

Faculty of Business Administration and Economics

The Texas Shoot-Out under Knightian Uncertainty

Gerrit Bauch & Frank Riedel

Center for Mathematical Economics Bielefeld University

August 27, 2024

75th European meeting of the Econometric Society Rotterdam

IMV

All good things ... (might) come to an end.

IMV

- allocation of an indivisible object
- two agents:
	- a divider with shares $\alpha \in [0,1]$

- a chooser with shares 1α
- private valuations $x_D, x_C \in [0, 1]$

IMW

The Texas Shoot-Out

IMV

The Texas Shoot-Out — The chooser's best reply

The Texas Shoot-Out — The chooser's best reply

The chooser sells the company if and only if $x_C - \alpha p \leq (1 - \alpha)p$

$$
\iff \qquad x_{\mathcal{C}} \leq p
$$

4

■ dominant strategy $-$ independent of x_D

 $divider$ favorable p depends on the expected chooser's action $-$ on (the expected) x_c

 $divider$ **f**avorable p depends on the expected chooser's action $-$ on (the expected) x_c \rightarrow [Bayes](#page-41-0) \rightarrow [adversarial](#page-43-0)

4

 $\overline{p} = x_D$ (truth-telling) guarantees

- $divider$ **f**avorable p depends on the expected chooser's action $-$ on (the expected) x_c \rightarrow [Bayes](#page-41-0) \rightarrow [adversarial](#page-43-0)
	- $\overline{p} = x_D$ (truth-telling) guarantees
		- \blacktriangleright a safe payoff αx_D ,

- $divider$ **f**avorable p depends on the expected chooser's action $-$ on (the expected) x_c \rightarrow [Bayes](#page-41-0) \rightarrow [adversarial](#page-43-0)
	- $\overline{p} = x_D$ (truth-telling) guarantees
		- \blacktriangleright a safe payoff αx_D ,
		- ➤ efficiency.

(highest valuation gets company)

Knightian Uncertainty

The divider wants to know $\mathbb{P}(x_C \leq p)$ - the probability that p is accepted.

We consider the more general case in which only bounds for this CDF are known. ➤ robustness ➤ lack of information

Knightian Uncertainty (distribution bands)

The divider wants to know $\mathbb{P}(x_C \leq p)$ - the probability that p is accepted.

We consider the more general case in which only bounds for this CDF are known. ➤ robustness ➤ lack of information

Fix two CDFs $G_0 \leq G_1$ and let divider consider the set of CDFs

 $G = \{ G \text{ CDF on } [0,1] \mid G_0(p) \le G(p) \le G_1(p) \text{ for all } p \}.$

Knightian Uncertainty (distribution bands)

The divider wants to know $\mathbb{P}(x_C \leq p)$ - the probability that p is accepted.

We consider the more general case in which only bounds for this CDF are known. ➤ robustness ➤ lack of information

Fix two CDFs $G_0 \leq G_1$ and let divider consider the set of CDFs

$$
\mathcal{G} = \{ G \text{ CDF on }[0,1] \mid G_0(\rho) \leq G(\rho) \leq G_1(\rho) \text{ for all } \rho \}.
$$

Maxmin expected utility (Gilboa and Schmeidler, [1989\)](#page-38-0)

$$
\pi(p \mid x_D) := \min_{G \in \mathcal{G}} \pi_G(p \mid x_D) \quad \text{with optimal prices} \quad m(x_D) := \arg \max_{p} \pi(p \mid x_D),
$$

5

where $\pi_G(p \mid x_D) := (x_D - (1 - \alpha)p) \cdot G(p) + \alpha p \cdot (1 - G(p)).$

Illustration of G

IMV

Illustration of G

IMV

A path from Bayes Nash to adversarial maxmin prices

A path from Bayes Nash to adversarial maxmin prices

Stochastic Dominance

IMV

Stochastic Dominance

IMV

Stochastic Dominance

IMW

Prices under uncertainty - graphically

IMV

Prices under uncertainty - graphically

IMV

Prices under uncertainty - graphically

Figure 1: Optimal price announcement $m(x_D)$ for \mathcal{G} . μ_G^α are the resp. α -quantiles.

