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Introduction Motivation

Question (?) Hansen, 1982 (Appendix)

Dovonon and Hall (2018) (JoE)? Hansen and Lee (2021) (ECMA)? I
believe, but results still need it for financial economics (in particular
empirical finance).
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Introduction Motivation

Motivation

Even though both characterizations are theoretically equivalent, the
estimators of the parameters of interest may in general be different
under the two representations:

1 The Beta representation is formulated to analyze the (estimates of
the) factor risk premia, δ, and the Jensen alphas, α;

2 While the SDF representation is intended to analyze the (estimates
of the) parameters that enter into the assumed stochastic discount
factor, λ, and the resulting pricing errors, π.

The fact that both representations are equivalent, imply that there is
a one-to-one mapping between δ and λ; and between α and π, which
may facilitates the comparison of the estimators.

However, this theoretical equivalence does not necessarily entail an
empirical equivalence.
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Introduction Motivation

Question

Therefore, the empirical/experimental questions that arise are:1

1 Is it better to make inferences on δ or on λ? And
analogously:

2 Is it better to make inferences on α or on π?

3 Or, equivalently, is it better to perform estimation of the
Beta representation (i.e., recover δ and α), or on the SDF
representation (i.e., on λ and π?)

1From now on, we will refer only to GMM estimators of either the Beta or the SDF
representations, although MLE remains as possible as ”risky” in terms of
misspecifications.
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Introduction Contribution

Contribution

Our empirical and analytical results show that, in general, the Beta
method is more efficient but less accurate in pricing vs. the SDF
method; that is, δ and π have lower simulated, adjusted standard
errors (coefficients of variation) than the λ and α estimators.

To disentangle the source of the results, we extend Jagannathan and
Wang (2002) univariate Gaussian and Kan and Zhou (2001)
univariate non-Gaussian analytical results to the case of
multi-factor models.

Valuable as researchers and practitioners would have an a priori idea
about the benefits and costs of either representation. We provide an
out-of-sample (OOS) trading exercise that helps on this.

The source of the efficiency of the Beta method over the SDF
method, is rooted in the higher-order moments effects, that impact
the SDF-based estimation, but hardly the Beta.
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Introduction Contribution

Literature Review

First attempt to assess the performance in finite samples of the
Beta versus the SDF approaches, and using a standardized
single-factor model, is Kan and Zhou (1999) who show that SDF
method may be much less efficient than the Beta method.

Jagannathan and Wang (2002) and Cochrane (2001) adverse this
conclusion in a non-standardized single-factor model and based on
joint normality assumption for both the asset returns and the
factors.

They conclude that the SDF method is as efficient as the Beta method
for estimating risk premiums.
Model specification tests are equally powerful.

Yet Kan and Zhou (2001) show that under more general distributional
assumptions, inference based on λ can still be less reliable than
inference based on δ in realistic situations where the factors are
leptokurtic.
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Formal Set Up – Asymptotics Beta method

The Beta Method

The standard linear asset-pricing model under the Beta representation
is given by

E[rt] = Bδ. (1)

Equivalently, we can identify B as a parameter in the time-series
regression

rt = ϕ+Bft + ϵt, (2)

Then, we can derive the associated set of moment conditions gb of
the factor model as:

E [rt −B(δ − µ+ ft)] = 0N ,
E [[rt −B(δ − µ+ ft)]f

′
t ] = 0N×K ,

E [ft − µ] = 0K×1,
E
[
(ft − µ) (ft − µ)′ −Σ

]
= 0K×K ,

(3)

The corresponding unknown parameters are
θ∗ = [δ∗′, vec(B∗)′, µ∗′, vec(Σ∗)]

′
. The observable variables are

xt = [r′t, f
′
t ]
′.
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Formal Set Up – Asymptotics The SDF method

The SDF Method

To derive the SDF representation from the Beta one, we substitute
the expression for B ≡ E[rt(ft − µ)′]Σ−1 into equation (22) and
rearrange terms:

E[rt]−E[rtδ
′Σ−1ft−rtδ

′Σ−1µ′] = E[rt(1+δ′Σ−1µ−δ′Σ−1ft)] = 0N .

For traded factors, δ = µ so 1 + δ′Σ−1µ = 1 + µ′ Σ−1µ ≥ 1 and

E

[
rt

(
1− δ′Σ−1

1 + δ′Σ−1µ
ft

)]
= 0N .

Now transform the vector of risk premium δ into a vector λ as

λ =
Σ−1δ

1 + δ′Σ−1µ
, (4)

to obtain the following SDF representation (gs),

E[rt(1− λ′ft)] = 0N , (5)

where mt ≡ 1− λ′ft as E[rtmt] = 0N .
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Formal Set Up – Asymptotics Comparison of the methods

Beta vs. SDF Method

There is a one-to-one mapping between the factor risk premium δ and
the SDF parameters λ, which facilitates the comparison of the two
methods.

Hence, we can derive an estimate of λ not only by the SDF but also
by the Beta representation; by the same token we can derive an
estimate of δ not only by the Beta but also by the SDF method.

From the previous definition of λ in equation (28), we have:

λ = δ′
(
Σ+ δµ′)−1

, or δ =
Σλ

1− µ′λ
. (6)

In a similar way, by substituting (30) into π, we can find a one-to-one
mapping between π from the SDF and α from the Beta method:

π =
(
1 + δ′Σ−1µ

)−1
α, or α =

(
1 + δ′Σ−1µ

)
π. (7)
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Formal Set Up – Asymptotics Large-Sample Analytical Results

Asymptotic Results

As in Jagannathan and Wang (2002), if one is ready to use
asymptotics, then clear-cut analytical results can be derived.

