad-
ication shock results in longer-term household impoverishment. We employ specification (3)
to analyze dwelling conditions three years after the end of the aerial spraying program. The
results are presented in Table 22. We observe that households in rural sections subjected to
aerial spraying have, on average, less access to drinkable water, sewage facilities, and garbage
collection'® compared to those that were not sprayed. This suggests that the income shock
induced by eradication has a lasting impact on household living conditions. However, con-
sidering the large magnitude of these effects this plausibly is not due to the one time income
shock due to being unable to sell the eradicated crops in the year of eradication, but plausibly
due to the lower levels of human capital, and subsequently worse labour market outcomes

of individuals reducing their life-time earning prospects.

Health in the medium term — Finally, some health issues related to glyphosate ex-
posure may not exhibit immediate symptoms; rather, they may develop gradually over time
due to prolonged exposure. Conditions such as cancer or respiratory problems, which can
be linked to glyphosate exposure, often have a latency period, i.e., that it may take several
years for symptoms to become noticeable. To examine the impact of glyphosate exposure
on health in the medium-term, we use self-reported data on health!? and disabilities®* from
the census. The results are presented in Table 23. Our analysis does not reveal a significant
effect of aerial spraying exposure on the likelihood of falling ill before the census interview or
having disabilities. It is important to note that one limitation of this approach is the lack of

detailed information about the specific illnesses or disabilities experienced by the individuals.

18We measure the share of households that have each of these services: electricity, drinkable water, sewage
and garbage collection. Having access to these services depends on the capacity of the state to provide them,
but also on whether the households are able and willing to pay for them.

19We measure the percentage of people who had any health issue during the last 30 days and they didn’t
require hospitalization.

20Ghare of people who reported having a disability. We are not able to discern the type of disability
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6 Conclusion

This paper presents evidence that exposure to aerial spraying of glyphosate diminishes hu-
man capital accumulation and educational performance in the short term, ultimately con-
tributing to worsened socioeconomic outcomes for households in the medium term. These
outcomes include lower schooling rates, increased child labor, early marriages, and deterio-
rated dwelling conditions. We document that the likely mechanism is the substantial income
shock experienced by families residing in eradication areas. These households heavily depend
on sources derived from coca cultivation, and the damage inflicted by glyphosate extends to
legal crops, amplifying the economic impact.

To establish these effects, we employ a spatial regression discontinuity design, leveraging
on the inherent exogeneity arising from the operational constraints of aerial spraying flights.
Thus, we are able to compare units — schools or villages — located just inside an area sprayed
to those located just outside.

While little evidence supports the success of forced eradication in reducing coca supply
or violence, our study provides causal evidence that it diminishes development by further
impoverishing households in the affected areas. This paper has broad policy implications.
Firstly, it underscores the need to reconsider supply-center policies in a way that is tuned
to local dynamics, as exemplified in Colombia, where thousands of households depend on
coca cultivation as their sole viable source of income. Second, it highlights the importance
of implementing alternative livelihood programs that provide viable economic options for
households engaged in coca cultivation. Fostering sustainable alternatives can mitigate the
negative impacts of eradication efforts. Lastly, our findings stress the importance of moni-
toring and evaluating anti-drug policies to assess their impact, make necessary adjustments,

and ensure that unintended consequences are identified and addressed promptly.
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Figures

Figure 1: Coca cultivation and eradication programs across time
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Note: This figure illustrates the hectares of coca cultivated, sprayed and manually eradicated from 1999 to

2019.
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Figure 2: Digitized map of areas sprayed and schools location. 2006
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Note: This map illustrates the eradication polygons in 2006 and the rural school located up to 10 Km around
them.
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Figure 3: Effect of aerial eradication on educational outcomes

a) Dropout rate b) Failure rate
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Note: These figures illustrate the results for dropout and failure rate. The vertical axis represents the
mean residual of each outcome variable. The horizontal axis represents the distance to the nearest sprayed
area border. Schools to the left are located in non-sprayed areas and schools to the right in sprayed areas.
Regressions control for year fixed effects, elevation and a dummy indicating whether the school was inside a
sprayed area in the preceding year. Optimal bandwidth is computed using the MSE-minimizing procedure
following (Cattaneo et al., 2019). All regressions include a lineal polynomial and a triangular weighting
kernel. Standard errors are clustered at the school level.

Figure 4: Effect of aerial eradication on educational outcomes - Donut Hole
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These figures present the point estimates for dropout and failure rate using the “donut hole” approach.
Regressions control for year fixed effects, elevation and a dummy indicating whether the school was inside a
sprayed area in the preceding year. We used the optimal bandwidth of the baseline estimation from Table 4.
All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered
at the school level. It displays the 90% and 95% confidence intervals.
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Figure 5: Effect of aerial eradication on educational outcomes - Quadratic polynomial
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These figures illustrate the results for dropout and failure rate. The vertical axis represents the mean residual
of each outcome variable. The horizontal axis represents the distance to the nearest sprayed area border.
Schools to the left are located in non-sprayed areas and schools to the right in sprayed areas. Regressions
control for year fixed effects, elevation and a dummy indicating whether the school was inside a sprayed
area in the preceding year. Optimal bandwidth is computed using the MSE-minimizing procedure following
(Cattaneo et al., 2019). All regressions include a quadratic polynomial and a triangular weighting kernel.
Standard errors are clustered at the school level.

Figure 6: Effect of aerial eradication on educational outcomes - Sample restriction
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These figures present the point estimates for dropout and failure rate using different sample restrictions.
Regressions control for year fixed effects, elevation and a dummy indicating whether the school was inside a
sprayed area in the preceding year. Optimal bandwidth is computed using the MSE-minimizing procedure
following (Cattaneo et al., 2019). All regressions include a lineal polynomial and a triangular weighting
kernel. Standard errors are clustered at the school level. It displays the 90% and 95% confidence intervals.
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Figure 7: Mechanisms through which aerial eradication affects educational outcomes
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Note: These figures illustrate the RD plot for the mechanism outcomes. The vertical axis represents the
mean residual of each outcome variable. In subfigures a, b and e schools to the left are located in non-
sprayed areas and schools to the right in sprayed areas. The horizontal axis in these subfigures represents
the distance to the nearest sprayed area border. In subfigures ¢ and d schools to the left are located in
non-manually eradicated areas and schools to the right in manually eradicated areas. In these subfigures the
horizontal axis represents the distance to the nearest manual eradication area border. Optimal bandwidth
is computed using the MSE-minimizing procedure following (Cattaneo et al., 2019). All regressions include
a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level.