Theorem

If $G_0\leq G_1$ *are piecewise continuously differentiable and* $\pi_{G_0}(\cdot\mid x_D)$ *,* $\pi_{G_1}(\cdot\mid x_D)$ *strictly quasi-concave, we have*

$$
m(x_D) = \begin{cases} m_{G_1}(x_D) & , \text{if } x_D < \mu_{G_1}^{\alpha}, \\ x_D & , \text{if } \mu_{G_1}^{\alpha} \leq x_D \leq \mu_{G_0}^{\alpha}, \\ m_{G_0}(x_D) & , \text{if } \mu_{G_0}^{\alpha} < x_D. \end{cases}
$$

Theorem

If $G_0\leq G_1$ *are piecewise continuously differentiable and* $\pi_{G_0}(\cdot\mid x_D)$ *,* $\pi_{G_1}(\cdot\mid x_D)$ *strictly quasi-concave, we have*

$$
m(x_D) = \begin{cases} m_{G_1}(x_D) & , \text{if } x_D < \mu_{G_1}^{\alpha}, \\ x_D & , \text{if } \mu_{G_1}^{\alpha} \leq x_D \leq \mu_{G_0}^{\alpha}, \\ m_{G_0}(x_D) & , \text{if } \mu_{G_0}^{\alpha} < x_D. \end{cases}
$$

11

Is the good given to the agent with the highest valuation?

Is the good given to the agent with the highest valuation?

Fix a CDF F and consider $G(F, \varepsilon) = \{G \mid F(p - \varepsilon) \leq G(p) \leq F(p + \varepsilon)\}$

Is the good given to the agent with the highest valuation?

Fix a CDF F and consider $\mathcal{G}(F,\varepsilon) = \{G \mid F(p-\varepsilon) \leq G(p) \leq F(p+\varepsilon)\}\$

Is the good given to the agent with the highest valuation?

Fix a CDF F and consider $G(F, \varepsilon) = \{G \mid F(p - \varepsilon) \leq G(p) \leq F(p + \varepsilon)\}$

Is the good given to the agent with the highest valuation?

Fix a CDF F and consider $G(F, \varepsilon) = \{G \mid F(p - \varepsilon) \leq G(p) \leq F(p + \varepsilon)\}$

Is the good given to the agent with the highest valuation?

Fix a CDF F and consider $G(F, \varepsilon) = \{G \mid F(p - \varepsilon) \leq G(p) \leq F(p + \varepsilon)\}$

Allocative efficiency and the state of t

Is the good given to the agent with the highest valuation?

Fix a CDF F and consider $\mathcal{G}(F,\varepsilon) = \{G \mid F(p-\varepsilon) \leq G(p) \leq F(p+\varepsilon)\}\$

11

Proposition

The set of inefficient allocations is shrinking in uncertainty.

For any valuation x and facing G one can define the worst-case EU of being the divider resp. chooser $\Phi_D(x)$ resp. $\Phi_C(x)$.
For any valuation x and facing G one can define the worst-case EU of being the divider resp. chooser $\Phi_D(x)$ resp. $\Phi_C(x)$.

Thanks for your attention!

- Gilboa, Itzhak and David Schmeidler (1989). "Maxmin expected utility with Ħ non-unique prior". In: *Journal of mathematical economics* 18.2, pp. 141–153.
- McAfee, R Preston (1992). "Amicable divorce: Dissolving a partnership with F simple mechanisms". In: *Journal of Economic Theory* 56.2, pp. 266–293.
- van Essen, Matt and John Wooders (2020). "Dissolving a partnership securely". In: *Economic Theory* 69.2, pp. 415–434.

If the chooser's valuation is (believed to be) drawn from a CDF F $\pi_F(p \mid x_D) := (x_D - (1 - \alpha)p) \cdot F(p) + \alpha p \cdot (1 - F(p)).$

Theorem (McAfee, [1992\)](#page-38-0): SHRCs on $F \implies \exists! m_F(x_D) \in \argmax \pi_F(p \mid x_D)$ p

Figure 2: Bayesian prices for $F \sim \mathcal{U}([0,1])$, μ_F^α the α -quantile of $F.$

If the chooser's valuation is (believed to be) drawn from a CDF F $\pi_F(p \mid x_D) := (x_D - (1 - \alpha)p) \cdot F(p) + \alpha p \cdot (1 - F(p)).$

