ENDOGENOUS CLUSTERING AND ANALOGY-BASED EXPECTATIONS EQUILIBRIUM

Philippe Jehiel (PSE, UCL) and Giacomo Weber (PSE)

EEA - ESEM - 2024 (Rotterdam) Contributed Session - Game Theory and Behavioural

August 27, 2024

Table of Contents

Table of Contents

2 Theoretical Setup

• When too many contingencies, hard to learn opponent's behavior for each contingency.

- When too many contingencies, hard to learn opponent's behavior for each contingency.
- Instead, learning about aggregate opponent's behaviors.

- When too many contingencies, hard to learn opponent's behavior for each contingency.
- Instead, learning about aggregate opponent's behaviors.
- Analogy-Based Expectation Equilibrium in which analogy classes represent how players cluster contingencies.

- When too many contingencies, hard to learn opponent's behavior for each contingency.
- Instead, learning about aggregate opponent's behaviors.
- Analogy-Based Expectation Equilibrium in which analogy classes represent how players cluster contingencies.
- But, how are analogy partitions picked?

- When too many contingencies, hard to learn opponent's behavior for each contingency.
- Instead, learning about aggregate opponent's behaviors.
- Analogy-Based Expectation Equilibrium in which analogy classes represent how players cluster contingencies.
- But, how are analogy partitions picked?
- We propose using insights from psychology about categorization to put structure on those.

- When too many contingencies, hard to learn opponent's behavior for each contingency.
- Instead, learning about aggregate opponent's behaviors.
- Analogy-Based Expectation Equilibrium in which analogy classes represent how players cluster contingencies.
- But, how are analogy partitions picked?
- We propose using insights from psychology about categorization to put structure on those.
- Can also be seen as using insights from Machine Learning

- Psychology: Categories and Prototypes, Eleanor Rosch, 1978
- Machine Learning: K-means clustering

Random Initialization c_1 , c_2

Random Initialization c_1 , c_2

Assigning data to nearest c

Assigning data to nearest c

Recomputing c_1 , c_2

Random Initialization c_1 , c_2

Iteration 1 - Step 2

Recomputing c_1 , c_2

1) assign data, 2) recompute c

G. Weber (PSE)

3/16

Dataset: distribution of behaviors for various contingencies

Dataset: distribution of behaviors for various contingencies \downarrow Clustering to minimize prediction error: analogy partition

Dataset: distribution of behaviors for various contingencies \downarrow Clustering to minimize prediction error: analogy partition \downarrow Representative objects in each cluster: Expectations

• We study steady states

Contributions I

- Provide a conceptual framework (different notions of proximity, mixing, etc)
 → Clustered ABEE.
- Observe that steady states involving a single analogy partition may not exist
 → Mixed extension.
- Learning foundation

Contributions II

- Environments with Self-Repelling Categorizations
 - \rightarrow Heterogeneous processing of same data

Contributions II

- Environments with **Self-Repelling** Categorizations
 - \rightarrow Heterogeneous processing of same data
- Environments with **Self-Attractive** Categorizations
 - \rightarrow novel source of multiplicity

Contributions II

- Environments with **Self-Repelling** Categorizations
 - \rightarrow Heterogeneous processing of same data
- Environments with Self-Attractive Categorizations
 → novel source of multiplicity
- Application to families of games with linear best-responses

Bounded Rationality: Jehiel 2005, Eyster and Rabin 2005, Jehiel and Koessler 2008, Spiegler 2016, Esponda and Pouzo 2016, Osborne and Rubinstein 1998, Jehiel and Mohlin 2024

Categories: Rosch 1978, Anderson 1991, Reed 1972, Fryer and Jackson 2008, Peski 2011, Mohlin 2014, Al-Najjar and Pai 2014, Mengel 2012, Gibbons Licalzi Warglien 2021 + Miller 1956 (nb of items individuals can remember)

K-means: MacQueen 1967, Steinhaus 1957, Lloyd 1957, Banerjee Guo and Wang 2005, Banerjee Merugu Dhillon and Ghosh 2005

Table of Contents

• $(\Omega, p, A_i, A_j, u_i, u_j)$: complete information

- $(\Omega, p, A_i, A_j, u_i, u_j)$: complete information
- Ω : (finite) set of two-player normal-form games distributed according to p

- $(\Omega, p, A_i, A_j, u_i, u_j)$: complete information
- Ω : (finite) set of two-player normal-form games distributed according to p
- A_i: (finite) action space of i

- $(\Omega, p, A_i, A_j, u_i, u_j)$: complete information
- Ω : (finite) set of two-player normal-form games distributed according to p
- A_i : (finite) action space of *i*
- $u_i(a_i, a_j; \omega)$: utility of *i* in ω

- $(\Omega, p, A_i, A_j, u_i, u_j)$: complete information
- Ω : (finite) set of two-player normal-form games distributed according to p
- A_i: (finite) action space of i
- $u_i(a_i, a_j; \omega)$: utility of *i* in ω
- $\sigma_i = (\sigma_i(\omega))_{\omega \in \Omega}$: player *i*'s strategy, where $\sigma_i(\omega) \in \Delta A_i$ describes *i*'s behavior in ω .