9¢

Figure 8: Aerial spraying 2004 until 2015 and rural sections
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Tables

Table 1: Balance check aerial eradication

Optimal bandwidth Fixed bandwidth

RD Coefficient SE BW. No. RD Coefficient SE BW. No.
(1) (2) 3) (4) (5) (6) (M (3

Panel A: Characteristics at the school level

-Geographic:
Elevation 62.13527 14.2436*** 5.84 24310 62.24343 14.1817***  5.93 24639
Slope 0.02701 0.0544 8.82 32765 0.05014 0.0638 5.93 24634
-Socioeconomic:
Nighttime light rd 1Km 1993 -0.04493 0.1665 4.06 18712 0.11344 0.1465 5.93 24639
Nighttime light rd 3Km 1993 0.01983 0.1312 3.91 18114 0.14381 0.1132 5.93 24639
Nighttime light rd 5Km 1993 0.01714 0.0959 3.46 16356 0.11242 0.0786 5.93 24639
Landmines rd 1Km 1993 -0.00041 0.0109 6.59 26743 -0.00476 0.0107 5.93 24639
Landmines rd 3Km 1993 0.00380 0.0146 4.99 21790 0.02002 0.0150 5.93 24639
Landmines rd 5Km 1993 -0.00845 0.0197 4.88 21423 0.00909 0.0197 5.93 24639
-Eradication:
Km2 coca rd 1Km at ¢-1 -0.03967 0.0326 3.24 12781 0.01475 0.0263 5.93 20706
Km2 coca rd 3Km at t-1 -0.23418 0.2211 3.59 14236 -0.09498 0.1861 5.93 20706
Km2 coca rd 5Km at t-1 -0.67355 0.5226 3.93 15362 -0.56578 0.4555 5.93 20706
Aerial eradication at t-1 -0.00232 0.0177 3.28 12946 0.02239 0.0135* 5.93 20706
Manual eradication at -1 0.01407 0.0097 6.50 17090 0.01269 0.0101 5.93 15877
Manual eradication at ¢ 0.00901 0.0081 6.83 22127 0.00864 0.0086 5.93 19850
Panel B: Characteristics with municipality-level data
-Education:
School-age population 1993 -0.59977 1.9806 12.80 38757 -0.85362 2.1292 5.93 22819
Population primary 1993 1.4e+02 2.0e+03 11.70 36851 5.3e+02 1.9e+03 5.93 22895
Population secondary 1993 93.96316 1.9e+03 11.60 36813 5.0e+02 1.9e+03 5.93 22895
Avg. schooling years 1993 -0.00742 0.1785 10.80 35261 0.05017 0.1899 5.93 22819
Illiteracy rate 1993 0.77663 1.7377 10.80 37681 0.24305 1.8329 5.93 24639
No. teachers 1996 15.41749 155.4715  11.00 37510 51.62922 153.1572 5.93 24228
No. students 1996 4.8e+02 3.4e+03 11.20 37738 1.3e+03 3.3e+03 5.93 24228
No. schools 1996 0.11508 19.6626 11.00 36426 6.73767 19.5542 5.93 23383
-Agriculture:
Suitability index oil palm -2.0e+02 521.2495  11.60 39201 -3.2e+02 528.3242 5.93 24639
Suitability index plantain -2.6e+02 335.8092  10.60 37273 -3.8e+02 354.6768  5.93 24639
Suitability index coffee -2.1e+02 242.5355  10.50 37171 -2.7e+02 261.1312 5.93 24639

Note: Panel A presents a balance test on several characteristics of schools. Some variables are computed
around 1, 3 and 5 kms around schools. Panel B presents a balance test for pre-existing school and agricultural
characteristics using municipality level data. Columns (1) to (4) present results using a fixed bandwidth of
5.93 Km (the optimal bandwidth of our main outcome). Columns (5) to (8) presents the result computing
the optimal bandwidth following (Cattaneo et al., 2019). All regressions include year fixed effects, as well as
a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level for
Panel A and at the municipality level for Panel B. xp < 0.1, % * p < 0.05, % % xp < 0.01.
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Table 2: Effect of aerial eradication on transfer rate

Dep. var: Transfer rate t-1

(1) (2) (3) (4)

Inside sprayed areas -0.0028  -0.0018  -0.0023  -0.0014
(0.0017)  (0.0019) (0.0018) (0.0020)

Year FE yes yes yes yes
Baseline controls yes yes yes yes
Extended controls no no yes yes
Bandwidth (Kms) 7.98 5.93 7.89 5.93
Bandwidth choice Optimal  Fixed  Optimal  Fixed
Mean control .032 .032 .032 .032
Observations 25873 20697 23043 18537

Note: This table presents the results of estimating specification (1) for transfer rate at (¢-1). Base line
controls include elevation and a dummy indicating whether the school was inside a sprayed area in the
preceding year. Extended controls include slope, a dummy indicating whether the school was inside a manual
eradication area, and square kms of coca around lkm from the school in the preceding year. All regressions
include year fixed effects. Columns (1) and (3) present results using computing the optimal bandwidth
following (Cattaneo et al., 2019). Columns (2) and (4) present results using a fixed bandwidth of 5.93 Km
(the optimal bandwidth of our main outcome). All regressions include a lineal polynomial and a triangular
weighting kernel. Standard errors are clustered at the school level. *p < 0.1, % % p < 0.05, % % xp < 0.01.

Table 3: Effect of aerial eradication on coca around schools in ¢+1

Dep. var: Square kms of
coca around lkm from school

(1) (2)

Inside sprayed areas  0.0279 -0.0019
(0.0292) (0.0220)
Year FE yes yes
Baseline controls yes yes
Extended controls no yes
Bandwidth (Kms) 5.07 6.08
Bandwidth choice Optimal Optimal
Mean control .349 331
Observations 16310 16557

Note: This table presents the results of estimating specification (1) for square kms of coca around schools at
(t+1). Base line controls include elevation and a dummy indicating whether the school was inside a sprayed
area in the preceding year. Extended controls include slope, a dummy indicating whether the school was
inside a manual eradication area, and square kms of coca around 1km from the school in the preceding year.
All regressions include year fixed effects. We use the optimal bandwidth following (Cattaneo et al., 2019).
All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered
at the school level. *p < 0.1, % % p < 0.05, % % xp < 0.01.
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Table 4: Effect of aerial eradication on educational outcomes

Dep. var:
Dropout rate Failure rate

(1) (2) (3) (4)
Inside sprayed areas  0.00605**  0.0107***  0.00474*  0.00616**
(0.0030)  (0.0036)  (0.0025)  (0.0026)

Year FE yes yes yes yes
Baseline controls no yes no yes
Bandwidth (Kms) 5.93 4.61 9.22 8.68
Mean control .092 .094 .072 .072
Observations 24640 17216 33825 27406

Note: This table presents the estimated effect of aerial eradication on dropout and failure rate using spec-
ification (1). Base line controls include elevation and a dummy indicating whether the school was inside
a sprayed area in the preceding year. All regressions include year fixed effects. Optimal bandwidths are
computed using the MSE-minimizing procedure following (Cattaneo et al., 2019). All regressions include

a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level.
*p < 0.1,% % p < 0.05, % x xp < 0.01.