Theorem (McAfee, [1992\)](#page-38-0): SHRCs on $F \implies \exists! m_F(x_D) \in \argmax \pi_F(p \mid x_D)$ p

Figure 2: Bayesian prices for $F \sim \mathcal{U}([0,1])$, μ_F^α the α -quantile of $F.$

If the chooser's valuation is (believed to be) drawn from a CDF F $\pi_F(p \mid x_D) := (x_D - (1 - \alpha)p) \cdot F(p) + \alpha p \cdot (1 - F(p)).$

Theorem (McAfee, [1992\)](#page-38-0): SHRCs on $F \implies \exists! m_F(x_D) \in \argmax \pi_F(p \mid x_D)$ p

Figure 2: Bayesian prices for $F \sim \mathcal{U}([0,1])$, μ_F^α the α -quantile of $F.$

Let F with strictly pos. density fulfill the *standard hazard rate conditions* (SHRCs)

$$
\frac{\partial}{\partial x}\left(x+\frac{F(x)}{F'(x)}\right)\geq 0 \quad \text{and} \quad \frac{\partial}{\partial x}\left(x-\frac{1-F(x)}{F'(x)}\right)\geq 0.
$$

Then, there is a unique $m_f(x_D) \in \arg \max_{p} \pi_F(p | x_D)$. Furthermore,

$$
m(x_D) \geq x_D
$$
 if and only if $x_D \leq \mu_F^{\alpha}$,

where μ_F^α is the α -quantile of F, i.e., $\mathcal{F}(\mu_F^\alpha) = \mathbb{P}_\mathcal{F}(\varkappa_C \leq \mu_F^\alpha) = \alpha.$

Idea: The chooser manages to play always that action that hurts the divider the most – irrespective of their own losses.

$$
\blacktriangleright \overline{p} = x_D
$$

Idea: The chooser manages to play always that action that hurts the divider the most – irrespective of their own losses.

$$
\blacktriangleright \overline{p} = x_D
$$

For all (x_D, p) there is x_C leading to the worst action for the divider, e.g., $x_C = x_D$:

'Sell' is bad for divider $\iff x_D \leq p$ Sell' is played by chooser $\iff x_c \leq p$.

If $\mathcal{G} = \{ G \mid G$ is a CDF on $[0, 1] \}$ (full uncertainty): $\rightsquigarrow \delta_{X_D} \in \mathcal{G}$

➤ maxmin price is full uncertainty price

IMW

Optimal price announcement for $F \sim \mathcal{U}([0,1])$.

$$
m(x_D) = \begin{cases} \frac{x_D + \alpha - \varepsilon}{2} , & \text{if } 0 \leq x_D < \alpha - \varepsilon, \\ x_D , & \text{if } \alpha - \varepsilon \leq x_D \leq \alpha + \varepsilon, \\ \frac{x_D + \alpha + \varepsilon}{2} , & \text{if } \alpha + \varepsilon < x_D \leq 1. \end{cases}
$$

Strict quasi-concavity [register](#page-27-0) and the concentration of the concentration

Assumption

- G₀, G_1 piecewise continuously differentiable,
- $\pi_{G_0}(. \mid x_D)$, $\pi_{G_1}(. \mid x_D)$ strictly quasi-concave the string \rightarrow [thm](#page-27-0)

Strict quasi-concavity [register](#page-27-0) and the concerning of the co

Assumption

- G₀, G_1 piecewise continuously differentiable,
- $\pi_{G_0}(. \mid x_D)$, $\pi_{G_1}(. \mid x_D)$ strictly quasi-concave the string \rightarrow [thm](#page-27-0)

Lemma

The assumption is satisfied for G(F, *ε*) *if* F *fulfills the SHRCs*

$$
\frac{\partial}{\partial x}\left(x+\frac{F(x)}{F'(x)}\right)\geq 0\quad\text{and}\quad \frac{\partial}{\partial x}\left(x-\frac{1-F(x)}{F'(x)}\right)\geq 0.
$$

Strict quasi-concavity [register](#page-27-0)s and the concerning of the c

Assumption

- G₀, G_1 piecewise continuously differentiable,
- $\pi_{G_0}(. \mid x_D)$, $\pi_{G_1}(. \mid x_D)$ strictly quasi-concave the string \rightarrow [thm](#page-27-0)