• Analogy partition of *i*: An_i partition of Ω

- Analogy partition of *i*: An_i partition of Ω
- $\alpha_i \in An_i$ is an analogy class of player *i* (with $\omega \in \alpha_i(\omega)$)

- Analogy partition of *i*: An_i partition of Ω
- $\alpha_i \in An_i$ is an analogy class of player *i* (with $\omega \in \alpha_i(\omega)$)
- $\beta_i(\alpha_i) \in \Delta A_j$ is *i*'s expectation about *j*'s (aggregate) behavior in α_i

- Analogy partition of *i*: An_i partition of Ω
- $\alpha_i \in An_i$ is an analogy class of player *i* (with $\omega \in \alpha_i(\omega)$)
- $\beta_i(\alpha_i) \in \Delta A_j$ is *i*'s expectation about *j*'s (aggregate) behavior in α_i
- $\beta_i = (\beta_i(\alpha_i))_{\alpha_i \in An_i}$ is player *i*'s analogy-based expectation

- Analogy partition of *i*: An_i partition of Ω
- $\alpha_i \in An_i$ is an analogy class of player i (with $\omega \in \alpha_i(\omega)$)
- $\beta_i(\alpha_i) \in \Delta A_j$ is *i*'s expectation about *j*'s (aggregate) behavior in α_i
- $\beta_i = (\beta_i(\alpha_i))_{\alpha_i \in An_i}$ is player *i*'s analogy-based expectation

A) σ_i is a **best-response** to β_i iff for all $\omega \in \Omega$, and all $a_i \in A_i$,

 $u_i(\sigma_i(\omega), \beta_i(\alpha_i(\omega)); \omega) \geq u_i(a_i, \beta_i(\alpha_i(\omega)); \omega)$

- Analogy partition of *i*: An_i partition of Ω
- $\alpha_i \in An_i$ is an analogy class of player *i* (with $\omega \in \alpha_i(\omega)$)
- $\beta_i(\alpha_i) \in \Delta A_j$ is *i*'s expectation about *j*'s (aggregate) behavior in α_i
- $\beta_i = (\beta_i(\alpha_i))_{\alpha_i \in An_i}$ is player *i*'s analogy-based expectation

A) σ_i is a **best-response** to β_i iff for all $\omega \in \Omega$, and all $a_i \in A_i$,

 $u_i(\sigma_i(\omega), \beta_i(\alpha_i(\omega)); \omega) \geq u_i(a_i, \beta_i(\alpha_i(\omega)); \omega)$

B) β_i is **consistent** with σ_j iff for all $\alpha_i \in An_i$,

$$eta_i(lpha_i) = \sum_{\omega \in lpha_i} {\it p}(\omega) \sigma_j(\omega) / \sum_{\omega \in lpha_i} {\it p}(\omega)$$

- Analogy partition of *i*: An_i partition of Ω
- $\alpha_i \in An_i$ is an analogy class of player i (with $\omega \in \alpha_i(\omega)$)
- $\beta_i(\alpha_i) \in \Delta A_j$ is *i*'s expectation about *j*'s (aggregate) behavior in α_i
- $\beta_i = (\beta_i(\alpha_i))_{\alpha_i \in An_i}$ is player *i*'s analogy-based expectation

A) σ_i is a **best-response** to β_i iff for all $\omega \in \Omega$, and all $a_i \in A_i$,

 $u_i(\sigma_i(\omega), \beta_i(\alpha_i(\omega)); \omega) \geq u_i(a_i, \beta_i(\alpha_i(\omega)); \omega)$

B) β_i is **consistent** with σ_j iff for all $\alpha_i \in An_i$,

$$eta_i(lpha_i) = \sum_{\omega \in lpha_i} p(\omega) \sigma_j(\omega) / \sum_{\omega \in lpha_i} p(\omega)$$

Definition

 σ is an ABEE given An iff there is some β such that, for each i,

- **1** σ_i is a best-response to β_i
- **2** β_i is consistent with σ_j

• Data points for player *i*: $\sigma_j(\omega) \in \Delta A_j$ for all $\omega \in \Omega$