Table 5: Effect of aerial eradication on educational outcomes in the following year

Dep. var:
Dropout rate at t+1  Failure rate at t+1

(1) (2) (3) (4)

Inside sprayed areas -0.00216 0.000186  0.00154  0.00401
(0.0028)  (0.0031)  (0.0027) (0.0026)

Year FE yes yes yes yes
Baseline controls no yes no yes
Bandwidth (Kms) 7.44 6.99 7.10 9.35
Mean control .091 .091 .073 .072
Observations 25852 20839 25019 25563

Note: This table presents the estimated effect of aerial eradication on dropout and failure rate in the following
year of eradication (¢+1) using specification (1). Base line controls include elevation and a dummy indicating
whether the school was inside a sprayed area in the preceding year. All regressions include year fixed effects.
Optimal bandwidths are computed using the MSE-minimizing procedure following (Cattaneo et al., 2019).
All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered
at the school level. *p < 0.1, % % p < 0.05, % % xp < 0.01.
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Table 6: Effect of aerial eradication on educational outcomes -Donut Hole

Excluding schools near the border

100 mts 200 mts 300 mts 400 mts 500 mts
(1) (2) (3) (4) (5)
Panel A: Dropout rate

Inside sprayed area  0.0110*** 0.0114*** 0.00607 0.00879**  0.00991**

(0.0037) (0.0039) (0.0042) (0.0044) (0.0046)
Year FE yes yes yes yes yes
Baseline controls yes yes yes yes yes
Bandwidth (Kms) 4.61 4.61 4.61 4.61 4.61
Bandwidth choice Baseline Baseline Baseline Baseline Baseline
Mean control .094 .094 .094 .094 .094
Observations 16832 16405 15914 15503 15085

Panel B: Failure rate

Inside sprayed area  0.00806***  0.00823***  0.00996***  0.00892***  0.00895***

(0.0027) (0.0027) (0.0029) (0.0029) (0.0030)
Year FE yes yes yes yes yes
Baseline controls yes yes yes yes yes
Bandwidth (Kms) 8.68 8.68 8.68 8.68 8.68
Bandwidth choice Baseline Baseline Baseline Baseline Baseline
Mean control .072 .072 .072 .072 .072
Observations 27022 26594 26103 25692 25274

Note: This table presents the estimated effect of aerial eradication on dropout (Panel A) and failure rate
(Panel B) using specification (1). In columns (1), (2), (3), (4) and (5) we exclude schools 100, 200, 300,
400 and 500 mts near the sprayed border respectively. Base line controls include elevation and a dummy
indicating whether the school was inside a sprayed area in the preceding year. We use the optimal bandwidth
of baseline results from Table 4. All regressions include a lineal polynomial and a triangular weighting kernel.
Standard errors are clustered at the school level. *p < 0.1, % x p < 0.05, % * xp < 0.01.
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Table 7: Effect of aerial eradication on educational outcomes - Treatment refining

Dep. var:
Dropout rate Failure rate

(1) (2) (3) (4)
Inside sprayed area  0.0105*  0.0103*  0.0179***  0.0122***
(0.0057)  (0.0055)  (0.0045) (0.0032)

Year FE yes yes yes yes
Baseline controls yes yes yes yes
Bandwidth (Kms) 4.41 4.61 4.86 8.68
Bandwidth choice Optimal Baseline Optimal  Baseline
Mean control .095 .095 .072 .072
Observations 13420 13870 14601 24060

Note: This table presents the estimated effect of aerial eradication on dropout and failure rate using spec-
ification (1). We only consider treated schools if at least 80% of their 1km buffer area was sprayed, and
control schools those that didn’t have aerial spraying around 1 km. Base line controls include elevation and a
dummy indicating whether the school was inside a sprayed area in the preceding year. All regressions include
year fixed effects. All regressions include year fixed effects. We use the optimal bandwidth of baseline results
from Table 4. Optimal bandwidths are computed using the MSE-minimizing procedure following (Cattaneo
et al., 2019). All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors
are clustered at the school level. xp < 0.1, % % p < 0.05, % % xp < 0.01.

Table 8: Effect of aerial eradication on educational outcomes - Geographic controls

Dep. var:
Dropout rate Failure rate

(1) (2) (3) (4)

Inside sprayed area  0.00788** 0.00738"*  0.00457* 0.00450*
(0.0037) (0.0034)  (0.0025) (0.0025)

Year FE yes yes yes yes
Baseline controls yes yes yes yes
Geographic controls Mun. Dept. Mun. Dept.
Bandwidth (Kms) 4.61 4.61 8.68 8.68
Bandwidth choice Baseline Baseline  Baseline Baseline
Mean control .094 .094 .072 .072
Observations 17130 17206 27326 27394

Note: This table presents the estimated effect of aerial eradication on dropout and failure rate using spec-
ification (1). Base line controls include elevation and a dummy indicating whether the school was inside a
sprayed area in the preceding year. Columns (1) and (3) include municipality FE and its interaction with
Year FE. Columns (2) and (4) include department FE and its interaction with Year FE. All regressions
include year fixed effects. We use the optimal bandwidth of baseline results from Table 4. All regressions
include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school
level. xp < 0.1, % % p < 0.05, % % xp < 0.01.
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Table 9: Effect of aerial eradication on educational outcomes - Robustness

Dep. var:
Dropout rate Failure rate

(1) (2) (3) (4)
Inside sprayed area  0.0130***  0.00730**  0.00577*  0.00636"*
(0.0039)  (0.0034)  (0.0033)  (0.0029)

Year FE yes yes yes yes
Baseline controls yes yes yes yes
Extended controls no yes no yes
Polynomial 2 1 2 1
Bandwidth (Kms) 8.32 5.60 10.5 7.30
Mean control .090 .093 .071 .073
Observations 26629 17699 31367 21776

Note: This table presents the estimated effect of aerial eradication on dropout and failure rate using spec-
ification (1). Base line controls include elevation and a dummy indicating whether the school was inside
a sprayed area in the preceding year. Extended controls include slope, a dummy indicating whether the
school was inside a manual eradication area, and square kms of coca around lkm from the school in the
preceding year. All regressions include year fixed effects. Optimal bandwidths are computed using the MSE-
minimizing procedure following (Cattaneo et al., 2019). Columns (1) and Columns (3) include a quadratic
polynomial. Columns (2) and Columns (4) include a lineal polynomial. All regressions include triangular
weighting kernel. Standard errors are clustered at the school level. *p < 0.1, % % p < 0.05, % % xp < 0.01.

