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Motivation

For SVARs, there is a classical identification problem: more
parameters than equations ⇒ researchers impose identifying
restrictions.

Under weak restrictions, the Forecast Error Variance Decomposition
(FEVD) is set-identified. It can be only bounded up to an interval ⇒
estimation and inference is challenging.



Motivation

Most of the empirical practice for estimation of set-identified FEVD
follows a standard Bayesian approach (Arias et al. 18, Ecta).

Two concerns for this approach under set-identification:
1 priors are not updated by data, even asymptotically (Baumeister and

Hamilton 15, Ecta; Poirier 98, Econom. Theory).
2 any prior choice breaks down the asymptotic equivalence between

Bayesian and frequentist inference: the Bayesian interval asymptotically
lies inside the true identified set (Moon and Schorfheide 12, Ecta).



Motivation

Robust approaches have been proposed accordingly, but they mostly
focus on Impulse Response Functions (IRFs) and cannot be easily
extended to FEVD (Granziera et al. 18, QE ; Gafarov et al. 18, JoE ).

Significant exception: multiple-prior robust framework in Giacomini
and Kitagawa (21, Ecta) [GK21], but . . . is extremely heavy
computationally (its practical feasibility is limited) and frequentist
validity is not guaranteed for FEVD.



This Paper

Estimation and inference toolkit for set-identified FEVDijh with no
need to rely on a prior we cannot revise.

We estimate the upper and lower bounds of the set as solution to
quadratic programming.
We prove differentiability of such bounds.
A delta-method confidence interval (adjusted by the length of the set)
is proposed.

Both frequentist and Bayesian interpretation.
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Econometric Framework



Econometric Framework

SVAR(p):

A0y t = a +
p

∑
j=1

Ajy t−j + ϵt , (1)

ϵt |(y t−1, . . . ) ∼ (0, I n), (2)

where θ = (A0, a,A1, . . . ,Ap) collects the structural parameters and
n is the number of variables.

Reduced-form VAR(p):

y t = b +
p

∑
j=1

B jy t−j + ut , (3)

ut |(y t−1, . . . ) ∼ (0,Σ), (4)

where ϕ = (b,B1, . . . ,Bp,Σ) ∈ Rd collects the reduced-form
parameters.



The Identification Problem

dim(θ) > dim(ϕ): data are not enough to recover structural
parameters, we need identifying restrictions.

θ = Qf (ϕ), where Q ∈ Q is an orthonormal (rotation) n× n
matrix, with Q being the set of orthonormal matrices.

Identification corresponds to pin down Q.

If we are interested in identifying the effect of shock j , this
corresponds to pin down the j-th column of Q, i.e., q j .



Forecast Error Variance Decomposition

FEVDijh = q ′
jΥ

i
h(ϕ)q j represents the contribution of shock j to

explain the fluctuation of variable i at horizon h.

0 ≤ FEVDijh ≤ 1, where Υi
h(ϕ) is a n× n semipositive definite

matrix.

E.g., j is a financial shock, i the GDP growth.



Set-Identification

It is common to impose sign-restrictions, typically on the Impulse
Response Functions (IRFs).

E.g. negative financial shock decreases GDP growth.

For a single shock j , the restrictions can collected by S j (ϕ)q j ≥ 0.

S j (ϕ) is a sj × n matrix, with sj being the number of sign restrictions
on shock j .

This delivers a set for FEVDijh:

ISFEVD(ϕ) = {FEVDijh : Q ∈ Q(ϕ|S j (ϕ)q j ≥ 0)}. (5)



We provide a toolkit for estimation and inference of the lower and upper
bounds of ISFEVD(ϕ):

Definition 1

Given a vector of the reduced-form parameters ϕ, a shock of interest j∗,
lij∗h(ϕ) and uij∗h(ϕ) are the lower- and upper-bound of ISFEVD(ϕ),
respectively:

lij∗h(ϕ) ≡ minq j∗q
′
j∗Υi

h(ϕ)q j∗ s.t. S j∗(ϕ)q j∗ ≥ 0, , q ′
j∗q j∗ = 1, (6)

and

uij∗h(ϕ) ≡ maxq j∗q
′
j∗Υi

h(ϕ)q j∗ s.t. S j∗(ϕ)q j∗ ≥ 0 , q ′
j∗q j∗ = 1. (7)



Estimation



Some Assumptions

Assumption A1: Non-Emptiness

ISFEVD(ϕ) is non-empty at ϕ.

Assumption A2: Linear Independence

Given a constrained shock j∗, S j∗(ϕ) is linearly independent.



Estimation

Let r (ϕ) denote the set of active constraints, i.e. r (ϕ)q j∗ = 0.

Given S j∗(ϕ), there are ∑
min(n−1,sj∗ )
i=0

sj∗ !
i !(sj∗−i)! possible combinations

of active constraints, i.e. possible ways to construct r (ϕ).

