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@ For SVARs, there is a classical identification problem: more
parameters than equations = researchers impose identifying
restrictions.

@ Under weak restrictions, the Forecast Error Variance Decomposition
(FEVD) is set-identified. It can be only bounded up to an interval =
estimation and inference is challenging.



@ Most of the empirical practice for estimation of set-identified FEVD
follows a standard Bayesian approach (Arias et al. 18, Ecta).
@ Two concerns for this approach under set-identification:
@ priors are not updated by data, even asymptotically (Baumeister and
Hamilton 15, Ecta; Poirier 98, Econom. Theory).
@ any prior choice breaks down the asymptotic equivalence between
Bayesian and frequentist inference: the Bayesian interval asymptotically
lies inside the true identified set (Moon and Schorfheide 12, Ecta).



@ Robust approaches have been proposed accordingly, but they mostly
focus on Impulse Response Functions (IRFs) and cannot be easily
extended to FEVD (Granziera et al. 18, QE; Gafarov et al. 18, JoE).

@ Significant exception: multiple-prior robust framework in Giacomini
and Kitagawa (21, Ecta) [GK21], but ... is extremely heavy
computationally (its practical feasibility is limited) and frequentist
validity is not guaranteed for FEVD.



@ Estimation and inference toolkit for set-identified FEVD;;, with no
need to rely on a prior we cannot revise.

o We estimate the upper and lower bounds of the set as solution to
quadratic programming.

o We prove differentiability of such bounds.

o A delta-method confidence interval (adjusted by the length of the set)
is proposed.

@ Both frequentist and Bayesian interpretation.
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Econometric Framework



Econometric Framework

e SVAR(p):
p
Ay, =a+) Ay, j+er (1)
j=1
€t|(ye—1,---) ~ (0, 1n), (2)
where 0 = (Ao, aA,..., Ap) collects the structural parameters and
n is the number of variables.
@ Reduced-form VAR(p):
p
.Vt:b+ZBth—j+Uty (3)
j=1
ue|(ye—q,---) ~ (0,X), (4)

where ¢ = (b, By, ..., B, L) € RY collects the reduced-form
parameters.



The Identification Problem

dim(0) > dim(¢): data are not enough to recover structural
parameters, we need identifying restrictions.

0 = Qf(¢), where Q € Q is an orthonormal (rotation) n X n
matrix, with Q being the set of orthonormal matrices.

Identification corresponds to pin down Q.

If we are interested in identifying the effect of shock j, this
corresponds to pin down the j-th column of Q, i.e., g;.



Forecast Error Variance Decomposition

e FEVDj, = q}Y;(gb)qj represents the contribution of shock j to
explain the fluctuation of variable i at horizon h.

e 0 < FEVD;j, < 1, where Y} (¢) is a n x n semipositive definite
matrix.

e E.g., jis a financial shock, i the GDP growth.



Set-ldentification

@ It is common to impose sign-restrictions, typically on the Impulse
Response Functions (IRFs).

E.g. negative financial shock decreases GDP growth.

For a single shock j, the restrictions can collected by Sj(gb)qj > 0.

Si(¢) is a sj X n matrix, with s; being the number of sign restrictions
on shock j.

This delivers a set for FEVD;j:

ISrevo (@) = {FEVDjn : Q € Q(¢[S;(¢)a; > 0)}.  (5)



We provide a toolkit for estimation and inference of the lower and upper
bounds of ISFEVD((P):

Definition 1

Given a vector of the reduced-form parameters ¢, a shock of interest j*,

li=n(¢) and ujj-n(¢p) are the lower- and upper-bound of ISreyp (¢),
respectively:

lin($) = ming,. @ Y},(¢)qj: s.t. Sj-(¢)g; >0, giqp =1, (6)

and

ujn(P) = maxg;. qj-*Y;,(zp)qj* st. Sp(¢)g >0, gq. =1 (7)




Estimation



Some Assumptions

Assumption Al: Non-Emptiness
ISeevp (@) is non-empty at ¢.

Assumption A2: Linear Independence

Given a constrained shock j*, Sj-(¢) is linearly independent.




o Let r(¢) denote the set of active constraints, i.e. r(¢)q;» = 0.

e Given Sj-(¢), there are ) m'g nbs) ,.,(:’*_I.), possible combinations
(spe—i)!

of active constraints, i.e. possible ways to construct r(¢).