Lemma

The assumption is satisfied for G(F, *ε*) *if* F *fulfills the SHRCs*

$$
\frac{\partial}{\partial x}\left(x+\frac{F(x)}{F'(x)}\right)\geq 0\quad\text{and}\quad \frac{\partial}{\partial x}\left(x-\frac{1-F(x)}{F'(x)}\right)\geq 0.
$$

Example

P.w. linear, truncated normal, triangular, classes of Beta distributions. Pics

Examples of $\pi_{\mathcal{G}_0}, \pi_{\mathcal{G}_1}$ for different distributions \cdots [register](#page-27-0)

 \rightarrow [back](#page-46-0)

20

''The possibility that the person naming the price can be forced either to buy or to sell keeps the first mover honest.''

> Circuit Chief Judge Easterbrook *Valinote v. Ballis, 295 F.3d 666 (7th Cir. 2002)*

''The cake-cutting mechanism has a disappointing performance, as it fails to reach ex post efficiency.''

McAfee, [1992](#page-38-0)

Sketch of the proof [register](#page-27-0) and the state of the proof register \blacksquare

$$
\Phi_D(x) := \pi(m^{\alpha}(x) \mid x),
$$

\n
$$
\Phi_C(x) := \min_{G \in \mathcal{G}} \mathbb{E}_G \left[\max \left\{ x - (1 - \alpha) m^{1-\alpha}(z), \alpha m^{1-\alpha}(z) \right\} \right].
$$

A chooser with valuation x_C has worst case utility

$$
\Phi_C(x) = \begin{cases} \mathbb{E}_{G_1}[m^{1-\alpha}(z)] & , \text{if } x_C < \min m^{1-\alpha}(z), \\ \mathbb{E}_{G^*(x_C)}[\max\{x - (1-\alpha)m^{1-\alpha}(z), \alpha m^{1-\alpha}(z)\}] & , \text{if } x_C \in \text{range}(m^{1-\alpha}), \\ \mathbb{E}_{G_0}[x - m^{1-\alpha}(z)] & , \text{if } \max m^{1-\alpha}(z) < x_C, \end{cases}
$$

where $G^*(x)$ is the distribution function that switches from \mathcal{G}_0 to \mathcal{G}_1 at $x^* = (m^{1-\alpha})^{-1}(x).$

IMV

For any valuation x and facing G one can define the worst-case EU of being the divider resp. chooser $\Phi_D(x)$ resp. $\Phi_C(x)$.

For any valuation x and facing G one can define the worst-case EU of being the divider resp. chooser $\Phi_D(x)$ resp. $\Phi_C(x)$.

Comparison for $\varepsilon = 0.02$ [pres](#page-35-0)ent [end](#page-37-0) to the end of ϵ [register](#page-27-0) ϵ and ρ

IMV

26

Comparison for $\varepsilon = 0.4$ **provided** the [end](#page-37-0) of ϵ [register](#page-27-0) ϵ and ϵ

IMV

26

Comparison for $\varepsilon = 0.6$ **provided** the [end](#page-37-0) of ϵ [register](#page-27-0) ϵ and ϵ

IMV

Better let me cut the cake!

Figure 3: Not for all valuations an agent prefers to be the chooser if $\alpha\neq\frac{1}{2}.$

 $=$

Agent 1 with valuation x_1 and shares $\alpha = \alpha_1$ etc.

$$
\begin{array}{c|c|c}1 \backslash 2 & \text{DT} & \text{DT} \\ \hline \text{T} & \frac{1}{2}\Phi_D^\alpha(x_1) + \frac{1}{2}\Phi_C^\alpha(x_1), \frac{1}{2}\Phi_D^{1-\alpha}(x_2) + \frac{1}{2}\Phi_C^{1-\alpha}(x_2) & \Phi_D^\alpha(x_1), \Phi_C^{1-\alpha}(x_2) \\ \text{DT} & \Phi_C^\alpha(x_1), \Phi_D^{1-\alpha}(x_2) & \alpha x_1, (1-\alpha)x_2 \end{array}
$$

Agent 1 with valuation x_1 and shares $\alpha = \alpha_1$ etc.