Theorem (1 – Single-factor – From Kan and Zhou (2001) but we use it to
explain the structure of our general multifactor result )

In the case of a single-factor, the asymptotic variance of the GMM risk
premium estimate from the SDF representation is,

Avar(λ̂) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+

σ2(σ4 + δ4)

(σ2 + µδ)4
+

2κ3(δ
3 − δσ2) + δ2

(
κ4 − 3σ4

)
(σ2 + µδ)4

, (8)

where σ2 is the variance of the single-factor ft, and κ3, κ4 are the
skewness and kurtosis.
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Formal Set Up – Asymptotics Large-Sample Analytical Results

Asymptotic Results (Single-factor)

Theorem (1 – Single-factor)

The equivalent asymptotic covariance for the Beta representation is,

Avar(λ∗) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+

σ6

(σ2 + µδ)4
, (9)

when using a first-order Delta approximation, and,

Avar(λ∗) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+

σ6

(σ2 + µδ)4
− 2

(
σ4µ

)
(σ2 + µδ)5

κ3,δ,

(10)

when using a second-order Delta approximation, where κ3,δ is the
asymptotic third-order central moments of the estimator of δ.

Proof.: See Appendix A of the paper.
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Formal Set Up – Asymptotics Large-Sample Analytical Results

Single-factors Gaussian, Beta vs. SDF

The corresponding asymptotic variance in the single factor Gaussian case
is (Jagannathan et al., 2002):

Avar(λ̂) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Ω−1β

)−1
+

σ2(σ4 + δ4)

(σ2 + µδ)4
. (11)

Corollary (1)

Consider a single-factor linear asset pricing model (as in (22) but ft univariate),
where ft returns are from a portfolio of non-traded assets, and consider these
returns to have a Gaussian distribution. Then, when GMM is used for the
estimation of the parameters (obtained under the uncentered first-stage
(W = I)), the Beta representation has a higher efficiency than the SDF
representation when measuring the risk premia, but the difference is negligible for
asset pricing tests.

Proof.: In this case Avar(λ̂)−Avar(λ∗) = σ2δ4/
(
σ2 + µδ

)4
, that is

always positive.
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Formal Set Up – Asymptotics Large-Sample Analytical Results

GMM Structure of Covariance Matrix of Moments
(Ss = gsg

′
s and Sb = gbg

′
b)

But why we get this systematic difference in results?

If we note the covariance matrix structure of the Beta representation
(Sb = gbg

′
b), the matrix is divided in two blocks, and the

higher-order moments have no effects on the results on the first block
of the equation, that is where the δ is estimated:

Sb =


Ω µΩ 0 0
µΩ (µ2 + σ2)Ω 0 0
0 0 σ2 κ3
0 0 κ3 κ4 − σ4

 , (12)

This doesn’t happen in the covariance matrix of the SDF
representation (Ss = gsg

′
s).
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Empirical Results Simulation/Empirical Setup

Bootstrap – DGP

We develop an empirical simulation, where the returns are generated
by bootstrapping the observed historical returns, and factors are
generated by bootstrapping the observed historical factors:

rt = B(δ − µ+ ft) + ϵt, ϵt|ft ∼ N(0,Ω), ft ∼ F, (13)

where F is the sample factor matrix observed (T ×K).

The factors ft are drawn from their empirical distribution which allows
for non-normalities, autocorrelation, heteroskedasticity and dependence.

To artificially generate the excess returns we use the model in (13).

Repeat this independently to obtain 10,000 draws of the estimators.
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Empirical Results Simulation/Empirical Setup

Bootstrap Test

We estimate a ratio of the relative standard errors of the method,

σr(λ̂) = σ(λ̂)/E(λ̂), and, σr(λ
∗) = σ(λ∗)/E(λ∗), (14)

and with them we measure the four ratios, σr(λ̂
U

1 )/σr(λ
∗),

σr(λ̂
U

2 )/σr(λ
∗), σr(λ̂

C

1 )/σr(λ
∗), and σr(λ̂

C

2 )/σr(λ
∗), where the U

and C indicate estimators obtained by the GMM from the uncentred
and centered SDF representations, and with 1 and 2 represent
estimators obtained by the first and second-stage methods.

With the bootstrap of the ratios, we test the null hypothesis that
the interval of confidence (measured at p-values of 10%, 5% and 1%)
is equal to 1, by rejecting the test when both extremes of the interval
are superior to 1, or both extremes are inferior to 1.
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Empirical Results Simulation/Empirical Setup

Market Risk Factor Modified (Arismendi and Kimura,
2016) – Increasing Third-order Moments
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Figure 1: Effects of the increasing factror skewness and kurtosis on the ratio of
the relative standard error between the Beta and the SDF methods risk premium
estimation.
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Empirical Results Comparison of Risk premium Estimators

Gaussian Non-traded Factors Simulation

Surprise? (No, Ravi’s results are great.)