Table 10: Two-way fixed effects model

Dep. var:
Dropout rate Failure rate
(1) (2) (3) (4)
Inside sprayed area 0.00655*** 0.00262*
(0.0014) (0.0014)
% Sprayed area (5km Radius) 0.00255*** 0.00113**
(0.0005) (0.0005)
Year FE yes yes yes yes
School FE yes yes yes yes
Mean dep. var .083 .083 077 077
Observations 104912 104912 104912 104912

Note: This table presents the estimated effect of aerial eradication on dropout and failure rate using specifi-
cation 2. The independent variable in columns (1) and (3) is a dummy variable indicating whether a school
was inside a spraying area at time ¢. The independent variable in columns (2) and (4) is the percentage of
area sprayed within a 5 km radius of the school at time ¢. All regressions include schools and year fixed
effects. Standard errors are clustered at the school level. xp < 0.1,* % p < 0.05, % * xp < 0.01.
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Table 11: Effect of aerial eradication on educational outcomes - Education level

Dep. var:
Dropout rate Failure rate

Pre-school  Primary  Secondary Pre-school Primary Secondary
(1) (2) (3) (4) (5) (6)
Inside sprayed areas 0.0113* 0.00848** 0.00246 0.00147 0.00616**  -0.00392
(0.0059) (0.0036) (0.0042) (0.0025) (0.0029) (0.0055)

Year FE yes yes yes yes yes yes
Baseline controls yes yes yes yes yes yes
Bandwidth (Kms) 6.55 5.20 13.5 11.8 8.37 12.2
Mean control .092 .092 .058 .079 .079 .064
Observations 16104 18009 4224 24348 25623 3923

Note: This table presents the estimated effect of aerial eradication on dropout and failure rate by level
of education using specification (1). We have aggregated the educational outcomes of secondary and high
school education. Base line controls include elevation and a dummy indicating whether the school was inside
a sprayed area in the preceding year. All regressions include year fixed effects. Optimal bandwidths are
computed using the MSE-minimizing procedure following (Cattaneo et al., 2019). All regressions include

a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level.
*p < 0.1,% % p < 0.05, % x xp < 0.01.

Table 12: Effect of aerial eradication on educational outcomes - Gender

Dep. var:
Dropout rate Failure rate
Girl Boy Girl Boy
(1) (2) (3) (4)

Inside sprayed areas 0.0104***  0.0106***  0.00680***  0.00518*
(0.0036)  (0.0039) (0.0026) (0.0030)

Year FE yes yes yes yes
Baseline controls yes yes yes yes
Bandwidth (Kms) 4.93 4.92 9.31 8.32
Mean control .087 .100 .064 .064
Observations 18120 18138 28661 26612

Note: This table presents the estimated effect of aerial eradication on dropout and failure rate by gender
using specification (1). Base line controls include elevation and a dummy indicating whether the school was
inside a sprayed area in the preceding year. All regressions include year fixed effects. Optimal bandwidths
are computed using the MSE-minimizing procedure following (Cattaneo et al., 2019). All regressions include

a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level.
*p < 0.1, % % p < 0.05, % x xp < 0.01.
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Table 13: Effect of aerial eradication on transfer rate

Dep. var: Transfer rate

(1) (2) (3)
Inside sprayed areas -0.0062*** -0.0073*** -0.0075***
(0.0019) (0.0021) (0.0022)

Year FE yes yes yes
Baseline controls no yes yes
Extended controls no no yes
Bandwidth (Kms) 6.19 6.28 6.42
Mean control .032 .032 .032
Observations 25495 21675 19703

Note: This table presents the estimated effect of aerial eradication on transfer rate using specification (1).
Base line controls include elevation and a dummy indicating whether the school was inside a sprayed area
in the preceding year. Extended controls include slope, a dummy indicating whether the school was inside
a manual eradication area, and square kms of coca around lkm from the school in the preceding year.
All regressions include year fixed effects. Optimal bandwidths are computed using the MSE-minimizing
procedure following (Cattaneo et al., 2019). All regressions include a lineal polynomial and a triangular
weighting kernel. Standard errors are clustered at the school level. xp < 0.1,* % p < 0.05, % * xp < 0.01.

Table 14: Effect of aerial eradication on nighttime light

Dep. var: Nighttime Lights around
1Km 3Kms 5Kms

(1) (2) (3)
Inside sprayed area -0.461*** -0.369*** -0.386***
(0.1278)  (0.1121) (0.1067)

Year FE yes yes yes
Baseline controls yes yes yes
Bandwidth (Kms) 3.82 3.47 3.19
Mean control 4.77 4.50 4.25
Observations 13385 12266 11193

Note: This table presents the estimated effect of aerial eradication on nighttime light density around schools
using specification (1). Base line controls include elevation and a dummy indicating whether the school was
inside a sprayed area in the preceding year. All regressions include year fixed effects. Optimal bandwidths
are computed using the MSE-minimizing procedure following (Cattaneo et al., 2019). All regressions include
a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level.
*p < 0.1, % % p < 0.05, % *x xp < 0.01.
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Table 15: Effect of manual eradication on educational outcomes

Dep. var:
Dropout rate Failure rate

(1) (2) (3) (4)
Inside manual eradication 0.0100**  0.00910* 0.00545%  0.00625*
(0.0048)  (0.0049)  (0.0037)  (0.0038)

Year FE yes yes yes yes
Baseline controls no yes no yes
Bandwidth (Kms) 5.62 5.70 7.84 7.36
Mean control .086 .086 .065 .065
Observations 10280 9652 14227 12343

Note: This table presents the estimated effect of manual eradication on dropout and failure rate using
specification (1). Base line controls include slope, square kms of coca around lkm from the school in the
preceding year, an indicator of whether the school was subject of aerial spraying in ¢, nighttime light density
around school in 1993 and the number of landmines around 1km from school in 1993. Optimal bandwidths
are computed using the MSE-minimizing procedure following (Cattaneo et al., 2019). All regressions include
a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level.
+p < 0.15,%p < 0.1, % x p < 0.05, % * xp < 0.01.

