Estimation and Inference of the Forecast Error Variance Decomposition for Set-Identified SVARs

Francesco Fusari, **Joe Marlow** and Alessio Volpicella University of Surrey

EEA-ESEM 2024 28th August 2024 Erasmus School of Economics

(日) (四) (코) (코) (코) (코)

- For SVARs, there is a classical identification problem: more parameters than equations ⇒ researchers impose identifying restrictions.
- Under weak restrictions, the Forecast Error Variance Decomposition (FEVD) is set-identified. It can be only bounded up to an interval ⇒ estimation and inference is challenging.

- Most of the empirical practice for estimation of set-identified FEVD follows a standard Bayesian approach (Arias et al. 18, *Ecta*).
- Two concerns for this approach under set-identification:
 - priors are not updated by data, even asymptotically (Baumeister and Hamilton 15, *Ecta*; Poirier 98, *Econom. Theory*).
 - any prior choice breaks down the asymptotic equivalence between Bayesian and frequentist inference: the Bayesian interval asymptotically lies inside the true identified set (Moon and Schorfheide 12, Ecta).

- Robust approaches have been proposed accordingly, but they mostly focus on Impulse Response Functions (IRFs) and cannot be easily extended to FEVD (Granziera et al. 18, *QE*; Gafarov et al. 18, *JoE*).
- Significant exception: multiple-prior robust framework in Giacomini and Kitagawa (21, *Ecta*) [GK21], but ... is extremely heavy computationally (its practical feasibility is limited) and frequentist validity is not guaranteed for FEVD.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

- Estimation and inference toolkit for set-identified *FEVD*_{ijh} with no need to rely on a prior we cannot revise.
 - We estimate the upper and lower bounds of the set as solution to quadratic programming.
 - We prove differentiability of such bounds.
 - A delta-method confidence interval (adjusted by the length of the set) is proposed.

• Both frequentist and Bayesian interpretation.

• Literature.

- Econometric Framework.
- Estimation.
- Differentiability (Very Briefly).
- Inference: frequentist and Bayesian.

(日) (四) (문) (문) (문)

- Monte-Carlo Simulation.
- Empirical Application.

Econometric Framework

Econometric Framework

• SVAR(p):

$$\boldsymbol{A}_{0}\boldsymbol{y}_{t} = \boldsymbol{a} + \sum_{j=1}^{p} \boldsymbol{A}_{j}\boldsymbol{y}_{t-j} + \boldsymbol{\epsilon}_{t},$$
 (1)

$$\epsilon_t | (\mathbf{y}_{t-1}, \dots) \sim (\mathbf{0}, \mathbf{I}_n),$$
 (2)

where $\boldsymbol{\theta} = (\boldsymbol{A}_0, \boldsymbol{a}, \boldsymbol{A}_1, \dots, \boldsymbol{A}_p)$ collects the structural parameters and n is the number of variables.

• Reduced-form VAR(p):

$$\boldsymbol{y}_{t} = \boldsymbol{b} + \sum_{j=1}^{p} \boldsymbol{B}_{j} \boldsymbol{y}_{t-j} + \boldsymbol{u}_{t}, \qquad (3)$$

$$\boldsymbol{u}_t|(\boldsymbol{y}_{t-1},\ldots)\sim(\boldsymbol{0},\boldsymbol{\Sigma}), \tag{4}$$

where $\boldsymbol{\phi} = (\boldsymbol{b}, \boldsymbol{B}_1, \dots, \boldsymbol{B}_p, \boldsymbol{\Sigma}) \in \mathcal{R}^d$ collects the reduced-form parameters.

- dim(θ) > dim(φ): data are not enough to recover structural parameters, we need identifying restrictions.
- $\theta = Qf(\phi)$, where $Q \in Q$ is an orthonormal (rotation) $n \times n$ matrix, with Q being the set of orthonormal matrices.
- Identification corresponds to pin down **Q**.
- If we are interested in identifying the effect of shock j, this corresponds to pin down the j-th column of Q, i.e., q_j.

- $FEVD_{ijh} = \mathbf{q}'_j \mathbf{Y}^i_h(\boldsymbol{\phi}) \mathbf{q}_j$ represents the contribution of shock j to explain the fluctuation of variable i at horizon h.
- 0 ≤ FEVD_{ijh} ≤ 1, where Yⁱ_h(φ) is a n × n semipositive definite matrix.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• E.g., *j* is a financial shock, *i* the GDP growth.