T σr(λ̂
U

1 )/σr(λ
∗) σr(λ̂

U

2 )/σr(λ
∗) σr(λ̂

C

1 )/σr(λ
∗) σr(λ̂

C

2 )/σr(λ
∗)

60 0.9948*** 0.9677*** 1.0507*** 0.9961
360 0.9888*** 0.9263*** 1.0368*** 0.9696***
600 0.9949*** 0.9349*** 1.0436*** 0.9810***
1000 0.9919*** 0.9374*** 1.0405*** 0.9849***
2000 1.0000 0.9315*** 1.0483*** 0.9794***
3000 1.0000 0.9335*** 1.0483*** 0.9815***
4000 0.9999 0.9321*** 1.0480*** 0.9801***
5000 1.0000 0.9306*** 1.0478*** 0.9784***
15000 0.9999*** 0.9364*** 1.0481*** 0.9850***

Table 1: Relative standard errors of risk premium estimated from
the CAPM model: US data, 10 size-sorted (non-traded, Gaussian)
portfolios.
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Empirical Results Comparison of Risk premium Estimators

Relative standard errors for the CAPM model

T σr(λ̂
U

1 )/σr(λ
∗) σr(λ̂

U

2 )/σr(λ
∗) σr(λ̂

C

1 )/σr(λ
∗) σr(λ̂

C

2 )/σr(λ
∗)

60 1.0735*** 1.0003 1.1101*** 1.0522***
360 1.0750*** 1.0047*** 1.1010*** 1.0306***
600 1.0613*** 1.0026*** 1.0871*** 1.0280***
1000 1.0652*** 1.0020** 1.0912*** 1.0279***
Asym 1.0863 (1st)

Table 2: Relative standard errors of risk premium estimated from
the CAPM model: US data, 10 size-sorted portfolios.

Juan Arismendi-Zambrano August 27, 2024 19 / 25



Empirical Results Comparison of Risk premium Estimators

Relative Standard Errors for Carhart Model

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)
Market

60 1.1823*** 1.0553*** 1.5959*** 1.4850***
360 1.3860*** 1.2834*** 1.7107*** 1.5805***
600 1.4097*** 1.2949*** 1.6881*** 1.5452***
1000 1.4567*** 1.3483*** 1.7079*** 1.5760***
Asym 1.4157

Size
60 2.9360*** 2.6395*** 1.8828*** 1.9595***
360 0.3931*** 0.3665*** 0.2863*** 0.2762***
600 0.2440*** 0.2245*** 0.1891*** 0.1794***
1000 0.1456*** 0.1334*** 0.1204*** 0.1133***
Asym 1.4635

Value
60 1.5132*** 1.2923*** 12.6684*** 10.5390***
360 3.2375*** 2.8995*** 6.8216*** 5.6345***
600 3.4535*** 3.1444*** 5.4927*** 4.7474***
1000 3.6626*** 3.3574*** 4.9674*** 4.3756***
Asym 4.4710

Momentum
60 2.5915*** 2.1321*** 17.5486*** 13.2040***
360 4.3878*** 4.0154*** 8.4040*** 7.2284***
600 4.7195*** 4.3607*** 7.2355*** 6.4094***
1000 4.8740*** 4.6044*** 6.5327*** 5.9530***
Asym 4.9860

Table 3: Relative standard errors of risk premium estimated from
the Carhart model: US data, 10 size-sorted portfolios.
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Empirical Results Comparison of Risk premium Estimators

Relative Standard Errors Pricing Accuracy

T σr(π̂
U
1 )/σr(π

∗) σr(π̂
U
2 )/σr(π

∗) σr(π̂
C
1 )/σr(π

∗) σr(π̂
C
2 )/σr(π

∗)

CAPM

60 0.8430*** 1.1292*** 0.8425*** 1.0438***
360 0.8337*** 0.9962 0.8334*** 0.9901**
600 0.8286*** 1.0018 0.8286*** 0.9987
1000 0.8319*** 0.9992 0.8317*** 0.9987
Asymptoticave (1st Ord) 0.9951

Fama-French

60 0.6475*** 1.5690*** 0.6539*** 1.6775***
360 0.7197*** 1.1929*** 0.7198*** 1.1480***
600 0.7415*** 1.1035*** 0.7420*** 1.0298*
1000 0.7575*** 1.0008 0.7576*** 0.9768**
Asymptoticave (1st Ord) 0.7779

Asness-Moskowitz-Pedersen

60 0.6307*** 1.3723*** 0.6282*** 1.4370***
360 0.6233*** 1.1571*** 0.6200*** 1.1372***
600 0.6414*** 1.1250*** 0.6436*** 1.1055***
1000 0.6670*** 1.1054*** 0.6684*** 1.0843***
Asymptoticave (1st Ord) 0.6644

Carhart

60 0.6053*** 1.4469*** 0.6065*** 1.4902***
360 0.7910*** 1.6388*** 0.7868*** 1.4804***
600 0.9292*** 1.6034*** 0.9204*** 1.4802***
1000 1.1151*** 1.6688*** 1.1073*** 1.5735***
Asymptoticave (1st Ord) 0.7337

Table 4: Relative standard errors of pricing errors for four
alternative asset pricing models: US data, 10 size-sorted
portfolios.
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Economic Significance (OOS Mean-Variance Estimation)

Mean-Variance Estimation (Optimal Portfolio)

Consider a linear asset pricing model as in equation (33), and sample
asset returns observations R of dimension T ×N from the asset
returns rt.

From R, using the SDF representation as in equation (29), we

Estimate the K-factor pricing model using the known factors ft from
which we have a sample factor matrix F of dimension K ×N , and

Estimate the corresponding sample error Ẽ with dimension T ×N .
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Economic Significance (OOS Mean-Variance Estimation)

Mean-Variance Estimation (Cont.)