Table 16: Effect of aerial eradication on landmines

Dep. var: Landmines around

1Km 3Km 5Km
(1) (2) (3)
Inside sprayed area -0.0952***  -0.159***  -0.208"**
(0.0347) (0.0505)  (0.0780)

Year FE yes yes yes
Baseline controls yes yes yes
Bandwidth (Kms) 5.87 4.56 5.12
Mean control .252 .610 1.06
Observations 20475 17124 18607

Note: This table presents the estimated effect of aerial eradication on landmines around schools using
specification (1). Base line controls include elevation and a dummy indicating whether the school was inside
a sprayed area in the preceding year. All regressions include year fixed effects. Optimal bandwidths are
computed using the MSE-minimizing procedure following (Cattaneo et al., 2019). All regressions include
a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at the school level.
*p < 0.1, % % p < 0.05, % *x xp < 0.01.
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Table 17: Balance check aerial eradication - Rural Section

RD Coefficient SE BW. No.
(1) (2) (3) (4)

Panel A: Characteristics of rural sections

-Geographic:

Elevation -180.518 58.339***  10.60 3909
Slope 0.183 0.332 7.14 2343
-Socioeconomic:

Nighttime light. 1993 -0.252 0.324 741 2465
Landmines.1993 -0.008 0.014 15.40 5674
-Coca cultivation:

Perc of area with coca. 2003 0.001 0.001 5.24 1348
Perc of area with coca. 2016 0.000 0.002 7.32 2417
Panel B: Characteristics with municipality-level data

-Education:

School-age population. 1993 0.839 3.201 11.10 3806
Population primary. 1993 1195.823 4310.152  10.20 3482
Population secondary. 1993 978.400 4885.616  10.10 3451
Avg. schooling years. 1993 0.067 0.477 9.34 3077
Illiteracy rate. 1993 -0.250 2.377 7.00 2283
No. teachers. 1996 51.729 452.256  10.20 3637
No. students. 1996 1036 9277 10.10 3603
-Agriculture:

Suitability index oil palm. 1961-1990. 153.893 671.618  14.40 5308
Suitability index plantain. 1961-1990. -111.144 490.783 9.18 3287
Suitability index coffee. 1961-1990. -208.547 378.679 9.67 3501

Note: Panel A presents a balance test on several characteristics at the rural section level. Panel B presents a
balance test for pre-existing characteristics using municipality level data. Optimal bandwidths are computed
using the MSE-minimizing procedure following (Cattaneo et al., 2019). All regressions include a lineal
polynomial and a triangular weighting kernel. Standard errors are clustered at the rural section level for
Panel A and at the municipality level for Panel B. *p < 0.1, % * p < 0.05, % % *p < 0.01.
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Table 18: Medium term effect of aerial eradication on migration

Dep. var: Share of people who
were in the municipality

1 year ago 5 years ago At birth
(1) (2) (3)
Inside sprayed areas  -0.00298 0.0127 0.0861**
(0.0162) (0.0167) (0.0379)
Bandwidth (Kms) 8.81 10.0 8.01
Mean control .926 .786 .556
Observations 2891 3361 2523

Note: This table presents the estimated effect of aerial eradication on migration outcomes using specification
3. In column (1), the dependent variable is the share of individuals residing in the same municipality one
year ago. In column (2), it pertains to individuals residing in the same municipality five years ago, and in
column (3), it relates to those born in the same municipality. These variables were computed using the 2018
census. Optimal bandwidths are computed using the MSE-minimizing procedure following (Cattaneo et al.,
2019). All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are
clustered at the rural section level. xp < 0.1,* % p < 0.05, % * xp < 0.01.

Table 19: Effect of aerial eradication on schooling rates

Dep. var: Schooling rate

Primary Secondary
(1) (2)
[lem] Inside sprayed areas -0.124** -0.106**
(0.0606) (0.0529)
Bandwidth (Kms) 6.09 8.58
Mean control .910 .535
Observations 1362 2232

Note: This table presents the estimated effect of aerial eradication on the schooling rates using specification
3. The dependent variable in column (1) is the percentage of people, 25 to 29 years old with at least
primary education. The dependent variable in column (2) is the percentage of people, 25 to 29 years old
with at least secondary education. All regressions include elevation. Optimal bandwidths are computed
using the MSE-minimizing procedure following (Cattaneo et al., 2019). All regressions include a lineal
polynomial and a triangular weighting kernel. Standard errors are clustered at the rural section level.
*p < 0.1, % % p < 0.05, % % xp < 0.01.

47



Table 20: Medium term effect of aerial eradication on child labor

Dep. var: Share of children 10 to 19 years old
Had a job Household chores

All Boy Girl All Boy Girl
(1) (2) (3) (4) (5) (6)

Inside sprayed areas 0.0564***  0.0779***  0.00608 0.0143  -0.0398*  0.0556**
(0.0198) (0.0287)  (0.0094) (0.0258) (0.0220) (0.0279)

Bandwidth (Kms) 10.7 10.6 13.5 8.17 6.89 12.5
Mean control 129 .204 .042 .120 .042 .208
Observations 3304 3087 3882 2380 1769 3594

Note: This table presents the estimated effect of aerial eradication on the share of children who had a job
in last week and who engaged in unpaid household chores at home instead of studying. The definition we
used for having a job includes: 1) the individual worked at least 1 hour last week, and got a payment;
2) the individual worked or helped in a business at least one hour last week without payment; and 3) the
individual didn’t work last week but has a job or business, and receives a payment. The definition we used
for doing chores at home is whether the individual said that he/she did chores at home during last week.
We used the 2018 census to compute these shares. We use specification 3. All regressions include elevation.
Optimal bandwidths are computed using the MSE-minimizing procedure following (Cattaneo et al., 2019).
All regressions include a lineal polynomial and a triangular weighting kernel. Standard errors are clustered
at the rural section level. xp < 0.1, % * p < 0.05, % * xp < 0.01.

Table 21: Medium term effect of aerial eradication on early marriage

Dep. var: Share of single women
10-14 15-19 20 - 24 25-29

(1) (2) (3) (4)
Inside sprayed areas -0.0597*  -0.0294 -0.0561" -0.117**
(0.0316) (0.0414) (0.0381) (0.0498)

Bandwidth (Kms) 6.89 10.3 11.4 8.04
Mean control 947 702 .355 .205
Observations 1582 2570 2740 1730

Note: This table presents the estimated effect of aerial eradication on the share of single women using
specification 3. The individual is single if he/she is not in a civil union, married, divorced or widow. In
column (1) we compute the share of single girls who are 10 to 14 years old. In column (2) we do it for girls 15
to 19 years old. In column (3) for women 20 to 24 years old, and in column (4) for women 25 to 29 years old.
All regressions include elevation. Optimal bandwidths are computed using the MSE-minimizing procedure
following (Cattaneo et al., 2019). All regressions include a lineal polynomial and a triangular weighting
kernel. Standard errors are clustered at the rural section level. +p < 0.15%p < 0.1, *%*xp < 0.05, *x*p < 0.01.
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Table 22: Medium term effect of aerial eradication on socioeconomic conditions

Dep. var: Share of households with utilities

.. Drinkable Garbage
Electricity Water Sewage Collection
(1) (2) (3) (4)
Inside sprayed areas -0.0440 -0.119** -0.0607* -0.105**
(0.0378) (0.0513) (0.0358) (0.0528)
Bandwidth (Kms) 10.0 6.73 7.85 6.86
Mean control .469 150 .056 .095
Observations 3669 2157 2649 2213

Note: This table presents the estimated effect of aerial eradication on dwelling conditions using specification
3. We measure the share of households that have each of these services: electricity, drinkable water, sewage
and garbage collection. All regressions include elevation. Optimal bandwidths are computed using the
MSE-minimizing procedure following (Cattaneo et al., 2019). All regressions include a lineal polynomial
and a triangular weighting kernel. Standard errors are clustered at the rural section level. xp < 0.1, % % p <
0.05, % x xp < 0.01.
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Table 23: Medium term effect of aerial eradication on health

Dep. var: Share of people with health issues
All 5-9 10 - 14 15-19

(1) (2) 3) (4)
Panel A: Have fallen sick lately

Inside sprayed areas  0.00638  -0.0320 0.0199 -0.00711
(0.0125)  (0.0236) (0.0240) (0.0143)

Bandwidth (Kms) 6.48 6.73 6.56 9.13
Mean control .045 .057 .048 .053
Observations 1862 1683 1629 2535

Panel B: With disabilities

Inside sprayed areas  0.0101 0.00969  0.00378 0.00969
(0.0073)  (0.0074)  (0.0108) (0.0154)

Bandwidth (Kms) 8.31 11.7 12.1 8.06
Mean control .039 .028 .032 .031
Observations 2661 3353 3526 2154

Note: This table presents the estimated impact of aerial eradication on the percentage of individuals who
had any health issue during the last 30 days and they didn’t require hospitalization (Panel A) or have any
disability (Panel B).In column (1) we compute these shares for all people. In column (2) we only do it for
children who are 5 to 9 years old, in column (3) 10 to 14 years old, and in column (4) 15 to 19 years old. In
panel B the dependent variable is the share of people who have any type of disability. We use specification 3.
All regressions include elevation. Optimal bandwidths are computed using the MSE-minimizing procedure
following (Cattaneo et al., 2019). All regressions include a lineal polynomial and a triangular weighting
kernel. Standard errors are clustered at the rural section level. xp < 0.1, % *x p < 0.05, % * *p < 0.01.
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A Online Appendix

A.1 Data and Variables
A.1.1 Distance from schools to the nearest part of eradication border

The UNODC has published reports since 2004 until 2015 (2006-2015 for manual eradication)
with maps of eradicated areas. We used QGIS to 1) georeference these maps and 2) get the
coordinates of the eradicated areas. Then we use the location of schools that was provided
by DANE to compute the distance from the school to the nearest part of the eradication
border and to create the treatment variable, which is whether the school is inside or outside

the eradication area.

A.1.2 2018 census and rural sections

For the living conditions estimations, we aggregated areas sprayed across all years into a
single layer. Subsequently, we computed the distance from the centroid of each rural section
to the border of the sprayed areas, as explained in the following lines.

A rural section is a statistical division in rural areas, each averaging 20 km? and with
precise coordinates. There are approximately 47,134 rural sections acording to the 2018
Geostatistical Information System shapefiles (Marco Geoestadistico Nacional. 2018.) on
DANE’s website.

Using the centroids geoprocessing tool in QGIS, we obtained the centroid of each rural
section. We then calculated the distance from each centroid to the nearest point on the
eradication borders, determining whether the centroid falls inside or outside each eradication
polygon.

The overlap analysis geoprocessing tool was utilized to determine the percentage of each
rural section subjected to spraying. We considered only rural sections with eradication
coverage at either 100% or 0%, ensuring perfect compliance for a precise RD estimator.

Figure 8 illustrates this.
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The 2018 census provides household-level socioeconomic data. Although household loca-
tions are not exact, each one has an identifier corresponding to the rural section. The next
step involved linking this identifier with the one from the Geostatistical Information System
(Marco Geoestadistico Nacional. 2018.).

Using the 2018 census, we aggregated socioeconomic variables at the rural section level,
reporting only the shares. For instance, the rate of employed children aged 10 to 19 is
calculated as the number of employed children in that age range over the total number
of children of that age range in the rural section. Another example is the percentage of
households with electricity, calculated as the number of electrified households over the total
households in the rural section.

These are the definitions and computations of the socioeconomic variables computed for
the results using rural sections.

The share of people who were in the same municipality one year ago in Table 18 is
computed as the total number of people who were in the same municipality one year ago
over the total number of people in the rural section. Similarly, the share of people who were
in the same municipality five years ago is computed as the total number of people who were
in the same municipality five years ago over the total number of people in the rural section,
and the share of people who were in the same municipality at birth is computed as the total
number of people born in the same municipality over the total number of people in the rural
section.

The share of people with primary education in Table 19 is computed as the total number
of people older than 25 years old with at least primary education over the total number of
people older than 25 years old in the rural section. The same computation procedure applies
to the share of people with at least secondary education and at least high school.

The share of children aged 10 to 19 with a job in Table 20 is computed as the total
number of children in that age range with a job over the total number of children in that age

range in the rural section. The same computation procedure applies to the share of children
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who did chores at home. The definition used for having a job includes: 1) working at least 1
hour last week with payment; 2) working or helping in a business at least one hour last week
without payment; and 3) not working last week but having a job or business and receiving
payment. The definition used for doing chores at home is whether the individual said they
did chores at home during the last week. These definitions are from the 2018 census.

The share of single women in Table 21 is computed as the total number of single women
of the respective age range over the total number of women of the respective age range in
the rural section. The definition used for being single is whether the individual is not in a
civil union, married, divorced, or widowed.