- Data points for player i: $\sigma_j(\omega) \in \Delta A_j$ for all $\omega \in \Omega$
- Partition Ω into $C = \{c_1, \ldots, c_K\}$ and choices of $q = (q_k)_k$ with $q_k \in \Delta A_j$ so that (ideally)

$$\min_{C,q} \sum_{k} p(c_k) \sum_{\omega \in c_k} p(\omega | c_k) d(\sigma_j(\omega), q_k)$$

- Data points for player i: $\sigma_j(\omega) \in \Delta A_j$ for all $\omega \in \Omega$
- Partition Ω into $C = \{c_1, \ldots, c_K\}$ and choices of $q = (q_k)_k$ with $q_k \in \Delta A_j$ so that (ideally)

$$\min_{C,q} \sum_{k} p(c_k) \sum_{\omega \in c_k} p(\omega | c_k) d(\sigma_j(\omega), q_k)$$

• $d(x,y) = ||x - y||^2$: Usual K-means clustering

- $d(x, y) = \sum_{a_j} x(a_j) \ln \frac{x(a_j)}{y(a_j)}$: Kullback-Leibler divergence of x to y
- ► $d(x,y) = (\mathbb{E}[x] \mathbb{E}[y])^2$ used in applications where $A_j \subseteq \mathbb{R}$

- Data points for player i: $\sigma_j(\omega) \in \Delta A_j$ for all $\omega \in \Omega$
- Partition Ω into $C = \{c_1, \ldots, c_K\}$ and choices of $q = (q_k)_k$ with $q_k \in \Delta A_j$ so that (ideally)

$$\min_{C,q} \sum_{k} p(c_k) \sum_{\omega \in c_k} p(\omega | c_k) d(\sigma_j(\omega), q_k)$$

►
$$d(x,y) = ||x - y||^2$$
: Usual K-means clustering

- $d(x, y) = \sum_{a_j} x(a_j) \ln \frac{x(a_j)}{y(a_j)}$: Kullback-Leibler divergence of x to y
- ▶ $d(x,y) = (\mathbb{E}[x] \mathbb{E}[y])^2$ used in applications where $A_j \subseteq \mathbb{R}$

Observation: K-means algorithm converges for each above *d* (only **local** minimum):

$$ilde{eta}(c) \equiv \sum_{\omega \in c} p(\omega|c)\sigma_j(\omega) = \arg\min_q \sum_{\omega \in c} p(\omega|c)d(\sigma_j(\omega),q)$$

Definition

An_i is **locally clustered** w.r.t. σ_j iff for all ω , all $\alpha'_i \in An_i$,

 $d(\sigma_j(\omega), \beta_i(lpha_i(\omega))) \leq d(\sigma_j(\omega), \beta_i(lpha_i'))$

Definition

An_i is **locally clustered** w.r.t. σ_j iff for all ω , all $\alpha'_i \in An_i$,

 $d(\sigma_j(\omega), \beta_i(lpha_i(\omega))) \leq d(\sigma_j(\omega), \beta_i(lpha_i'))$

An_i is **globally clustered** w.r.t. σ_j iff An_i is a solution to

$$\min_{C}\sum_{k}p(c_{k})\sum_{\omega\in c_{k}}p(\omega|c_{k})d(\sigma_{j}(\omega),\tilde{eta}(c_{k}))$$

Definition

An_i is **locally clustered** w.r.t. σ_j iff for all ω , all $\alpha'_i \in An_i$,

 $d(\sigma_j(\omega), \beta_i(\alpha_i(\omega))) \leq d(\sigma_j(\omega), \beta_i(\alpha'_i))$

An_i is **globally clustered** w.r.t. σ_j iff An_i is a solution to

$$\min_{C} \sum_{k} p(c_k) \sum_{\omega \in c_k} p(\omega | c_k) d(\sigma_j(\omega), \tilde{\beta}(c_k))$$

Definition

 (σ, An) is a locally (resp. globally) **Clustered ABEE** iff

Definition

An_i is **locally clustered** w.r.t. σ_j iff for all ω , all $\alpha'_i \in An_i$,

 $d(\sigma_j(\omega), \beta_i(\alpha_i(\omega))) \leq d(\sigma_j(\omega), \beta_i(\alpha'_i))$

An_i is **globally clustered** w.r.t. σ_j iff An_i is a solution to

$$\min_{C} \sum_{k} p(c_k) \sum_{\omega \in c_k} p(\omega | c_k) d(\sigma_j(\omega), \tilde{\beta}(c_k))$$