The new filtered returns are R̃ = R− Ẽ, that with the SDF
representation is estimated as,

R̃ = R− R(1− λ̃
′
F)︸ ︷︷ ︸

estimated error Ẽ

, (15)

where λ̃ is the dimension K × 1 estimated risk premium, and 1 is the
unit vector.

With the resulting filtered excess returns R̃ we compute the required
inputs for the optimal mean-variance portfolio, the sample mean and
sample covariance as estimates of the expected mean and variance

µrt = E [rt] =
¯̃R, (16)

Σrt = E
[(
rt − µrt

) (
rt − µrt

)′]
= COV (R̃), (17)

and obtain optimal allocation rules ω̃.
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Economic Significance (OOS Mean-Variance Estimation)

Results (OOS) – Smooth Initialization
Model difference Initial window size

360 480 600
Fama-French

SR∗ 7.15 9.23 10.32

SR∗ − SRU
1 −1.876 −0.812 −0.176

SR∗ − SRU
2 −0.603 0.449 1.124

SR∗ − SRC
1 −1.818 −0.747 −0.105

SR∗ − SRC
2 −0.563 0.498 1.175

Asness-Moskowitz-Pedersen
SR∗ 19.65 20.90 25.36

SR∗ − SRU
1 9.590 7.568 9.672

SR∗ − SRU
2 7.052 6.445 8.060

SR∗ − SRC
1 10.497 8.228 10.566

SR∗ − SRC
2 7.162 6.347 8.168

Carhart
SR∗ 19.85 20.85 25.18

SR∗ − SRU
1 5.981 5.250 6.733

SR∗ − SRU
2 6.004 5.427 7.099

SR∗ − SRC
1 5.919 5.224 6.822

SR∗ − SRC
2 6.259 5.671 7.416

Table 5: Sharpe ratio of mean-variance optimal portfolios with
parameters estimated with Beta and SDF representations
(smooth expected covariance initialization model).
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Conclusions

Conclusions

One of few paper in which a trade-off between estimation
efficiency and pricing accuracy is explicitly used to better
understand the differences of the Beta and SDF representations.

This evidence is useful for researchers and practitioners because they
could choose a proper procedure in terms of a given application.

Previous published studies that compared the two approaches were
performed under conditions (single factor, normality) that are
empirically insufficient to differentiate their performance .

Once we relax those conditions, we find evidence suggesting that Beta
representations may easily lead to better risk premium estimators
while the SDF method leads to better pricing error estimators and
hence pricing accuracy.
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Factors Moments – Empirical Evidence

Gaussian Factors vs. Non-Gaussian Factors
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Figure 2: US: Kernel density estimators vs. benchmark Gaussian distributions –
Fama-French factors + Carhart’s momentum

2

2Scott’s rule window = σ(4/((d+ 2) ∗N))(1/(d+ 4))
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Factors Moments – Empirical Evidence

Motivation: Small Sample Statistics (Skewness of α and δ
(size factor – smb)) – (Some Answers)
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Figure 3: Skewness of α and δ for the size factor: US data, 10 size-sorted
portfolios.
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Motivation

Motivation

Any asset pricing model can be formally characterized either under a
Beta or a stochastic discount factor (SDF) representation.

The SDF representation, states that in the absence of arbitrage
opportunities, the value of any asset should equal the expected value
of the product of the payoff of the asset and the SDF.

Whereas according to the Beta representation, the expected return
on any asset is a linear function of its beta exposures, each multiplied
by the corresponding factor risk premia.
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Motivation

Trade-off

But why a trade-off?

Let us see the following relationship in the SDF representation:

Error = returns× (1− factor× risk premia) , (18)

that means the variance,

σ2
Error = σ2

returns − σ2
returns×factor×risk premia + cov’s. (19)

Similarly, in Beta representation:

returns = alpha + beta× (risk premia− µ+ factor) + ϵ, (20)

that means the variance,

σ2
returns = σ2

alpha + beta× σ2
(risk premia−µ+factor) + σ2

ϵ + cov’s. (21)

Juan Arismendi-Zambrano August 27, 2024 29 / 25



Literature Review

Literature Review

It is a common in empirical finance to compare the performance of
different econometric procedures either within the Beta framework,
or within the SDF method.

For example, Jagannathan and Wang (2002) compare the
asymptotic efficiency of the two-stage cross-sectional regression and
the Fama-MacBeth procedures with a Beta pricing model.

Shanken and Zhou (2007), analyze the finite sample properties and
pricing performance of the Fama-MacBeth, maximum likelihood,
and GMM for Beta pricing models.

Other examples are Farnsworth et al. (2002), Velu and Zhou (1999),
Kan and Robotti (2008), Kan and Robotti (2009), Chen and Kan
(2004), Amsler and Schmidt (1985), and Ang et al. (2020) just to
mention a few.
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Formal Set Up – Asymptotics Beta method

The Beta Method

The standard linear asset-pricing model under the Beta representation
is given by

E[rt] = Bδ, (22)

where

rt vector of N excess stock returns

ft vector of K economy-wide pervasive risk factors

µ and Σ the mean and the covariance matrix of the factors

δ is the vector of factor risk premia

and B is the matrix of N ×K factor loadings which measure the
exposure of asset returns to the factors, defined as

B ≡ E[rt(ft − µ)′]Σ−1. (23)
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Formal Set Up – Asymptotics Beta method

The Beta Method (Cont.) – Higher-order Moments of
Factors

We consider that factors have higher-order moments defined by:

E[ft ⊗ (ftf
′
t)] = m3 as the third-order uncentered co-moment

tensor of ft (related to co-skewness, defined as
E[(ft − µ)⊗ ((ft − µ)(ft − µ)′)] = κ3), and

E[(ftf
′
t)⊗ (ftf

′
t)] = m4 as the fourth-order uncentered co-moment

tensor of ft (related to co-kurtosis, defined as
E[(ft − µ)(ft − µ)′ ⊗ ((ft − µ)(ft − µ)′)] = κ4)
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Formal Set Up – Asymptotics Beta method

The Beta Method (Cont.)