- It is common to impose sign-restrictions, typically on the Impulse Response Functions (IRFs).
- E.g. negative financial shock decreases GDP growth.
- For a single shock j, the restrictions can collected by $S_j(\phi)q_j \ge 0$.
- S_j(φ) is a s_j × n matrix, with s_j being the number of sign restrictions on shock j.
- This delivers a set for FEVD_{ijh}:

$$IS_{FEVD}(\boldsymbol{\phi}) = \{FEVD_{ijh} : \boldsymbol{Q} \in \boldsymbol{\mathcal{Q}}(\boldsymbol{\phi}|\boldsymbol{S}_{j}(\boldsymbol{\phi})\boldsymbol{q}_{j} \ge \boldsymbol{0})\}.$$
(5)

We provide a toolkit for estimation and inference of the lower and upper bounds of $IS_{FEVD}(\phi)$:

Definition 1

ar

Given a vector of the reduced-form parameters $\boldsymbol{\phi}$, a shock of interest j^* , $l_{ij^*h}(\boldsymbol{\phi})$ and $u_{ij^*h}(\boldsymbol{\phi})$ are the lower- and upper-bound of $IS_{FEVD}(\boldsymbol{\phi})$, respectively:

$$I_{ij^*h}(\phi) \equiv \min_{q_{j^*}} q'_{j^*} \mathbf{Y}_h^i(\phi) q_{j^*} \ s.t. \ S_{j^*}(\phi) q_{j^*} \ge \mathbf{0}$$
, , $q'_{j^*} q_{j^*} = 1$, (6)

$$u_{ij^*h}(\phi) \equiv max_{q_{j^*}}q_{j^*}'Y_h^i(\phi)q_{j^*} \ s.t. \ S_{j^*}(\phi)q_{j^*} \ge 0$$
, $q_{j^*}'q_{j^*} = 1.$ (7)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Estimation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assumption A1: Non-Emptiness

 $\mathit{IS}_{\mathit{FEVD}}(oldsymbol{\phi})$ is non-empty at $oldsymbol{\phi}$.

Assumption A2: Linear Independence

Given a constrained shock j^* , $S_{j^*}(\phi)$ is linearly independent.

- Let $\boldsymbol{r}(\boldsymbol{\phi})$ denote the set of active constraints, i.e. $\boldsymbol{r}(\boldsymbol{\phi})\boldsymbol{q}_{j^*}=\boldsymbol{0}.$
- Given $S_{j^*}(\phi)$, there are $\sum_{i=0}^{\min(n-1,s_{j^*})} \frac{s_{j^*}!}{i!(s_{j^*}-i)!}$ possible combinations of active constraints, i.e. possible ways to construct $r(\phi)$.
- For example, if there are 2 inequality constraints, there are 4 ways of constructing *r*(φ): both constraints are binding, the first one is binding, the second one is binding, neither are binding.

Theorem 1

Suppose that Assumption A1 and A2 hold and a single shock j^* is sign-constrained.

- Let $\lambda(\phi, \mathbf{r})$ be the maximum eigenvalue of the matrix $Z(\phi, \mathbf{r}) = [I_n P(\phi, \mathbf{r})] Y_h^i(\phi)$, where $P(\phi, \mathbf{r}) = \mathbf{r}(\phi)' [\mathbf{r}(\phi)\mathbf{r}(\phi)']^{-1} \mathbf{r}(\phi)$.
- *u_{ij*h}(φ) = max_{r(φ)}λ(φ, r)* as long as inactive constraints are satisfied.

<ロト <四ト <注入 <注下 <注下 <

We can obtain the minimum analogously.

Inference

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assumption A3: Simple Eigenvalues

The algebraic multiplicity of the eigenvalues delivering $u_{ij^*h}(\phi)$ and $l_{ij^*h}(\phi)$ is equal to 1.

Assumption A4: Differentiability

 $S_{j^*}(oldsymbol{\phi})$ is differentiable at $oldsymbol{\phi}.$

Under this assumption, we prove the differentiability of $u_{ij^*h}(\boldsymbol{\phi})$ and $l_{ij^*h}(\boldsymbol{\phi})$, i.e. $\frac{\partial u_{ij^*h}(\boldsymbol{\phi})}{\partial \boldsymbol{\phi}}$ and $\frac{\partial l_{ij^*h}(\boldsymbol{\phi})}{\partial \boldsymbol{\phi}}$ exist and can be characterized.