@ For example, if there are 2 inequality constraints, there are 4 ways of
constructing r(¢): both constraints are binding, the first one is
binding, the second one is binding, neither are binding.



Suppose that Assumption Al and A2 hold and a single shock j* is
sign-constrained.

o Let A(¢, r) be the maximum eigenvalue of the matrix
Z(¢p,r)=[In—P(¢p.r)]| Y,(), where
P(¢p.r) =r(¢) [r()r(¢)] " r(e).

° ujjh(@) = max,(4)A(@p, r) as long as inactive constraints are
satisfied.

We can obtain the minimum analogously.




Inference



Very Briefly: Differentiability

Assumption A3: Simple Eigenvalues

The algebraic multiplicity of the eigenvalues delivering ujjp(¢) and
li=n(¢@) is equal to 1.

Assumption A4: Differentiability

Sj-(¢) is differentiable at ¢.

Under this assumption, we prove the differentiability of ujj«(¢) and

dujsp (@) and Al (@)

li<n(¢p), i.e. 3% g~ exist and can be characterized.




Confidence Interval

We propose a delta-method interval, adjusted by the length of the set:

Cly = [/ij*h(tfms) — G/ VT, ujen(Pors) + Cvc‘ﬁ:ij*h/ﬁ} . (8)

Gy — a’ij*hﬁfﬁow) Iﬁ a/;j:,,(J)) j_ 9)
/ dpors dpors

Q) is the estimated variance-covariance matrix of ¢. Tjj+p, is defined
analogously.

where



The critical value ¢, is adjusted to take into account the length of the set:

TAj
d <CDé \/> ith

max{ﬁ,,-j* hy b\'u,'j* h}

)—d)(—c,x) =1-a, (10)

where ®(e) is the standard normal cumulative distribution evaluated at
and Ajj+p, = ujj-n(@Pors) — lij*n(Pors) is the estimated length of the
identified set.



Frequentist Coverage

Assumption Ab: Asymptotic Normality
OLS estimators uniformly satisfy

VT(pos — ¢(P)) —a N(0,Q(P)), (11)
Q—,Q(P),

where P is the data-generating process.



We establish the uniform consistency of Cl,:

In a compact subset for ¢, suppose that Assumptions AI-A5 hold and

du;ixp (P Ay (B . .
urn(Qois) g Firn®oLs) oo gitrarent from zero. We obtain

d¢oLs ddoLs

limT_e inf ianEVD,-j*h(P)GIS((p(P))Pr(FEVDU*h(P) S C/a) =1—ua. (13)

Sketch of the proof: uniform convergence in distribution of the
delta-method under some conditions + length-adjusted confidence interval
in Stoye (09, Ecta).



Empirical Application



Empirical Application

@ Estimation of the effects of credit supply shocks on the US economy.
e 1973Q1 — 2012Q4.

o lIdentification strategy from Mumtaz et al. (18, Int. Econ. Rev.): sign
restrictions from the DSGE model of Gertler and Karadi (11, JME).



Variable Restriction
Lending Rate Spread >0
Total Lending Growth <0

Investment Growth
Consumption Growth

GDP Growth <0
CPI Inflation <0
Three-Month Treasury Bill Rate <0

Financial Conditions Index
Economic Uncertainty

Table: Set-Identification of a Credit Supply Shock
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Figure: Confidence Interval (our toolkit, blue) vs. Robust Bayesian Credible
Region in GK21 (red)



@ Computational gains with respect to the robust Bayesian approach in
GK21.

@ For this application, our toolkit takes 35s, in comparison to 9, 074s for
GK21.



Conclusion



Conclusion

@ We provide a new toolkit for estimation and inference of set-identified
FEVD in a SVAR setting.

@ This overcomes the well-known problem of non-revising the prior
distribution in the standard approach.

@ Bounds of the FEVD characterized as solutions to quadratic
programming.

o Differentiability of the bounds allows us to propose a
length-set-adjusted delta method confidence interval.

@ The confidence interval is uniformly consistent in level and has
asymptotic robust Bayesian credibility.

@ High computational efficiency.
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Estimation
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Figure: Estimated Bounds: our toolkit (blue) vs. GK21 (red)
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