Equivalently, we can identify B as a parameter in the time-series
regression

rt = ϕ+Bft + ϵt,

Hence, the Beta representation in equation (22) imposes the following
restriction on the time-series intercept

ϕ = (δ − µ)B.

By substituting this restriction in the regression equation, we obtain:

rt = B (δ − µ+ ft) + ϵt where

{
E [ϵt] = 0N
E [ϵtf

′
t ] = 0N×K

. (24)
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Formal Set Up – Asymptotics Beta method

The Beta Method (Cont.)

Hence, the associated set of moment conditions gb of the factor
model are:

E [rt −B(δ − µ+ ft)] = 0N ,
E [[rt −B(δ − µ+ ft)]f

′
t ] = 0N×K ,

E [ft − µ] = 0K×1,
E
[
(ft − µ) (ft − µ)′ −Σ

]
= 0K×K ,

(25)

The corresponding unknown parameters are
θ∗ = [(δ∗)′, vec(B∗)′, µ∗′, vec(Σ∗)]′.

The vec(·) operator ‘vectorizes’ the B∗
N×K and the Σ∗ matrices by

stacking their columns.

The observable variables are xt = [r′t, f ′
t ]
′.
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Formal Set Up – Asymptotics Beta method

The Beta Method (Cont.) – GMM

Then, the function g in the moment restriction is given by

g(xt, θ) =

 rt −Bft
vec[(rt −Bft)f

′
t ]

ft − µ


(N+NK+K)×1

,

in which, for any θ, the sample analogue of E[g(xt, θ)] is equal to

gT (θ) =
1

T

T∑
t=1

g(xt, θ).

We choose θ to solve

min
θ

gT (θ)
′W−1gT (θ). (26)
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Formal Set Up – Asymptotics Beta method

The Beta Method (Cont.) – GMM

We choose θ to solve

min
θ

gT (θ)
′W−1gT (θ). (27)

We consider W = I in equation (27).

The second-stage GMM estimator θ2 is the solution of equation (27)
when the weighting matrix is the spectral density matrix of g(xt, θ1):

S =

∞∑
j=−∞

E[g(xt, θ1)g(xt, θ1)
′],

where S is of size N ×N .
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Formal Set Up – Asymptotics The SDF method

The SDF Method

To derive the SDF representation from the Beta one, we substitute
the expression for B in (23) into equation (22) and rearrange terms:

E[rt]−E[rtδ
′Σ−1ft−rtδ

′Σ−1µ′] = E[rt(1+δ′Σ−1µ−δ′Σ−1ft)] = 0N .

For traded factors, δ = µ so 1 + δ′Σ−1µ = 1 + µ′ Σ−1µ ≥ 1 and

E

[
rt

(
1− δ′Σ−1

1 + δ′Σ−1µ
ft

)]
= 0N .

Now transform the vector of risk premia δ into a vector λ as

λ =
Σ−1δ

1 + δ′Σ−1µ
, (28)

to obtain the following SDF representation (gs),

E[rt(1− λ′ft)] = 0N , (29)

where mt ≡ 1− λ′ft as E[rtmt] = 0N .
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Formal Set Up – Asymptotics The SDF method

The SDF Method (Cont.) – GMM

From the moment restrictions, equation (29), we obtain the vector of
N pricing errors defined as

π = E[rt]− E[rtf
′
t ]λ

Writing the sample pricing errors as

gT (λ) = −E[rt] + E[rtf
′
t ]λ,

define DU = −∂gT (λ)
∂λ′ = E[rtf

′
t ], the second-moment matrix of

returns and factors.

The first-order condition to minimize the quadratic form of the sample
pricing errors, equation (27), is −

(
DU
)′
W[E[rt]−DUλ′] = 0, where

W is the GMM weighting matrix of size N ×N .
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Formal Set Up – Asymptotics Comparison of the methods

Beta vs. SDF Method

There is a one-to-one mapping between the factor risk premia δ and
the SDF parameters λ, which facilitates the comparison of the two
methods.

Hence, we can derive an estimate of λ not only by the SDF but also
by the Beta representation; by the same token we can derive an
estimate of δ not only by the Beta but also by the SDF method.

From the previous definition of λ in equation (28), we have:

λ = δ′
(
Σ+ δµ′)−1

, or δ =
Σλ

1− µ′λ
. (30)

In a similar way, by substituting (30) into π, we can find a one-to-one
mapping between π from the SDF and α from the Beta method:

π =
(
1 + δ′Σ−1µ

)−1
α, or α =

(
1 + δ′Σ−1µ

)
π. (31)
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Results (Cont.)

Single-factors Gaussian, Beta vs. SDF

Corollary (2)

Consider a single-factor linear asset pricing model (as in (22) but ft
univariate), where ft returns are from a portfolio of non-traded assets, and
consider these returns to have higher-order moments that deviate from a
Gaussian distribution, but where the first-order Delta approximation is
precise (error of the approximation is non-detectable in statistical tests).
Consider the returns of the factors to have stylized facts such as daily
returns (negative skewness and heavy tailed). Then, when GMM is used
for the estimation of the parameters (obtained under the uncentred
first-stage (W = I)), the Beta representation has a higher efficiency than
the SDF representation when measuring the risk premium.
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Results (Cont.)