We propose a delta-method interval, adjusted by the length of the set:

$$CI_{\alpha} \equiv \left[I_{ij^*h}(\widehat{\phi}_{OLS}) - c_{\alpha}\widehat{\sigma}_{Ijj^*h}/\sqrt{T}, u_{ij^*h}(\widehat{\phi}_{OLS}) + c_{\alpha}\widehat{\sigma}_{ujj^*h}/\sqrt{T} \right], \quad (8)$$

where

$$\widehat{\sigma}_{lij^*h} = \left[\left(\frac{\partial l_{ij^*h}(\widehat{\boldsymbol{\phi}}_{OLS})}{\partial \widehat{\boldsymbol{\phi}}_{OLS}} \right)' \widehat{\boldsymbol{\Omega}} \left(\frac{\partial l_{ij^*h}(\widehat{\boldsymbol{\phi}})}{\partial \widehat{\boldsymbol{\phi}}_{OLS}} \right) \right]^{\frac{1}{2}}.$$
(9)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\widehat{\mathbf{\Omega}}$ is the estimated variance-covariance matrix of $\boldsymbol{\phi}$. $\widehat{\sigma}_{lij^*h}$ is defined analogously.

The critical value c_{α} is adjusted to take into account the length of the set:

$$\Phi\left(c_{\alpha} + \frac{\sqrt{T}\widehat{\Delta}_{ij^*h}}{\max\{\widehat{\sigma}_{lij^*h}, \widehat{\sigma}_{uij^*h}\}}\right) - \Phi\left(-c_{\alpha}\right) = 1 - \alpha, \quad (10)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where $\Phi(\bullet)$ is the standard normal cumulative distribution evaluated at \bullet and $\widehat{\Delta}_{ij^*h} = u_{ij^*h}(\widehat{\phi}_{OLS}) - l_{ij^*h}(\widehat{\phi}_{OLS})$ is the estimated length of the identified set.

Assumption A5: Asymptotic Normality

OLS estimators uniformly satisfy

$$\sqrt{T}(\widehat{\boldsymbol{\phi}}_{OLS} - \boldsymbol{\phi}(P)) \to_d N(\mathbf{0}, \boldsymbol{\Omega}(P)),$$

$$\widehat{\boldsymbol{\Omega}} \to_{\boldsymbol{\rho}} \boldsymbol{\Omega}(P),$$
(11)
(12)

(日) (四) (코) (코) (코) (코)

where P is the data-generating process.

We establish the uniform consistency of CI_{α} :

Theorem 3

In a compact subset for ϕ , suppose that Assumptions A1-A5 hold and $\frac{\partial u_{ij^*h}(\hat{\phi}_{OLS})}{\partial \hat{\phi}_{OLS}}$ and $\frac{\partial l_{ij^*h}(\hat{\phi}_{OLS})}{\partial \hat{\phi}_{OLS}}$ are different from zero. We obtain

$$\lim_{T\to\infty} \inf \inf_{FEVD_{ij^*h}(P)\in IS(\phi(P))} Pr(FEVD_{ij^*h}(P) \in CI_{\alpha}) = 1 - \alpha.$$
 (13)

Sketch of the proof: uniform convergence in distribution of the delta-method under some conditions + length-adjusted confidence interval in Stoye (09, *Ecta*).

Empirical Application

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Estimation of the effects of credit supply shocks on the US economy.
- 1973*Q*1 2012*Q*4.
- Identification strategy from Mumtaz et al. (18, *Int. Econ. Rev.*): sign restrictions from the DSGE model of Gertler and Karadi (11, *JME*).

Variable	Restriction
Lending Rate Spread	≥ 0
Total Lending Growth	≤ 0
Investment Growth	
Consumption Growth	
GDP Growth	\leq 0
CPI Inflation	\leq 0
Three-Month Treasury Bill Rate	≤ 0
Financial Conditions Index	
Economic Uncertainty	

Table: Set-Identification of a Credit Supply Shock

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Inference, $1 - \alpha = 0.95$

Figure: Our toolkit (blue) vs. Standard Bayesian Credible Region (red)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Figure: Confidence Interval (our toolkit, blue) vs. Robust Bayesian Credible Region in GK21 (red)

(日) (四) (三) (三)

æ

- Computational gains with respect to the robust Bayesian approach in GK21.
- For this application, our toolkit takes 35s, in comparison to 9,074s for GK21.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- We provide a new toolkit for estimation and inference of set-identified FEVD in a SVAR setting.
- This overcomes the well-known problem of non-revising the prior distribution in the standard approach.
- Bounds of the FEVD characterized as solutions to quadratic programming.
- Differentiability of the bounds allows us to propose a length-set-adjusted delta method confidence interval.
- The confidence interval is uniformly consistent in level and has asymptotic robust Bayesian credibility.

• High computational efficiency.

Appendix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Figure: Estimated Bounds: our toolkit (blue) vs. GK21 (red)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで