College as Human Capital Investments or Tournament: A macroeconomic analysis

Siyu Shi

European University Institute

August 26, 2024 ESEM, Rotterdam

Introduction •00		Quantitative analysis 00000
Motivation		

Two prevailing but **opposite** views about college education

- Productive: people accumulate human capital and become more productive Becker 1962
- Competitive: college does not affect people but only works as credentials Lazear & Rosen 1981

Which channel is more important?

Two prevailing but **opposite** views about college education

- Productive: people accumulate human capital and become more productive Becker 1962
- Competitive: college does not affect people but only works as credentials Lazear & Rosen 1981 Which channel is more important?

Why it matters? Different policy implications for college subsidy

- Productive channel: college subsidy could increase aggregate output
- Competitive channel: college subsidy could be a waste of resources

A general equilibrium life-cycle model with college decisions and skill allocation

• Workers are allocated to different occupations based on relative ranking of HC

Theoretical framework

A general equilibrium life-cycle model with college decisions and skill allocation

• Workers are allocated to different occupations based on relative ranking of HC

College education serves two roles:

- HC (productive): directly increases efficiency units
- Tournament (competitive): increases the prob. of working in high-paying occ.

$$\mathsf{labor earnings} = \underbrace{\mathsf{efficiency units}}_{\mathsf{HC}} \cdot \underbrace{\mathsf{wage rate}}_{\mathsf{tournament}}$$

Main takeaways

The competitive channel

- accounts for 53% of college attendance
- $\bullet\,$ distorts aggregate output by 1.3%
- leads to over-investment in human capital and negative externalities

Main takeaways

The competitive channel

- accounts for 53% of college attendance
- $\bullet\,$ distorts aggregate output by 1.3%
- leads to over-investment in human capital and negative externalities

Optimal policy: eliminate college subsidy and reduce tax progressivity

- $\bullet\,$ average lifetime earnings increases by 5.9%
- $\bullet~16\%$ of people now skip college and are better off
- Why? Alleviate rat race competition in college education

	Model		Quantitative analysis
000	•0000000	000000	00000

Model

Overview of the model

Three main building blocks:

- College decision and endogenous skill allocation
 - Workers are allocated to different occupations based on relative ranking of human capital

Overview of the model

Three main building blocks:

- College decision and endogenous skill allocation
 - Workers are allocated to different occupations based on relative ranking of human capital
- A standard life-cycle model with human capital accumulation
- Standard GE setups
 - The government collects taxes to subsidize college education
 - Wage rates are determined in the equilibrium

Endogenous skill allocation and wages

Workers meet with occupations (firms) in a frictionless job market

- \bullet A measure one of firms with heterogenous productivity $z \sim U[0,1]$
- Firms observe noisy human capital $h^o = h + \epsilon$ with $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
- Output of a match: y = zh (evenly split between two sides)

Endogenous skill allocation and wages

Workers meet with occupations (firms) in a frictionless job market

- \bullet A measure one of firms with heterogenous productivity $z \sim U[0,1]$
- Firms observe noisy human capital $h^o = h + \epsilon$ with $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
- Output of a match: y = zh (evenly split between two sides)

Equilibrium allocation satisfies positive assortative matching:

• highest z firm matches with highest h^o worker (and so on)

Hopkins 2012

Endogenous skill allocation: equilibrium

A matching function in the equilibrium is an assignment function $\Gamma(h^o) = z$ such that

$$\int_{h^o}^{\bar{x}} f_h(x) dx = \int_{\Gamma(h^o)}^{\bar{y}} f_z(y) dy$$

 $f_h(h^o)$: pdf of observed human capital of workers

 $f_z(z)$: pdf of firms' productivity

Endogenous skill allocation: equilibrium

A matching function in the equilibrium is an assignment function $\Gamma(h^o) = z$ such that

$$\int_{h^o}^{\bar{x}} f_h(x) dx = \int_{\Gamma(h^o)}^{\bar{y}} f_z(y) dy$$

 $f_h(h^o)$: pdf of observed human capital of workers

 $f_z(z)$: pdf of firms' productivity

Wage rate function:

$$w(h^o) = \frac{1}{2}\Gamma(h^o)$$

Life-cycle: college stage

Workers are heterogenous in initial human capital h_0 and learning speed k. Value of non-college path

$$V_{nc}(h_0, k) = \int_{\epsilon} V(h_0, k, w(h_0 + \epsilon), 0) dF(\epsilon)$$

- Non-college workers enter labor market at age 0
- learning speed k governs how fast to accumulate human capital.

Life-cycle: college stage

Workers go to college choose how much to invest in HC:

$$V_c(h_0, k) = \max_s \quad -s + \mathbb{1}\{s > 0\}\phi + \frac{1}{R}\int_{\epsilon} V(\mathbf{h}', k, w(\mathbf{h}' + \epsilon), 1)dF(\epsilon)$$

s.t. $\mathbf{h}' = \mathbf{h} + k \cdot (s \cdot h)^{\gamma}$

 ϕ : college subsidy

 ϵ : noise of human capital

s: human capital investments

h': human capital after college graduation

- productive: college directly increases h'
- competitive: college also increases the chance of working in high-paying occupations

Life-cycle: working stage

Workers maximize lifetime earnings by making human capital investments

$$V(h, k, w, j) = \max_{s} \quad w \cdot h - T(w \cdot h) - s + \frac{1}{R}V(h', k, w, j + 1)$$

s.t. $h' = (1 - \delta) \cdot h + k \cdot h^{\eta_1} \cdot s^{\eta_2}$

- s: human capital investments
- h: human capital
- k: learning speed
- w: wage rate (determined by skill allocation)

- j: age
- R: real interest rate
- T(): progressive labor income tax
- δ : human capital depreciation

	Model 0000000●	Quantitative analysis
Close the model		

College subsidy is financed by a fixed fraction of total taxes:

 θ · Total taxes = college subsidy

- \bullet Total taxes: progressive labor income tax τ and corporate income tax τ_c
- $\bullet\,$ The rest is used for non-productive government spending G

College subsidy is financed by a fixed fraction of total taxes:

 $\theta \cdot \text{Total taxes} = \text{college subsidy}$

- Total taxes: progressive labor income tax au and corporate income tax au_c
- $\bullet\,$ The rest is used for non-productive government spending G

Endogenize wage rates across occupations

- occupations sorted into high-skill and low-skill as intermediates
- ${\, \bullet \,}$ relative supply \rightarrow relative price

0000 000000 00000 00000			Stylized facts and parameterization	Quantitative analysis
	000	0000000	00000	00000

Stylized facts and parameterization

Matching model to the data

Key implication: high-skill workers are NOT guaranteed to work in high-skill occupations

Matching model to the data

Key implication: high-skill workers are **NOT** guaranteed to work in high-skill occupations

What are high-skill occupations

 \rightarrow O*NET data set provides required level of education at occupational level

Divide occupations into two types based on education requirement

- Non-college (high-school) occupations: cashiers/bartenders
- College occupations: physicians/teachers/accountants

Introduction	Model	Stylized facts and parameterization	Quantitative analysis
000	0000000		00000

Mismatch in the data

		Worker Education level	
		Non-college	College
Occupation	Non-college College	57% 8%	13% 22%

Source: CPS 2003-2020 and O*NET. Full-time full-year male workers only.

- More than 1/3 (13%/13%+22%) of college workers work in low-skill occupations
- Robust patterns across different age groups

	Stylized facts and parameterization	Quantitative analys
	000000	

Earnings structure across education and occupation

		Worker Education level	
		Non-college College	
Occupation	Non-college	0	0.48
	College	0.43	0.81

Note: Log earnings of non-college workers in non-college occupations are normalized to 0.

College premiums \rightarrow HC production at college

Paramterization

External parameters: real interest rate, labor income tax, corporate tax, HC depreciation

Targeted moments

- Fractions of skill allocation (over/undereducation): size of noise
- Earnings structure: initial distributions and HC production at college
- Growth in mean earnings and inequality: HC production at working stage
- Government spending: fraction of taxes to finance college subsidy subsidy

	Stylized facts and parameterization 00000●	Quantitative analysis 00000

M	lod	٩	l fit
IVI	lou	C	

Moment	Model	Data
Skill allocation		
% non-college workers in high-skill occ	11%	8%
% non-college workers in low-skill occ	57%	58%
% college workers in high-skill occ	19%	22%
% college wokers in low-skill occ	12%	13%
Earnings structure (relative to non-college	workers in	low-skill occ)
non-college workers in high-skill occ	0.36	0.43
college workers in low-skill occ	0.47	0.48
college workers in high-skill occ	0.84	0.81
Life-cycle patterns		
growth in mean log earnings (25-55)	0.633	0.627
growth in earnings inequality (25-55)	0.116	0.103
Government spending		
college subsidy/total college expenditure	36%	38%
non-productive government spending/GDP	16%	17%

			Quantitative analysis
000	0000000	000000	●0000

Quantitative analysis

	Quantitative analysis
	00000

How important is the competitive channel?

What if skill allocation is based on initial HC $h_0 ightarrow$ college is only about HC investment

How important is the competitive channel?

What if skill allocation is based on initial HC $h_0 \rightarrow$ college is only about HC investment

I	Benchmark	No competitive
College attendance Aggregate output Output per worker	31.6% 100 100	16.8% 101.3 99.5
<i>Life-cycle patterns</i> growth in mean log earnings	0.633	0.645

What is the optimal policy

Optimal policy: maximize average net lifetime earnings

- college subsidies
- labor tax progressivity
- labor tax rate

What is the optimal policy

Optimal policy: maximize average net lifetime earnings

- college subsidies
- labor tax progressivity
- labor tax rate

Tradeoff between labor tax and college subsidies

- $\bullet\,$ labor tax distorts the incentive of human capital accumulation $\rightarrow\,$ suppress output
- $\bullet\,$ college subsidies encourage more people to accumulate human capital $\rightarrow\,$ boost output

Optimal tax system

Policy parameters	Benchmark	Ontimal
College subsidy ϕ	1 31	0
Progressivity τ	0.1	0 025
Tay rate λ	0.1	0.020
	0.90	0.95
Aggregate outcomes		
College attendance	31.6%	16.0%
Average (net) lifetime earnings	100	105.9
Output per worker	100	107.6
Aggregate output	100	113.6
Level of income inequality	0.237	0.280

Decomposition

		Quantitative analysis 0000●
Conclusion		

I propose a theoretical framework where college education has both productive and competitive values.

The competitive margin accounts for 53% of college attendance but distorts output by 1.3%.

The optimal policy is to eliminate college subsidies and lower tax progressivity to reduce the rat race competition.

Appendix

Parameterization (Back)

Parameter	Meaning	Value
	Internal	
μ_h , σ_h	distribution of initial human capital	1.78, 0.13
μ_k , σ_k	distribution of learning ability	-0.51, 0.29
γ	HC production (college)	0.34
η_1 , η_2	HC production (work)	0.56, 0.30
σ_{ϵ}	signal noise	2.07
α	high-skill labor share in production	0.405
θ	fraction of taxes used for college subsidy	0.012
z	threshold value of high-skill occupation	1.19

Mismatch by age group (back)

	Worker Education level	
	NC	С
Age group: 23-34		
Occupation NC	61%	12%
С	7%	20%
Age group: 35-46		
Occupation NC	57%	13%
C	8%	22%
Age group: 47-58		
Occupation NC	57%	13%
C	8%	22%

Life-cycle earnings by education and occupation

Non-college

Note: Mean log earnings at age 24 are normalized to 0 for non-college workers in low-skill occupations. Dashed (solid) lines represent moments in the model (data).

Siyu Shi (EUI)

Decomposition

	Benchmark	Only competitive	Only productive
Aggregate outcomes			
College attendance	31.6%	12.4%	16.8%
Aggregate output	100	99.6	101.3
Output per worker	100	97.5	99.5
Skill allocation mismatch			
non-college workers in high-skill occ	13%	29%	30%
college workers in low-skill occ	12%	2%	14%
Life-cycle patterns			
growth in mean log earnings	0.633	0.639	0.645
growth in earnings inequality	0.116	0.095	0.095

Welfare decomposition

Table: Welfare changes by education groups: optimal policy

	Always college	Always non-college	C to NC
Fractions	16.0%	68.4%	15.6%
Changes relative to benchmark			
Average social welfare	+11.1%	+3.3%	+9.6%
Lifetime income	+26.8%	+9.4%	+15.1%
Human capital growth (log points)	+15.5	+8.2	+9.2

Back