Single-factors Gaussian, Beta vs. SDF

Proof.: Consider that the first-order Delta method provides an accurate
approximation to the asymptotic variances of the estimators, i.e. the
third-, fourth- and higher-order moments in the Taylor expansions for the
Delta approximation are negligible. In this case, the difference between the
asymptotic variance of the SDF and the Beta methods can be expressed as,

Avar(λ̂)−Avar(λ∗) =
σ2(δ4)

(σ2 + µδ)4
+
µ2
(
κ4 − 2κ3(

σ2−δ2

δ )− 3σ2
)

(σ2 + µδ)4
. (32)

Consider the following conditions: δ < σ (volatility is higher than expected
returns), 3σ2 < κ4 (heavy tailed returns), and κ3 < 0 (negatively skewed
returns), then the second term of right-hand side of equation (32) is
positive and the result is yield.

But why we get this systematic difference in results?
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Results (Cont.)

Single-factors Gaussian, Beta vs. SDF

Proof.: In this case,

Avar(λ̂)−Avar(λ∗) = σ2δ4/
(
σ2 + µδ

)4
, (33)

that is always positive. However, for the ‘standard’ moment values typical
values of factors, this term is small.

For example, consider single-factor models with Gaussian returns,
where the mean and variance follow the values of the factors (for the
period of the dataset), (market risk, size, value, and momentum
factors).

Then, the differences in equation (33), proportional to the SDF
representation asymptotic variances, for the ‘Gaussian’ single-factor
model loaded with the market risk, size, value, and momentum
factors, are equal to 0.021, 0.0016, 0.0037, 0.0088 respectively (in
percentage)
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Results (Cont.)

Asymptotic Results (Multifactor)

Theorem (1 – Multifactor)

Part A (factors on non-traded assets, risk premium): Let ft represent
the multivariate, systematic risk factors with mean µ, covariance Σ,
third-order central moment κ3, and fourth-order central moment κ4, and
consider the Beta representation in equation (22) with risk premium δ on
the factors ft, and the SDF representation in equation (29). Then, the
asymptotic covariance matrix of the λ̂ estimators obtained under the
first-stage (W = I) uncentred GMM for the SDF case is,

Acov(λ̂) =
((

Σ+ µµ′)′B′
)−1

(
1

aϵt
Ω−1 −

1

a2ϵt
Ω−1B

(
A−1

s +
1

aϵt
B′Ω−1B

)−1

B′Ω−1

)
×(

B
(
Σ+ µµ′))−1

,
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Results (Cont.)

Asymptotic Results (Multifactor)

Theorem (1 – Multifactor (Cont.))

where

aϵt = 1− 2λ′µ+ (λ⊙ λ)′diag
(
Σ+ µµ′)+ triu vec

(
λλ′)+

2
(
triu vec

(
Σ+ µµ′))

and As is,

As = mreduced
4 +mreduced

3 +mreduced
2 +mreduced

1 + (δ − µ) (δ − µ)′ ,
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Results (Cont.)

Asymptotic Results (Multifactor)

Theorem (1 – Multifactor (Cont.))

with m2 = Σ+ µµ′ is the second-order uncentred moment of ft
(E[ftf

′
t ]),

m2(:,i) the i-th column of m2, ⊙ is the element wise multiplication,

diag (·) is the operator that returns the diagonal of a matrix as a
vector,

triu vec (·) is the operator that return the upper triangular matrix
(without the diagonal) in a vector form, and

mreduced
4 ,mreduced

3 ,mreduced
2 , and mreduced

1 are matrices resulting from
tensor operations (see Appendix A of the paper for details).
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Results (Cont.)

Asymptotic Results (Multifactor)

Theorem (1 – Multifactor (Cont.))

The asymptotic covariance matrix of the λ∗ estimators obtained under the
first-stage uncentred GMM estimator for the Beta case is

Acov(λ∗) =
(
|Σ| ×

∣∣∣(Σ+ µδ′
)−1
∣∣∣× (Σ+ µδ′

)−1
)2

V1,1, (34)

with V1,1 a matrix of dimension K ×K with the asymptotic covariance of
δ (see Appendix A of the paper for details).
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Results (Cont.)

Tensor Moments

Definition (reduced tensor moments)

Let λ be as in equation (28). Let define the resulting reduced tensors,

mreduced
4 =

∑
i

∑
j

(λ⊙ λ)′diag (⊗R (m4, i, j)) +

2
(
triu vec

(
λλ′)′ triu vec (⊗R (m4, i, j))

)
,

mreduced
3 =

∑
i

∑
j

−2λ′ ⊗R (m3, i, j) +
(
δj − µj

)
×(

(λ⊙ λ)′diag (⊗R (m3, i)) + 2
(
triu vec

(
λλ′)′ triu vec (⊗R (m3, i))

))
+

(δi − µi)×(
(λ⊙ λ)′diag (⊗R (m3, j)) + 2

(
triu vec

(
λλ′)′ triu vec (⊗R (m3, j))

))
,
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Results (Cont.)