Definition

 (σ, An) is a locally (resp. globally) **Clustered ABEE** iff σ is an ABEE given An

Definition

An_i is **locally clustered** w.r.t. σ_j iff for all ω , all $\alpha'_i \in An_i$,

 $d(\sigma_j(\omega), \beta_i(\alpha_i(\omega))) \leq d(\sigma_j(\omega), \beta_i(\alpha'_i))$

An_i is **globally clustered** w.r.t. σ_j iff An_i is a solution to

$$\min_{C} \sum_{k} p(c_k) \sum_{\omega \in c_k} p(\omega | c_k) d(\sigma_j(\omega), \tilde{\beta}(c_k))$$

Definition

 (σ, An) is a locally (resp. globally) Clustered ABEE iff

- **1** σ is an ABEE given An
- **2** An is locally (resp. globally) clustered wrt σ

• If behavior of one player were independent of *An* (say when one strategy is dominant), then a clustered ABEE would always exist.

- If behavior of one player were independent of *An* (say when one strategy is dominant), then a clustered ABEE would always exist.
- But, in general may fail to exist:

- If behavior of one player were independent of *An* (say when one strategy is dominant), then a clustered ABEE would always exist.
- But, in general may fail to exist:

Example

Three (equally likely) matching-pennies games: ω_x , x = a, b, c, where 0 < a < b < c < 2

$$egin{array}{cccc} \omega_x & L & R \ U & (1+x,0) & (0,1) \ D & (0,1) & (1,0) \end{array}$$

Claim. When $K_1 = 2$ and $K_2 = 3$ there is no Clustered ABEE

- We provide a **mixed extension** by considering λ_i to be a probability distribution over An_i
 - \rightarrow player *i* is exposed to data $(\bar{\sigma}_j(\omega))_{\omega}$ aggregated over λ_j (frequencies of play at population level)

- We provide a **mixed extension** by considering λ_i to be a probability distribution over An_i
 - \rightarrow player *i* is exposed to data $(\bar{\sigma}_j(\omega))_{\omega}$ aggregated over λ_j (frequencies of play at population level)
 - \rightarrow player *i* using An_i aggregates $(\bar{\sigma}_j(\omega))_{\omega}$ over ω , according to partition An_i

- We provide a **mixed extension** by considering λ_i to be a probability distribution over An_i
 - \rightarrow player *i* is exposed to data $(\bar{\sigma}_j(\omega))_{\omega}$ aggregated over λ_j (frequencies of play at population level)
 - \rightarrow player *i* using An_i aggregates $(\bar{\sigma}_j(\omega))_{\omega}$ over ω , according to partition An_i

- We provide a **mixed extension** by considering λ_i to be a probability distribution over An_i
 - \rightarrow player *i* is exposed to data $(\bar{\sigma}_j(\omega))_{\omega}$ aggregated over λ_j (frequencies of play at population level)
 - \rightarrow player *i* using An_i aggregates $(\bar{\sigma}_j(\omega))_{\omega}$ over ω , according to partition An_i
 - ► we define "distributional" ABEE and "clustered distributional" ABEE

- We provide a **mixed extension** by considering λ_i to be a probability distribution over An_i
 - \rightarrow player *i* is exposed to data $(\bar{\sigma}_j(\omega))_{\omega}$ aggregated over λ_j (frequencies of play at population level)
 - \rightarrow player *i* using An_i aggregates $(\bar{\sigma}_j(\omega))_{\omega}$ over ω , according to partition An_i
 - ► we define "distributional" ABEE and "clustered distributional" ABEE
 - ▶ we show that a clustered distributional ABEE always exists in finite environments

- We provide a **mixed extension** by considering λ_i to be a probability distribution over An_i
 - \rightarrow player *i* is exposed to data $(\bar{\sigma}_j(\omega))_{\omega}$ aggregated over λ_j (frequencies of play at population level)
 - \rightarrow player *i* using An_i aggregates $(\bar{\sigma}_j(\omega))_{\omega}$ over ω , according to partition An_i
 - ► we define "distributional" ABEE and "clustered distributional" ABEE
 - ▶ we show that a clustered distributional ABEE always exists in finite environments
- How can we **interpret** probability distribution over analogy partitions?

