Banking system capitalization and systemic liquidity crises: Looking beyond the aggregate

Fabiana Gomez (Bristol Business School) and Quynh-Anh Vo (Bank of England)^a August 27th, 2024

ESEM 2024

^aThe views expressed are not necessarily those of the Bank of England

- More capitalized banks are sounder:
 - Higher cushion against losses
 - Greater incentives for due diligence in risk management
- Corollary: Supervisors typically assess the system's robustness by examining aggregate capital levels...
- But is this extrapolation straightforward?

Does the distribution of capital in the system affect the robustness of the system?

- Robustness of the system: Proportion of banks that fail after a liquidity shock.
- Focus on liquidity risk.

- There is an inverted-U shaped relationship between the aggregate capital of the banking sector and its robustness to liquidity shocks:
 - For *low levels* of aggregate capital, a distribution shift (in FOSD sense) *increases* the proportion of banks that fail after a liquidity shock.
 - For *high levels* of aggregate capital, a distribution shift (in FOSD sense) *decreases* the proportion of banks that fail after a liquidity shock.

The cut-off level for liquid/non-liquid banks change due to changes in the price of the assets.

Contribution

- This paper is related to a large literature on the effects of bank capital on banks' resilience and risk-taking.
- Key related literature:
 - Capital and Liquidity risk
 - Positive approach: Castiglionesi, Feriozzi and Pelizzon (2014); Song and Thakor (2023).
 - Normative approach: Carletti, Goldstein, and Leonello (2020); Kara and Ozsoy (2020); Kashyap, Tsomocos, and Vardoulakis (2024).
 - Banks' liquidity hoarding: Acharya, Shin, and Yorulmazer (2011a); Malherbe (2014); Heider, Hoerova, and Holthausen (2015); Acharya, Iyer, and Sundaram (2015).
 - Optimal design of bank liquidity requirement: Calomiris, Castells, Heider, and Hoerova (2024); Walther (2016); Santos and Suarez (2019).

The model

- Time: 3 dates *t* = 0, 1, 2
- A continuum of banks that differ in internal capital $E_i \in (0,1)$
- E_i is observed and follows a distribution $F_h(.)$
- The size of the bank's balance sheet is normalized to 1
- At date 0, bank's balance sheet:

Ci	1- Ei	
Cash	Short-term	
	debt	
1-c _i		
Long-term		
investment		
	Ei	
	Equity	

Bank Funding and Investment Opportunities

- Bank *i* is funded at date 0 with:
 - Equity of amount E_i.
 - Short-term debt of amount 1 E_i, payable at date t = 1. Face value of short-term debt is denoted by D¹_i.
- Two investment opportunities:
 - Cash (liquid assets): Return equal to 1
 - Long-term investment: Risky return

Bank Funding and Investment Opportunities

- Bank *i* is funded at date 0 with:
 - Equity of amount E_i.
 - Short-term debt of amount 1 E_i, payable at date t = 1. Face value of short-term debt is denoted by D¹_i.
- Two investment opportunities:
 - Cash (liquid assets): Return equal to 1
 - Long-term investment: Risky return

Timeline

Date 0	Date 1		Date 2
Each bank i chooses its liquid asset holdings c; and its long-term asset holdings 1 – c; .	- Quality of long-term assets is observed - Banks repay their debt by using their <u>cash</u> holdings, (possibly) <u>issuing new debt</u> or <u>selling their long-term</u> <u>assets</u> .	I Moral Hazard	 The projects' cash flows are realized. Payments are settled.
	 If a bank cannot raise sufficient liquidity, it is liquidated. 		

• In the event of bad news at date 1, investors will only lend to a bank if they are assured that the bank will exert monitoring effort:

$$\theta y_L \geq 1 \geq (\theta - \Delta) y_L + B$$

• The liquidity raised against one unit of the long-term asset in case of bad news is less than that from one unit of liquid assets:

$$\theta(y_L - B/\Delta) \leq 1$$

- Liquidity shock
 - No uncertainty about the debt repayment but uncertainty about the banks' funding capacity at date 1:
 - Good news (High state) at date 1, borrowing is unconstrained \Rightarrow no issues in rolling over short-term debt.
 - Bad news (Low state) at date 1, funding capacity is restricted ⇒ rolling-over debt is problematic.
 - The scenario is analogous to what happened in the 2007-2009 crisis.

Determinants of bank liquidity: Funding Liquidity

- Liquidity needs are $D_i^1 c_i$
- If high state is realized \Rightarrow no problem in rolling over short-term debt.
- If low state is realized, the ICC is as follows:

$$D_i^2 \leq (y_L - rac{B}{\Delta})(1 - c_i)$$

• The maximum borrowing capacity per unit of long-term asset is:

$$\rho^* = \theta \left(y_L - \frac{B}{\Delta} \right)$$

Determinants of bank liquidity: Funding Liquidity

- Liquidity needs are $D_i^1 c_i$
- If high state is realized \Rightarrow no problem in rolling over short-term debt.
- If low state is realized, the ICC is as follows:

$$D_i^2 \leq (y_L - \frac{B}{\Delta})(1 - c_i)$$

• The maximum borrowing capacity per unit of long-term asset is:

$$\rho^* = \theta \left(y_L - \frac{B}{\Delta} \right)$$

· Liquidity needs per unit of long-term assets

$$\rho_i = \frac{D_i^1 - c_i}{1 - c_i}$$

Lemma At t = 1, for any bank i:

(i) If $\rho_i \leq \rho^*$, the bank can raise sufficient funding through new debt issuance to repay its short-term debt in both states of nature, without needing to sell any assets.

(ii) If $\rho_i > \rho^*$, in the event of bad news, the bank cannot raise enough liquidity through new debt issuance and must sell part of its long-term assets to repay its short-term debt.

- Sellers: banks with $\rho_i > \rho^*$
 - β_i : fraction of long-term assets sold by bank *i*.
- **Buyers:** banks with $\rho_i \leq \rho^*$
 - γ_i : volume of long-term assets bought by bank i per unit of long-term assets it has.
- p: per unit price of long-term asset.

• Individual banks' supply:

$$\beta_i(1-c_i)p + (1-c_i)(1-\beta_i)\rho^* \geq D_i^1 - c_i$$

which is equivalent to

$$\beta_i = \min\left(1, \frac{\rho_i - \rho^*}{p - \rho^*}\right)$$

- Individual banks' demand:
 - If $p > \theta y_L$: $\gamma_i = 0$.
 - If $\rho^* , <math>\gamma_i$ is determined as follows:

$$(1-c_i+\gamma_i)\rho^*-(D_i-c_i)=\gamma_i(1-c_i)\rho$$

which implies

$$\gamma_i = (1 - c_i) \frac{\rho^* - \rho_i}{\rho - \rho^*}$$

- If $p = \theta y_L$, γ_i any value btw 0 and $(1 c_i) \frac{\rho^* \rho_i}{\rho \rho^*}$
- If $p = \rho^*$, γ_i is ∞

Banks' optimal liquidity holdings

• Banks' choose c_i in order to maximize their profit:

$$egin{aligned} & \mathsf{Max}_{c_i\in[0,1]} \Pi_i = (1-c_i)\mathsf{NPV} + (1-lpha)(1-c_i)\gamma_i(heta \mathsf{y}_L-
ho)\mathbf{1}_{
ho_i\leq
ho^*} \ & -(1-lpha)(1-c_i)eta_i(heta \mathsf{y}_L-
ho)\mathbf{1}_{
ho_i>
ho^*} \end{aligned}$$

subject to

• Depositors' participation constraint:

$$\begin{split} \alpha D_{1}^{i} + (1 - \alpha) D_{1}^{i} \mathbf{1}_{\rho_{i} \leq \rho^{*}} + \\ (1 - \alpha) \min \left[D_{1}^{i}, (1 - c_{i}) \beta_{i} p + (1 - c_{i}) (1 - \beta_{i}) \rho^{*} + c_{i}) \right] \mathbf{1}_{\rho_{i} > \rho^{*}} \\ &= 1 - E_{i} \end{split}$$

• Where *p* is the equilibrium price.

Definition of the ex-ante competitive equilibrium: A competitive equilibrium is: (1) a set of banks' liquidity holdings $\{c_i^*\}_{i \in [0,1]}$; and (2) the equilibrium price p^e of the long-term assets at date 1, following the revelation of bad news such that:

c_i^{*} is the optimal amount of liquid assets that each bank i holds, given p^e.

(2) p^e is the equilibrium price induced by the choices $\{c_i^*\}_{i \in [0,1]}$.

Proposition Only a competitive equilibrium where $p^e \leq \hat{\rho} < \theta y_L$ can exist.

Proposition Only a competitive equilibrium where $p^{e} \leq \hat{\rho} < \theta y_{L}$ can exist.

Lemma (A)

If $p^e = \hat{\rho}$, there exists a cutoff capital ratio $\hat{E} = 1 - \hat{\rho}$ such that:

- Banks with a capital ratio lower than Ê hold zero liquidity and will be closed at date 1 following the realization of the liquidity shock.
- Banks with a capital ratio greater than or equal to \hat{E} are indifferent to any liquidity holdings between $\max\left(\frac{1-\rho^*-E_i}{1-\rho^*},0\right)$ and 1 and will survive the shock.

.)

Lemma (B)

If $p^e < \hat{\rho}$, there exists a cutoff capital ratio \overline{E} such that:

- Banks with a capital ratio lower than \overline{E} hold zero liquidity and will be closed at date 1 following the realization of the liquidity shock.
- Banks with a capital ratio greater than or equal to E invest all their funds in liquid assets, surviving the liquidity shock.

The cutoff level \overline{E} and the equilibrium price p^e are determined by the following equations:

$$\frac{\overline{E}}{p-\rho^*} + 1 = \frac{NPV}{(1-\alpha)(\theta y_L - p)}$$
(1)
$$\int_{\overline{E}}^{1} Ef(E,h)dE = p^e \int_{0}^{\overline{E}} f(E,h)dE$$
(2)

• The threshold \overline{E} increases with the equilibrium price p^e .

- The threshold \overline{E} increases with the equilibrium price p^e .
- There exists a unique value for the parameter \hat{h} , such that $p(E(\hat{h}),\hat{h})=\hat{
 ho}$
 - If $h \geq \hat{h}$, the equilibrium corresponds to the one described in Lemma A.
 - If $h < \hat{h}$, the equilibrium corresponds to the one described in Lemma B.

and

ggregate capital ratio: Figures 5(a) and 5(b) illustrates, respectively, the equilibum price and the fraction of failed banks for different values of μ .

Figure 5: Impact of the aggregate capital ratio on the competitive equilibrium

Concluding Remarks

- This paper develops a model of banks' liquidity management, exploring the relationship between capital distribution in the banking system and its resilience to systemic liquidity shocks.
- Our setting endogenizes the amount of liquidity that banks hold ex-ante to protect themselves from liquidity shocks and the subsequent extent of deleveraging through asset sales.
- We show that incentives to hold liquidity of an individual bank not only depends on its own level of capital also depend on the distribution of capital in the whole system.
- We identify two opposite effects of the system's aggregate capital.
- These effects lead to an inverted-U shaped relationship between the aggregate capital of the banking sector and its vulnerability.
- Next step: To endogenize the capital structure.

Thank you very much for your attention.

Does the distribution of capital in the system affect the robustness of the system?