Tensor Moments

Definition (reduced tensor moments)

mreduced
2 =m2 +

∑
i

∑
j

−2
(
δj − µj

) (
λ′ (m2(:,i)

))
+

(δi − µi)
(
λ′ (m2(:,j)

))
+ (δ − µ) (δ − µ)′ + 2(λ⊙ λ)′triu vec (m2) ,

mreduced
1 = µ (δ − µ)′ + (δ − µ)µ′ − 2 (δ − µ) (δ − µ)′

(
λ′µ
)
,

where mreduced
4 , mreduced

3 , and mreduced
2 are matrices resulting from

fourth-, third-, and second-order tensor reduction operations of the
gs(rt, ft, λ)gs(rt, ft, λ)

′ tensor.
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Results (Cont.)

Finite Sample Data and Simulation Design

Since finite-sample analytical results can be obtained only under
certain distributional assumptions of the returns, factors and errors, it
is customary to resort to simulation techniques.

Interested in evaluating the standard deviations of λ∗, λ̂, π∗, π̂.

In the case of US, the size of the data sets that can be used are as
large as 1,000 monthly historical observations, but in other cases (e.g.,
the UK), we may end up with as few as 300.
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Results (Cont.)

Simulations – DGP

In our case, we focus in the case δ = µ. We provide additional results
for factors on portfolios of non-traded assets in the Online Appendix,
but we demonstrate that results in this case are similar to the traded
case.
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Results (Cont.)

Relative Standard Errors for Fama-French 3-Factor Model

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)
Market

60 1.1432*** 1.0292*** 1.1832*** 1.0957***
360 1.1262*** 1.0538*** 1.1362*** 1.0631***
600 1.1166*** 1.0476*** 1.1243*** 1.0548***
1000 1.1191*** 1.0377*** 1.1263*** 1.0456***
Asym 1.0460 (1st)

Size
60 0.4084** 0.3901** 0.2338*** 0.2128***
360 0.9521 0.8670*** 0.9052*** 0.7844***
600 1.0609** 0.9492** 1.0298 0.8921***
1000 1.0910*** 0.9737* 1.0719*** 0.9378***
Asym 1.3673 (1st)

Value
60 2.2088*** 1.8250*** 2.7403*** 3.0190***
360 2.9783*** 2.3351*** 3.0486*** 2.5326***
600 3.0086*** 2.3650*** 3.0523*** 2.4803***
1000 3.0798*** 2.3943*** 3.1119*** 2.4688***
Asym 2.6219 (1st)

Table 6: Relative standard errors of risk premium estimated from
the Fama-French model: US data, 10 size-sorted portfolios.
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Results (Cont.)

Relative Standard Errors for Asness-Moskowitz-Pedersen
Model

T σr(λ̂
U
1 )/σr(λ

∗) σr(λ̂
U
2 )/σr(λ

∗) σr(λ̂
C
1 )/σr(λ

∗) σr(λ̂
C
2 )/σr(λ

∗)
Market

60 1.1442*** 0.9799* 1.4931*** 1.3178***
360 1.4210*** 1.2566*** 1.7415*** 1.5107***
600 1.4773*** 1.2893*** 1.7597*** 1.5149***
1000 1.5400*** 1.3293*** 1.7963*** 1.5370***
Asym 1.4004 (1st)

Momentum
60 2.8205*** 2.0929*** 25.1919*** 12.9843***
360 4.7186*** 3.8545*** 8.7920*** 6.9631***
600 5.1621*** 4.2124*** 7.6393*** 6.2049***
1000 5.4884*** 4.4432*** 7.0397*** 5.7554***
Asym 4.6360 (1st)

Value
60 1.4554*** 1.0929*** 5.8393*** 6.3630***
360 2.9517*** 2.4302*** 4.8139*** 4.2775***
600 3.2012*** 2.6355*** 4.3874*** 3.7936***
1000 3.4854*** 2.8286*** 4.2691*** 3.5995***
Asym 3.6640 (1st)

Table 7: Relative standard errors of risk premium estimated from
the Asness-Moskowitz-Pedersen model: US data, 10 size-sorted
portfolios.
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Results (Cont.)

Specification Tests (J-test) – Size Test

1 %

λ∗ λ̂
U

1 λ̂
U

2 λ̂
C

1 λ̂
C

2

CAPM
60 3.30 5.21 5.21 5.91 5.91
360 0.79 1.52 1.52 1.54 1.54
600 0.70 1.40 1.40 1.43 1.43
1000 0.51 1.05 1.05 1.03 1.03

Table 8: GMM estimation specification tests (size, W = S): US data,
10 size-sorted portfolios.
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Economic Significance (OOS Mean-Variance Estimation)

Mean-Variance Estimation (Cont.)

Using exactly the same procedure for estimation of the sample mean
and sample covariance,3 we apply the two different representations for
the estimation of λ̃:

The Beta estimated (λ̃
∗
), and

The SDF estimated (λ̃
U

1 , λ̃
U

2 , λ̃
C

1 , and λ̃
C

2 for the corresponding
uncentred first- and second-stage, and centered first- and second-stage
respectively).

3We use the Ledoit and Wolf (2017) shrinkage method for estimating the covariance
matrix in both representations, Beta and SDF, to avoid problems with small sample
covariance estimates.

Juan Arismendi-Zambrano August 27, 2024 54 / 25



Economic Significance (OOS Mean-Variance Estimation)

Data

We consider an expanding window, that resembles the learning
process of an investor on the underlying properties on the distribution
of the portfolio returns:

In our case, the US 10 size-sorted portfolios extracted from the
Kenneth French website that spans the period January 1927 –
December 2018 (T = 1104).