- We provide a **mixed extension** by considering λ_i to be a probability distribution over An_i
 - \rightarrow player *i* is exposed to data $(\bar{\sigma}_j(\omega))_{\omega}$ aggregated over λ_j (frequencies of play at population level)
 - \rightarrow player *i* using An_i aggregates $(\bar{\sigma}_j(\omega))_{\omega}$ over ω , according to partition An_i
 - ► we define "distributional" ABEE and "clustered distributional" ABEE
 - ▶ we show that a clustered distributional ABEE always exists in finite environments
- How can we **interpret** probability distribution over analogy partitions?
 - \rightarrow Learning Foundation. Populations of players *i* with random matching, at time t + 1:

- We provide a **mixed extension** by considering λ_i to be a probability distribution over An_i
 - \rightarrow player *i* is exposed to data $(\bar{\sigma}_j(\omega))_{\omega}$ aggregated over λ_j (frequencies of play at population level)
 - \rightarrow player *i* using An_i aggregates $(\bar{\sigma}_j(\omega))_{\omega}$ over ω , according to partition An_i
 - ► we define "distributional" ABEE and "clustered distributional" ABEE
 - ▶ we show that a clustered distributional ABEE always exists in finite environments
- How can we **interpret** probability distribution over analogy partitions?
 - \rightarrow Learning Foundation. Populations of players *i* with random matching, at time t + 1:
 - Stage 1: subjects see datasets (ω, σ̄^t_j(ω))_{ω∈Ω} from population in period t and perform categorization into K subsets (K-means clustering)

- We provide a **mixed extension** by considering λ_i to be a probability distribution over An_i
 - \rightarrow player *i* is exposed to data $(\bar{\sigma}_j(\omega))_{\omega}$ aggregated over λ_j (frequencies of play at population level)
 - \rightarrow player *i* using An_i aggregates $(\bar{\sigma}_j(\omega))_{\omega}$ over ω , according to partition An_i
 - ► we define "distributional" ABEE and "clustered distributional" ABEE
 - ▶ we show that a clustered distributional ABEE always exists in finite environments
- How can we **interpret** probability distribution over analogy partitions?
 - \rightarrow Learning Foundation. Populations of players *i* with random matching, at time t + 1:
 - Stage 1: subjects see datasets (ω, σ̄^t_j(ω))_{ω∈Ω} from population in period t and perform categorization into K subsets (K-means clustering)
 - Stage 2: game ω is picked for each player i who has to make a choice in A_i (Best response to representative point (ABEE))

Table of Contents

Introduction

2 Theoretical Setup

Self-Attractive Categorization: A Beauty Contest Illustration

- Fundamental value $\theta \in \Theta \subseteq \mathbb{R}$
- $U_i(a_i, a_{-i}; \theta) = -(1-r)(a_i \theta)^2 r(a_i a_{-i})^2$
- Hence, $BR_{ heta} = (1-r) heta + r\mathbb{E}(a_{-i})$
- Players observe θ and use K categories

Similar to Morris and Shin (2002) except that no private information (but Categorization approach to form expectation)

$$\bar{\theta}_k = \mathbb{E}[\theta | \theta \in \Theta_k]$$

$$ar{ heta}_k = \mathbb{E}[heta| heta\in\Theta_k]$$

• ABEE requires that

$$a(heta) = (1-r) heta + rar{ heta}_k$$

$$\bar{\theta}_k = \mathbb{E}[\theta | \theta \in \Theta_k]$$

• ABEE requires that

$$a(heta) = (1-r) heta + rar{ heta}_k$$

Proposition

Take any partition $(\Theta_k)_{k=1}^K$ such that $\overline{\theta}_k$ are all different. Then for r sufficiently close to 1, any such partition together with the corresponding ABEE is a CABEE

Proof. When r is close to 1, actions in Θ_k are all close to $\overline{\theta}_k$ and the clustering of such datapoints lead to $(\Theta_k)_{k=1}^K$

$$\bar{\theta}_k = \mathbb{E}[\theta | \theta \in \Theta_k]$$

• ABEE requires that

$$a(heta) = (1-r) heta + rar{ heta}_k$$

Proposition

Take any partition $(\Theta_k)_{k=1}^K$ such that $\overline{\theta}_k$ are all different. Then for r sufficiently close to 1, any such partition together with the corresponding ABEE is a CABEE

Proof. When r is close to 1, actions in Θ_k are all close to $\overline{\theta}_k$ and the clustering of such datapoints lead to $(\Theta_k)_{k=1}^{K}$

- In other words, categorizations are self-attractive in this environment
- Can possibly be related to echo chambers?
- Very different insight from Morris and Shin (uniqueness)

Conclusion

- Endogenized categorization in a simple framework that combines Psychology/Machine Learning and ABEE
- We also related (in the paper) self-attractive (*resp.* self-repelling) partitions to strategic complementarity (*resp.* substitutability) in a class of games with linear best-replies.
- Endogenize number K of clusters (e.g. requiring variance is below some threshold)?
- Study learning convergence?

THANK YOU!