Energy price shocks, monetary policy and inequality

Alina-Gabriela Bobasu¹, Michael Dobrew¹, Amalia Repele²

¹European Central Bank

²Bocconi University

EEA 2024, Rotterdam

August 29, 2024

Motivation

Energy price surge and household heterogeneity

- Energy price surge and simultaneous deterioration of terms of trade
- Households are heterogeneously exposed through consumption basket, savings and income source
- Monetary policy strongly reacted despite exogenous shock

Preview of results

Open economy HA (inequality) NK (nominal) model with energy

- Imported energy used for consumption and production
- Heterogeneous households with non-homothetic preferences
- · Rigid nominal wages, flexible prices, monetary policy follows interest rate rule

Aggregate effects

- Energy price shocks are always contractionary irrespective of policy
- Active monetary policy raising real rates amplifies adverse effects
- · Forecast rule can mitigate aggregate outcomes if sufficiently passive

Distributional effects

- Less wealthy households are more strongly affected
- Consumption decline of less wealthy mostly through declining labor income
- Active policy rules amplify negative labor income response for low-wealth households, incentivize wealthy households to save more

Related literature

Representative agent models with oil price shocks

- Open economy: Mendoza (1995), Kose (2002), Catao, Chang (2010), Bodenstein, Erceg, Gust (2011), Baqaee, Farhi (2019)
- Monetary policy: Bernanke, Gertler, Watson (1997), Bodenstein, Erceg, Guerrieri (2008), Natal (2012), Gertler, Gagliardone (2023)

Open economy heterogeneous agent models

 Zhou (2020), Auclert, Rognlie, Souchier, Straub (2020), Guntin, Ottonello, Perez (2020), de Ferra, Mitman, Romei (2020), Otten (2021), Oskolkov (2022)

(Limited) heterogeneity and energy shocks

 Pieroni (2023), Chan, Diz, Kannegiesser (2023), Gorneman, Hildebrand, Kuester (2023), Auclert, Monnery, Rognlie, Straub (2023) Olivi et al (2024), Audzei, Sutoris (2024)

Overview

Households <

- Non-homothetic preferences
 - Domestic vs energy consumption
- Uninsurable idiosyncratic income risk
 - Save in a mutual fund
 - Ad-hoc debt limit
- Labour supply is demand determined

Labour market

- Unions and labor packer
 - Combine household labour to specific tasks
 - Set nominal wages subject to pricing friction

Mutual Fund

- Unconstrained, risk-neutral
- Portfolio composed of shares in intermediate firms, nominal domestic and foreign bonds

Goods market

- Final goods producer
 - Combines intermediate input goods
 - Sells to domestic and foreign households
- Intermediate-good producers
 - Produces using labor and energy input

Monetary policy

- Reacts to contemporaneous or forecast measures of inflation
- Baseline: constant real rate

Energy price shock

• 30% increase in foreign price of energy

Calibration

D	D // 11		o = .
Parameter	Definition	Value	Source/Target
Households			
β	Household discount factor	0.968	Annual nominal rate 2%
σ	Household risk aversion	1	Literature
α_h	Energy share in consumption	0.051	Eurostat $c_e/c = 0.09$
<u>C</u>	Subsistence level energy consumption	0.037	Eurostat $c_e^{Q1}/c^{Q1} = 0.13$
η	Elasticity of substitution consumption	0.4	Bachmann et al. (2022)
φ	Inverse Frisch elasticity	2	Literature
Ψ	Utility weight of labor	0.543	$\pi=$ 0
Labor Unions			
ε_w	Elasticity of substitution labor	19	Wage markup of 5%
χ	Wage adjustment cost	190	NKPC slope of 0.1
Firms			
α_{f}	Energy share in production	0.201	Eurostat $E = 0.16$
θ	Elasticity of substitution production	0.5	Acurio (2015)
\mathcal{M}	Price markup	1.01	Carroll et al. (2017) $MPC = 0.32$
World Trade			
C^*	Foreign demand level	0.181	NX = 0
λ	Foreign demand elasticity	1/3	Auclert et al (2021)

Steady state

- \sim 20% of households are financially constrained
- Half of all households have very little savings
- Lowest wealth quintile spends 3 pp more on energy

Aggregate effects of energy price shock

Contemporaneous monetary policy rules

Energy price shocks are contractionary

- Aggregate consumption declines independently of the policy rule
- Wealth transfer to foreign economy

Transmission under neutral policy

- Constant real rate does not incentivize saving over consumption
- High pass-through to prices lowers real wages

Supply shocks

ToT decline raises foreign demand

Active policy amplifies aggregate outcomes

Strong increase in real rate

Closed economy

Aggregate effects of energy price shock

Forecast monetary policy rules

Forecast rule can mitigate adverse effects

 Strongly muted real rate response under headline/core rule

Responding to energy prices directly has substantial recessionary effects

- Initial suppression of inflation through strong decline in aggregate demand
- Resurfacing inflation in the medium-term

Hump-shaped shock

Consumption decomposition

Key drivers of aggregate consumption response differ starkly across monetary policy rules

Distributional effects of energy price shock

Consumption response and decomposition low- vs high-wealth

Low-wealth households have largest consumption decline

- Under neutral rule stronger consumption decline for less wealthy
- Only under very high real rate increase do wealthy consume less

Different drivers of consumption decline between low- and high-wealth households

- Low-wealth households suffer from adverse labor income effects
- High-wealth households choose to save more due to rising real rates

Savings

Summary

Empirically motivated by recent inflation surge, monetary policy response and heterogeneous household exposure

Build a small open economy HANK model with energy calibrated to the Euro Area

Main findings

- Energy price shocks are always contractionary independent of policy response
- Active policy response amplifies aggregate outcomes
- "Looking through" can mitigate adverse outcomes
- Low-wealth households are more strongly impacted
- Drivers of consumption response differ across the wealth distribution

Households

Household problem

$$egin{aligned} \mathcal{V}_t(a,s) &= \max_{c_h,c_e,a'} rac{c^{1-\sigma}}{1-\sigma} - \psi rac{N_t^{1+arphi}}{1+arphi} + eta \mathbb{E}_t V_{t+1}(a',s') \ & ext{s.t.} \quad p_{h,t}c_h + p_{e,t}c_e + a' = (1+r_t)a + sw_t N_t \ & ext{a}' \geq \underline{a} \end{aligned}$$

Stone-Geary consumption aggregator

$$c=\left[(1-lpha_h)^{rac{1}{\eta}}c_h^{rac{\eta-1}{\eta}}+lpha_h^{rac{1}{\eta}}(c_e-\underline{c})^{rac{\eta-1}{\eta}}
ight]^{rac{\eta}{\eta-1}}$$

- α_h consumption share of energy
- <u>c</u> subsistence level of energy consumption
- η elasticity of substitution between domestic and energy goods

Intermediate firms and labor unions

Production function

$$Y_{j,t} = \left[\alpha_f^{\frac{1}{\theta}} E_{j,t}^{\frac{\theta-1}{\theta}} + (1-\alpha_f)^{\frac{1}{\theta}} N_{j,t}^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}}$$

- α_f share of energy in production
- θ elasticity of substitution between labor and energy input

Firm FOC

$$p_{h,t} = \mathscr{M} \frac{1}{\alpha_f} p_{\theta,t} \left(\frac{E_t}{Y_t} \right)^{\frac{1}{\theta}}$$

$$\frac{p_{\theta,t}}{w_t} = \frac{\alpha_f}{1 - \alpha_f} p_{h,t} \left(\frac{N_t}{E_t} \right)^{\frac{1}{\theta}}$$

• \mathcal{M} (constant) price markup

New Keynesian Wage Philips Curve

$$\pi_t^{w} = \frac{\varepsilon_w}{\chi} \left[\psi N_t^{1+\varphi} - \frac{\varepsilon_w - 1}{\varepsilon_w} C_t^{-\sigma} w_t \right] + \beta \mathbf{E}_t \pi_{t+1}^{w}$$

 $\frac{1}{\theta}$

International trade and finance

Foreign demand

$$oldsymbol{\mathcal{C}}_{h,t}^{*} = \left(rac{oldsymbol{P}_{h,t}^{*}}{oldsymbol{P}_{e,t}^{*}}
ight)^{-\lambda}oldsymbol{\mathcal{C}}^{*}$$

Law of one price

$$P_{e,t} = e_t P_{e,t}^*$$

Real exchange rate

$$Q_t = \frac{e_t P_t^*}{P_t}$$

Goods market clearing

$$egin{aligned} Y_t &= C_{h,t} + C_{h,t}^* \ C_{h,t} &= \int c_{ht}(a,s) d\mu_t(a,s) \end{aligned}$$

Mutual fund and monetary policy

Mutual Fund

$$1 + i_t = (1 + r_{t+1}) \frac{P_{t+1}}{P_t}$$
$$1 + r_t = (1 + i^*) \frac{Q_{t+1}}{Q_t}$$
$$1 + r_{t+1} = \frac{D_{t+1} + j_{t+1}}{j_t}$$

Monetary policy

$$i_t = r_{ss} + \phi_\pi \pi_t^k$$
 $k \in \{ ext{cpi,h,e}\}$

- Contrast neutral (constant real rate) and active policy
- React either to contemporaneous or forecast measures of inflation

Appendix HANK vs RANK

RANK

• Energy price shock is less severe

rom SS

lov

% deviation from SS

ò.

16

ŝ

HANK

▲ Back

- MPC heterogeneity
- No expenditure switching

GDP (value added) Domestic consumption Foreign consumption 0.0 1.0 -0.5-20.5 -4 ******** -1.5 0.0 -2.0-6 -0.5 -2.5-8 -1.0 -3.0-10 -3.5 -1.5-12 -4.0 Energy in production Aggregate labor Core inflation - HANK 10 - RANK -4-6 -80. -10-12

12

16

ó

â

12

16

8

Back

Open vs closed economy

Closed economy without profits

- Amplified aggregate and distributional outcomes
- Absence of foreign demand channel

Closed economy with profits

- Energy price shock still contractionary
- Redistribution from high- to low-MPC households

Other supply shocks

Less severe real outcomes for other supply shocks

 Same initial increase in price level implies smaller decline in aggregate output and consumption

Productivity shock

- Decrease in labor productivity raises labor demand
- Additional substitution *towards* energy input

Price markup shock

- Amplified aggregate and distributional outcomes
- Absence of foreign demand channel

Hump-shaped energy shock

Back

Hump-shaped energy shock

AR(1) shock (roughly) comparable to AR(2) shock

Headline contemporaneous vs forecast rule

- Stronger real rate increase under forecast rule
- Amplified initial responses

Forecast vs neutral rule

- Neutral rule implies strongly mitigated initial response
- Forecast rule speeds up recovery

Savings response across wealth quintiles