The data of the factors (rmrf, smb,hml, and umd) correspond to the
same library a time span.
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Economic Significance (OOS Mean-Variance Estimation)

Noisy vs. Smooth Expected Covariance Initialization
Inference

To add an additional layer of partial knowledge of the system, we
divide our trading experiments in two:

1 One where the investor is poorly knowledgeable of the initial properties
of the returns, in particular, the expected covariance (uses initial
windows of 60, 120, and 240 months) and we define this setup as a
‘noisy expected covariance initialization’ model.

2 In contrast to poor knowledge of the properties, the ‘smooth
expected covariance initialization’ has an initial window of 360, 480
and 600 months, and we are able to verify the OOS portfolio variance
returns bounded values close to the values of the whole sample.
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Economic Significance (OOS Mean-Variance Estimation)

Results (OOS) – Smooth Initialization

Surprise! (No, Ravi’s results are great again!)

Model difference Initial window size
360 480 600

CAPM
SR∗ 5.97 8.21 8.70

SR∗ − SRU
1 −6.73× 10−10 −9.91× 10−10 8.54× 10−11

SR∗ − SRU
2 −1.37× 10−9 −1.33× 10−9 −2.37× 10−9

SR∗ − SRC
1 −1.82× 10−9 −3.50× 10−9 −1.68× 10−9

SR∗ − SRC
2 −2.73× 10−9 −3.32× 10−9 −2.25× 10−9

Table 9: Sharpe ratio of mean-variance optimal portfolios with
parameters estimated with Beta and SDF representations
(smooth expected covariance initialization model).
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Economic Significance (OOS Mean-Variance Estimation)

Results (OOS) – Noisy Initialization
Model difference Initial window size

60 120 240
Fama-French

SR∗ 14.63 14.06 17.11

SR∗ − SRU
1 −1.542 −1.729 −2.006

SR∗ − SRU
2 −1.818 −0.721 −0.617

SR∗ − SRC
1 −1.485 −1.681 −1.953

SR∗ − SRC
2 −1.395 −0.672 −0.584

Asness-Moskowitz-Pedersen
SR∗ 23.13 25.61 30.91

SR∗ − SRU
1 6.235 8.596 10.390

SR∗ − SRU
2 2.980 5.481 6.845

SR∗ − SRC
1 8.500 9.365 11.469

SR∗ − SRC
2 2.828 6.003 7.303

Carhart
SR∗ 25.74 25.66 31.09

SR∗ − SRU
1 7.411 5.357 5.979

SR∗ − SRU
2 3.370 4.330 5.855

SR∗ − SRC
1 7.912 5.417 6.149

SR∗ − SRC
2 5.763 4.541 6.263

Table 10: Sharpe ratio of mean-variance optimal portfolios with
parameters estimated with Beta and SDF representations (noisy
expected covariance initialization model).
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Economic Significance (OOS Mean-Variance Estimation)

Convergence of Results – Market Factor
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Figure 4: Asymptotic variance of the analytically and empirically estimated
GMM under the Beta and SDF methods, from a set of 10,000 Monte Carlo
simulation based on parameters calibrated to the observed market risk, and size
factors on a sample January 1927 – December 2018. Data are downloaded from
Kenneth French’s library.
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Economic Significance (OOS Mean-Variance Estimation)

Convergence of Results – Value
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Figure 5: Asymptotic variance of the analytically and empirically estimated
GMM under the Beta and SDF methods, from a set of 10,000 Monte Carlo
simulation based on parameters calibrated to the observed market risk, and size
factors on a sample January 1927 – December 2018. Data are downloaded from
Kenneth French’s library.
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Convergence of Results – Size
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Figure 6: Asymptotic variance of the analytically and empirically estimated
GMM under the Beta and SDF methods, from a set of 10,000 Monte Carlo
simulation based on parameters calibrated to the observed market risk, and size
factors on a sample January 1927 – December 2018. Data are downloaded from
Kenneth French’s library.
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Economic Significance (OOS Mean-Variance Estimation)

Convergence of Results – Momentum
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Figure 7: Asymptotic variance of the analytically and empirically estimated
GMM under the Beta and SDF methods, from a set of 10,000 Monte Carlo
simulation based on parameters calibrated to the observed market risk, and size
factors on a sample January 1927 – December 2018. Data are downloaded from
Kenneth French’s library.
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Momentum Factor and Second-order Moments
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Figure 8: Variance of momentum factor vs. estimated risk premium (λ∗ and λ̂
C
2 ).
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Economic Significance (OOS Mean-Variance Estimation)

Momentum Factor and Third- and Fourth-order Moments
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Figure 9: Skewness and kurtosis of momentum factor vs. estimated risk premium

(λ∗ and λ̂
C
2 ).

Juan Arismendi-Zambrano August 27, 2024 64 / 25


	Outline
	Introduction
	Motivation
	Contribution

	Formal Set Up – Asymptotics
	Beta method
	The SDF method
	Comparison of the methods
	Large-Sample Analytical Results

	Empirical Results
	Simulation/Empirical Setup
	Bootstrap Simulation Results
	Comparison of Risk premium Estimators

	Economic Significance (OOS Mean-Variance Estimation)
	Conclusions
	Appendix
	References
	Factors Moments – Empirical Evidence
	Motivation
	Literature Review
	Formal Set Up – Asymptotics
	Beta method
	The SDF method
	Comparison of the methods

	Results (Cont.)
	Economic Significance (OOS Mean-Variance Estimation)