For example, if there are 2 inequality constraints, there are 4 ways of
constructing r (ϕ): both constraints are binding, the first one is
binding, the second one is binding, neither are binding.



Theorem 1

Suppose that Assumption A1 and A2 hold and a single shock j∗ is
sign-constrained.

Let λ(ϕ, r ) be the maximum eigenvalue of the matrix
Z (ϕ, r ) = [I n −P(ϕ, r )]Υi

h(ϕ), where

P(ϕ, r ) = r (ϕ)′ [r (ϕ)r (ϕ)′]−1 r (ϕ).

uij∗h(ϕ) = maxr (ϕ)λ(ϕ, r ) as long as inactive constraints are
satisfied.

We can obtain the minimum analogously.



Inference



Very Briefly: Differentiability

Assumption A3: Simple Eigenvalues

The algebraic multiplicity of the eigenvalues delivering uij∗h(ϕ) and
lij∗h(ϕ) is equal to 1.

Assumption A4: Differentiability

Sj∗(ϕ) is differentiable at ϕ.

Under this assumption, we prove the differentiability of uij∗h(ϕ) and

lij∗h(ϕ), i.e.
∂uij∗h(ϕ)

∂ϕ and
∂lij∗h(ϕ)

∂ϕ exist and can be characterized.



Confidence Interval

We propose a delta-method interval, adjusted by the length of the set:

CIα ≡
[
lij∗h(ϕ̂OLS )− cασ̂l ij∗h/

√
T , uij∗h(ϕ̂OLS ) + cασ̂uij∗h/

√
T
]
, (8)

where

σ̂lij∗h =

[(
∂lij∗h(ϕ̂OLS )

∂ϕ̂OLS

)′

Ω̂

(
∂lij∗h(ϕ̂)

∂ϕ̂OLS

)] 1
2

. (9)

Ω̂ is the estimated variance-covariance matrix of ϕ. σ̂lij∗h is defined
analogously.



The critical value cα is adjusted to take into account the length of the set:

Φ

(
cα +

√
T ∆̂ij∗h

max{σ̂lij∗h, σ̂uij∗h}

)
− Φ (−cα) = 1− α, (10)

where Φ(•) is the standard normal cumulative distribution evaluated at •
and ∆̂ij∗h = uij∗h(ϕ̂OLS )− lij∗h(ϕ̂OLS ) is the estimated length of the
identified set.



Frequentist Coverage

Assumption A5: Asymptotic Normality

OLS estimators uniformly satisfy

√
T (ϕ̂OLS − ϕ(P)) →d N(0,Ω(P)), (11)

Ω̂ →p Ω(P), (12)

where P is the data-generating process.



We establish the uniform consistency of CIα:

Theorem 3

In a compact subset for ϕ, suppose that Assumptions A1-A5 hold and
∂uij∗h(ϕ̂OLS )

∂ϕ̂OLS
and

∂lij∗h(ϕ̂OLS )

∂ϕ̂OLS
are different from zero. We obtain

limT→∞ inf infFEVDij∗h(P)∈IS(ϕ(P))Pr(FEVDij∗h(P) ∈ CIα) = 1− α. (13)

Sketch of the proof: uniform convergence in distribution of the
delta-method under some conditions + length-adjusted confidence interval
in Stoye (09, Ecta).



Empirical Application



Empirical Application

Estimation of the effects of credit supply shocks on the US economy.

1973Q1− 2012Q4.

Identification strategy from Mumtaz et al. (18, Int. Econ. Rev.): sign
restrictions from the DSGE model of Gertler and Karadi (11, JME ).



Restrictions

Variable Restriction
Lending Rate Spread ≥ 0
Total Lending Growth ≤ 0
Investment Growth
Consumption Growth

GDP Growth ≤ 0
CPI Inflation ≤ 0

Three-Month Treasury Bill Rate ≤ 0
Financial Conditions Index
Economic Uncertainty

Table: Set-Identification of a Credit Supply Shock



Inference, 1− α = 0.95

Figure: Our toolkit (blue) vs. Standard Bayesian Credible Region (red)



Figure: Confidence Interval (our toolkit, blue) vs. Robust Bayesian Credible
Region in GK21 (red)



Computational gains with respect to the robust Bayesian approach in
GK21.

For this application, our toolkit takes 35s, in comparison to 9, 074s for
GK21.



Conclusion



Conclusion

We provide a new toolkit for estimation and inference of set-identified
FEVD in a SVAR setting.

This overcomes the well-known problem of non-revising the prior
distribution in the standard approach.

Bounds of the FEVD characterized as solutions to quadratic
programming.

Differentiability of the bounds allows us to propose a
length-set-adjusted delta method confidence interval.

The confidence interval is uniformly consistent in level and has
asymptotic robust Bayesian credibility.

High computational efficiency.



Appendix



Estimation

Figure: Estimated Bounds: our toolkit (blue) vs. GK21 (red)



IRFs
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