$$
\begin{array}{c|c|c}1 \backslash 2 & \text{I} & \text{DT} \\ \hline \text{T} & \frac{1}{2}\Phi_D^\alpha(x_1) + \frac{1}{2}\Phi_C^\alpha(x_1), \frac{1}{2}\Phi_D^{1-\alpha}(x_2) + \frac{1}{2}\Phi_C^{1-\alpha}(x_2) & \Phi_D^\alpha(x_1), \Phi_C^{1-\alpha}(x_2) \\ \text{DT} & \Phi_C^\alpha(x_1), \Phi_D^{1-\alpha}(x_2) & \alpha x_1, (1-\alpha)x_2 \end{array}
$$

 DT dominates T for i iff both

$$
\bullet \quad \Phi_C^{\alpha_i}(x_i) \geq \Phi_D^{\alpha_i}(x_i)
$$

$$
\bullet \qquad \alpha_i x_i \geq \Phi_D^{\alpha_i}(x_i)
$$

Agent 1 with valuation x_1 and shares $\alpha = \alpha_1$ etc.

$$
\begin{array}{c|c|c} 1 \setminus 2 & \text{I} & \text{DT} \\ \hline \text{T} & \frac{1}{2}\Phi_D^\alpha(x_1) + \frac{1}{2}\Phi_C^\alpha(x_1), \frac{1}{2}\Phi_D^{1-\alpha}(x_2) + \frac{1}{2}\Phi_C^{1-\alpha}(x_2) & \Phi_D^\alpha(x_1), \Phi_C^{1-\alpha}(x_2) \\ \text{DT} & \Phi_C^\alpha(x_1), \Phi_D^{1-\alpha}(x_2) & \alpha x_1, (1-\alpha)x_2 \end{array}
$$

 DT dominates T for i iff both

$$
\bullet \quad \Phi_C^{\alpha_i}(x_i) \geq \Phi_D^{\alpha_i}(x_i)
$$

$$
\bullet \qquad \alpha_i x_i \geq \Phi_D^{\alpha_i}(x_i)
$$

 \blacktriangleright If $\alpha = \frac{1}{2}$ $\frac{1}{2}$ then (DT, DT) is an equilibrium for $x_i \in [\mu_G^{\alpha_i}]$ $\alpha_i \over G_1$, $\mu \alpha_i$ ${}^{\alpha_i}_{G_0}].$

 $\overline{}$ [cut the cake](#page-36-0)

(T,T) as equilibrium [register](#page-27-0) [end](#page-37-0) and \blacksquare

(T, T) is an equilibrium iff $\Phi_D^{\alpha_i}(x_i) \ge \max\{\alpha_i x_i, \Phi_C^{\alpha_i}(x_i)\}\$

$$
\alpha_1 = 99\%, x_1 = 0.3, x_2 = 0.7, \varepsilon = \frac{1}{5}.
$$

 29

(T,DT) as equilibrium [register](#page-27-0) [end](#page-37-0) of (\sim_{register}) and (\sim_{end})

(T, D) is an equilibrium iff $\Phi_D^{\alpha_1}(\mathsf{x}_1) \geq \max\{\alpha_1\mathsf{x}_1,\Phi_C^{\alpha_1}(\mathsf{x}_1)\}, \min\{(1-\alpha_1)\mathsf{x}_2,\Phi_C^{1-\alpha_1}(\mathsf{x}_2)\} \geq \Phi_D^{1-\alpha_1}(\mathsf{x}_2)$

$$
\alpha_1 = 99\%, x_1 = 0.3, x_2 = 0.1, \varepsilon = \frac{1}{5}.
$$

29

Correlation and the correlation of the contract of the correlation of the contract of the cont

In a partnership one might expect $x_C \approx x_D$.

Correlation and the control of the control

In a partnership one might expect $x_C \approx x_D$.

E.g., if x_C is drawn from the triangular distribution with mode x_D .

Figure 4: PDF of Tri^{x_D} for $x_D = 0.3$

Prices under Correlation [register](#page-27-0) [end](#page-37-0) and the end of the

31

Figure 5: Prices for the cases of correlated and uncertain $\mathcal{G}(\textsf{Tri}^{\times_D}, \frac{1}{5}),$ the correlated Bayesian $\mathcal{G}(\textsf{Tri}^{\times_D},0)$ and uncertain case without correlation $\mathcal{G}(\textsf{Tri}^{0.5},\frac{1}{5}).$