The share of households with utilities associated with socioeconomic conditions in Table
22 is computed as the total number of households with access to the respective service over
the total number of households in the rural section.

The share of people with health issues in Panel A of Table 23 is computed as the total
number of people of the respective age range with any health issue in the last 30 days
without hospitalization over the total number of people of the respective age range in the
rural section. Column 1 does this computation for all people regardless of their age. A
similar procedure is followed in Panel B. In this case, the definition of having a disability
is whether the individual says they have a disability. The 2018 census published by DANE
does not distinguish the type of illness or the type of disability, although the questionnaire

asks about the type of disability.

A.1.3 Schools buffers

We use the location of schools that was provided by DANE. The we used the buffer geo

processing tool from QGIS to create buffers around schools: 1 km, 3 kms and 5km.
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A.1.4 Coca around schools

We downloaded the dataset on coca from the Colombian open data portal (https://datos
.gov.co/). The dataset is called ”"Densidad de cultivos de coca”. This dataset has infor-
mation of the coordinates of the polygons with coca, and the number of hectares of coca of
each polygon. We had to make some modifications on this dataset to be able to use it in
QGIS.

Then we used the overlap geoprocessing tool from QGIS to compute the amount of coca
around schools. The buffers we used for schools are the same we computed in subsection

A1.3

A.1.5 Night light around schools

We downloaded the tif files from 1992 until 2013. The web site is https://eogdata.mines
.edu/products/dmsp/. We downloaded specifically the files under the section “Version 4
DMSP-OLS Nighttime Lights Time Series”. We also downloaded those tif files in which there
is information from two different satellites. These files have a resolution of 30 arc second.
They don’t report the values as radiance, but as digital numbers whose range is 1-63, where
63 is the highest night light registered.

We used the zonal statistics geo processing tool in QGIS that takes the average night
light inside the respective school buffer. For those years in which there is information from
two satellites we took the average night light. These years are: 1994, and from 1997 until

2007. For the rest of years we only took the night light provided by the respective satellite.
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A.1.6 Average suitability index at municipality

We download the suitability index range of current cropland for banana, coffee and oil palm?!.
This information is produced by the Global Agro-Ecological Zones (GAEZ) modelling frame-
work, which is a project from the Food and Agriculture Organization of the United Nations
(FAO) and the International Institute for Applied Systems Analysis (ITASA). The resolution
of the files is 30 arc-second (9 x 9 km) and the range goes from 0 to 10000 (0 to 100 times
100), where 10000 means that the grid is very suitable for the specific crop and 0 means that
it is not suitable.

We also use the shapefile of municipalities in Colombia published in the Geostatistical
information system for 2018 (Marco Geoestadistico Nacional. 2018.). Therefore we utilized
the zonal statistics geo processing tool in QGIS to get the average suitability index at the

municipality level for each crop.

A.1.7 Digital elevation model

We downloaded the Digital Elevation Model (DEM) files from the United States Geological
Survey (USGS) web page. Then we used the merge geo processing tool from QGIS to merge
all tif files. We also used the slope geo processing tool from QGIS to get the slope.

Finally, we used the raster values geo processing tool from QGIS to get the elevation and

slope at school.

A.1.8 Land mines

Information about land mines events is published by the Information Management System

for Mine Action (IMSMA) of the Geneva International Centre for Humanitarian Demining

2IThese are the respective web sites:

https://s3.eu-west-1.amazonaws.com/data.gaezdev.aws.fao.org/res05/CRUTS32/Hist/6190H/
suHa ban.tif

https://s3.eu-west-1.amazonaws.com/data.gaezdev.aws.fao.org/res05/CRUTS32/Hist/6190H/
suHa_cof.tif

https://s3.eu-west-1.amazonaws.com/data.gaezdev.aws.fao.org/res05/CRUTS32/Hist/6190H/
suHa_olp.tif
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(GICHD). This is a registry of events related to land mines by year. These events include:
1) explosions, 2) demining, 3) seizures, 4) fabrics, 5) suspicion of land mines, 6) unexploded
ordnance and 7) arsenal storage. There is information from 1984.

This registry also has the coordinates of the events, so we are able to compute the number

of events around schools, using the school buffers explained in A.1.3.
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A.2 Additional Tables

Table A.1: Summary statistics of schools

Mean SD Observations Source
Panel A: Eradication areas
Aerial spraying (Km2) T777.25 7453.88 1293 UNODC-DIRAN
Manual eradication (Km2) 482.92  9252.95 767 UNODC-DIRAN
Panel B: School census
Enrollment, 2004-2015 129.13  223.74 35755 Form C-600
Dropout rate, 2004-2015 0.09 0.07 35755 Form C-600
Failure rate, 2004-2015 0.07 0.07 35755 Form C-600
Transfer rate, 2004-2015 0.03 0.04 35755 Form C-600

Panel C: Characteristics around schools

Elevation 435.26  512.43 35755 USGS-SRTM
Slope 89.13 1.76 35742 USGS-SRTM
Km2 coca rd 1Km, 2004-2015 0.48 0.86 35755 UNODC
Km2 coca rd 3Km, 2004-2015 4.49 6.35 35755 UNODC
Km2 coca rd 5Km, 2004-2015 12.44 15.95 35755 UNODC
Nighttime light rd 1Km, 2004-2013 5.41 6.19 33097 DMSP-OLS
Nighttime light rd 3Km, 2004-2013 5.23 5.81 33097 DMSP-OLS
Nighttime light rd 5Km, 2004-2013  5.07 5.60 33097 DMSP-OLS
Landmines rd 1Km, 2004-2015 0.20 1.31 35755 IMSMA
Landmines rd 3Km, 2004-2015 0.52 2.02 35755 IMSMA
Landmines rd 5Km, 2004-2015 0.95 2.80 35755 IMSMA

Note: This table present the summary statistics of the variables used in the estimations at the school level.
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Table A.2: Summary statistics of rural sections

Mean SD  Observations Source

-Share of people older than 25 with

At least primary 0.81 0.19 5723 2018 Census
At least secondary 0.26  0.20 5723 2018 Census
At least high school 0.15 0.17 5723 2018 Census
-Share of kids 10 to 19 years old who

Attended school 0.62 0.25 5418 2018 Census
Had a job 0.14 0.15 5812 2018 Census
Did chores at home 0.14 0.15 5812 2018 Census

-Share of people

Sick 0.05 0.06 5934 2018 Census
With a disability 0.04 0.05 5934 2018 Census
Born in the municipality 0.54  0.26 5934 2018 Census
-Share of households with service of

Electricity 0.41 0.33 6442 2018 Census
Drinkable water 0.11  0.19 6442 2018 Census
Sewage 0.04 0.12 6442 2018 Census
Garbage Collection 0.06 0.16 6442 2018 Census

Note: This table present the summary statistics of the variables used in the estimations at the rural section
level.
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Table A.3: Balance check aerial eradication - Municipality

Optimal bandwidth Fixed bandwidth
RD Coefficient SE BW. No. RD Coefficient SE BW. No.
(1) (2) CINC! (5) (6) (M 8
-Education:
School-age population 1993 0.54614 0.9216 15.10 1255 0.52779 1.0821 593 717
Population primary 1993 -6.9e+02 549.0277 11.80 969 -7.1e+02 641.7049 593 624
Population secondary 1993 -7.4e402 580.1055 11.60 954 -7.4e402 644.6281 5.93 624
Avg. schooling years 1993 -0.00763 0.1300 18.20 1383 -0.04555 0.1597 5.93 697
Tlliteracy rate 1993 -0.27274 0.5923 13.90 1204 -0.43148 0.6451 593 717
No. teachers 1996 -4.9e+01 50.4438 12.10 1049 -5.2e+01 55.4188  5.93 667
Enrollment 1996 -1.1e+03 1.1e+03 12.70 1084 -1.0e+03 1.2e+03  5.93 667
No. schools 1996 -7.19575 8.5113 15.90 1223 -1.1e+01 8.4503 5.93 667
-Agriculture:
Suitability index oil palm -1.7e+02 548.3480 14.70 1238 33.78803 696.5585 5.93 717
Suitability index plantain 1.6e+02 330.6056 15.80 1296 3.3e+02 411.2089 593 717
Suitability index coffee 72.51679 288.5334 15.10 1256 22.68969 350.7223 593 717

Note: This table presents a balance test for pre-existing characteristics using municipality level data. The
unit of observation is the municipality. Columns (5) to (8) present results using a fixed bandwidth of 5.93
Km (the optimal bandwidth of our main outcome). Columns (1) to (4) presents the result computing the
optimal bandwidth following (Cattaneo et al., 2019). All regressions include year fixed effects, as well as
a lineal polynomial and a triangular weighting kernel. Standard errors are clustered at municipality level.
*p < 0.1, % % p < 0.05, % * xp < 0.01.
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Table A.4: Balance check manual eradication

Optimal bandwidth Fixed bandwidth
RD Coefficient SE BW. No. RD Coefficient SE BW. No.
(1) (2) B3 @ (5) (6) M ®
Panel A: General characteristics at the school level
-Geographic:
Elevation -3.7e+01 26.8853 4.64 8727 -3.7e+01 25.7840 5.50 10056
Slope -0.39215 0.0587***  4.72 8839 -0.38854 0.0563***  5.50 10054
-Socioeconomic:
Nighttime light rd 1Km 1993 0.39479 0.1437***  3.15 6288 0.49672 0.1238***  5.50 10056
Nighttime light rd 3Km 1993 0.28238 0.1007***  3.41 6717 0.40971 0.0906***  5.50 10056
Nighttime light rd 5Km 1993 0.13230 0.0759* 3.08 6121 0.25072 0.0640***  5.50 10056
Landmines rd 1Km 1993 0.00993 0.0099 4.20 8044 -0.00239 0.0089 5.50 10056
Landmines rd 3Km 1993 0.02565 0.0130**  4.42 8390 0.01131 0.0122 5.50 10056
Landmines rd 5Km 1993 0.02518 0.0149* 7.44 13494 0.03066 0.0160* 5.50 10056
-Eradication:
Km2 coca rd 1Km at -1 -0.12145 0.0535**  3.20 5939 -0.07543 0.0439* 5.50 9349
Km2 coca rd 3Km at ¢-1 -1.06882 0.4469** 295 5431 -0.49085 0.3440 5.50 9349
Km2 coca rd 5Km at ¢-1 -2.38090 1.1672**  2.97 5508 -1.28631 0.9019 5.50 9349
Aerial eradication at t-1 0.02441 0.0206 7.45 12495 0.02092 0.0225 5.50 9349
Manual eradication at -1 -0.00467 0.0227 4.73 6562 -0.00232 0.0213 5.50 7520
Aerial eradication at ¢ 0.05095 0.0195***  6.81 12412 0.04879 0.0209**  5.50 10056
Panel B: Characteristics at the municipality level
-Education:
School-age population 1993 0.83657 2.2910 7.68 13000 0.75315 2.2762 5.50 9328
Population primary 1993 1.3e+03 2.5e+03  7.49 12762 1.0e+03 2.3e+03  5.50 9389
Population secondary 1993 1.0e+03 2.7e+03  7.66 13046 8.5e+02 2.5e+03  5.50 9389
Avg. schooling years 1993 0.06280 0.2322 7.11 12041 0.07080 0.2233 5.50 9328
Tlliteracy rate 1993 0.39363 1.9829 9.76 17167 0.95036 2.1259 5.50 10056
No. teachers 1996 41.13272 223.9371  7.75 13751 28.57860 195.3353  5.50 9875
No. students 1996 1.5e+03 4.9e+03  7.58 13475 1.3e+03 4.4e4+03 550 9875
No. schools 1996 15.72196 26.0718 7.78 13643 13.29339 24.6517 5.50 9750
-Agriculture:
Suitability index oil palm 5.5e+4-02 864.6669 8.69 15454 6.1e402 864.4227  5.50 10056
Suitability index plantain 96.36074 423.2435  9.62 16923 1.9e+02 435.5299  5.50 10056
Suitability index coffee -8.3e+01 258.7189  7.25 13179 -1.38182 261.5009  5.50 10056

Note: Panel A presents a balance test on several characteristics surrounding schools. Panel B presents a
balance test for pre-existing school and agricultural characteristics using municipality level data. Columns
(5) to (8) present results using a fixed bandwidth of 5.93 Km (the optimal bandwidth of our main outcome).
Columns (1) to (4) presents the result computing the optimal bandwidth following (Cattaneo et al., 2019).
All regressions include year fixed effects, as well as a lineal polynomial and a triangular weighting kernel.
Standard errors are clustered at the school level for Panel A and at the municipality level for Panel B.
*p < 0.1, % xp < 0.05, % x xp < 0.01.
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A.3 Additional Figures

Figure A.1: Map Aerial spraying UNODC
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Figure A.2: Digitized maps of areas sprayed
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Note: These maps illustrate the sprayed areas.
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