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Setting

allocation of an indivisible object

two agents:
a divider with shares α ∈ [0, 1]
a chooser with shares 1 − α

private valuations xD, xC ∈ [0, 1]
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The Texas Shoot-Out

divider

p ∈ R

chooser

buy sell

αp
xC − αp

xD − (1 − α)p
(1 − α)p

D :
C :

chooser

divider
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The cake is a lie
!
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The Texas Shoot-Out — The chooser’s best reply
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⇐⇒ xC ≤ p

dominant strategy
— independent of xD
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The Texas Shoot-Out — The divider’s problem

divider

p ∈ R

chooser

buy sell

αp
xC − αp

xD − (1 − α)p
(1 − α)p

D :
C :

chooser

divider

favorable p depends on the
expected chooser’s action
— on (the expected) xC

Bayes adversarial

p = xD (truth-telling)
guarantees

➤ a safe payoff αxD ,
➤ efficiency.

(highest valuation gets company)

puzzle
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Knightian Uncertainty

(distribution bands)

The divider wants to know P(xC ≤ p) - the probability that p is accepted.

We consider the more general case in which only bounds for this CDF are known.
➤ robustness ➤ lack of information

Fix two CDFs G0 ≤ G1 and let divider consider the set of CDFs

G = {G CDF on [0, 1] | G0(p) ≤ G(p) ≤ G1(p) for all p} .

Maxmin expected utility (Gilboa and Schmeidler, 1989)

π(p | xD) := min
G∈G

πG(p | xD) with optimal prices m(xD) := arg max
p

π(p | xD),

where πG(p | xD) := (xD − (1 − α)p) · G(p) + αp · (1 − G(p)).
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Illustration of G

G0 = G1
⇝ Bayesian prices

(McAfee, 1992)
Bayes

G1 − G0 ≡ 1
⇝ adversarial maxmin prices

(van Essen and Wooders, 2020)
adversarial

(xD − (1 − α)p) · G(p)
+αp · (1 − G(p))min

G∈G

1. xD > p
⇝ G = G0

2. xD < p
⇝ G = G1

1 p0

1
P

G

G0

G1
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A path from Bayes Nash to adversarial maxmin prices
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Stochastic Dominance
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Prices under uncertainty - graphically

1
p

1 xD0

xD

mG1(xD)
mG0(xD)

µα
G1

µα
G0

m(xD)

Figure 1: Optimal price announcement m(xD) for G. µα
G are the resp. α-quantiles.
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Prices under uncertainty - analytically

Theorem
If G0 ≤ G1 are piecewise continuously differentiable and πG0(· | xD), πG1(· | xD)
strictly quasi-concave, we have

m(xD) =


mG1(xD) , if xD < µα

G1
,

xD , if µα
G1

≤ xD ≤ µα
G0

,
mG0(xD) , if µα

G0
< xD.

efficiency interim utility trigger game correlation assumptions proof sketch
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Allocative efficiency register end

Is the good given to the agent with the highest valuation?

Fix a CDF F and consider
G(F , ε) = {G | F (p − ε) ≤ G(p) ≤ F (p + ε)}

1

1 xD0

µα
F

inefficient
allocations

mF (xD)

µα
G1

µα
G0

m(xD)ε = 0ε > 0ε ↑

Proposition

The set of inefficient allocations is shrinking in uncertainty.
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You better not cut the cake. register end

For any valuation x and facing G one can define the worst-case EU of being the
divider resp. chooser ΦD(x) resp. ΦC (x).

Theorem

Let α = 1
2 . For all x

ΦD(x) ≤ ΦC (x),

with strict inequality if and only if G1(x) − G0(x) < 1.

details pics α ̸= 0.5
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Bayesian Nash equilibrium tree ill register

If the chooser’s valuation is (believed to be) drawn from a CDF F
πF (p | xD) := (xD − (1 − α)p) · F (p) + αp · (1 − F (p)).

Theorem (McAfee, 1992): SHRCs on F =⇒ ∃! mF (xD) ∈ arg max
p

πF (p | xD)

1
p

1µα
F xD0

xD

mF (xD)

Figure 2: Bayesian prices for F ∼ U([0, 1]), µα
F the α-quantile of F . calc.
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Bayesian prices in McAfee, 1992 tree ill register

Let F with strictly pos. density fulfill the standard hazard rate conditions (SHRCs)

∂

∂x

(
x + F (x)

F ′(x)

)
≥ 0 and

∂

∂x

(
x − 1 − F (x)

F ′(x)

)
≥ 0.

Then, there is a unique mf (xD) ∈ arg maxp πF (p | xD). Furthermore,

m(xD) ⪌ xD if and only if xD ⪋ µα
F ,

where µα
F is the α-quantile of F , i.e., F (µα

F ) = PF (xC ≤ µα
F ) = α.
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Adversarial maxmin price van Essen and Wooders, 2020 tree ill register

Idea: The chooser manages to play always that action that hurts the divider the
most – irrespective of their own losses.

➤ p = xD

For all (xD, p) there is xC leading to the worst action for the divider, e.g., xC = xD :

‘Sell’ is bad for divider ⇐⇒ xD ≤ p
Sell’ is played by chooser ⇐⇒ xC ≤ p.

If G = {G | G is a CDF on [0, 1]} (full uncertainty):⇝ δxD ∈ G
➤ maxmin price is full uncertainty price
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m(xD) explicit back register

Optimal price announcement for F ∼ U([0, 1]).

m(xD) =


xD+α−ε

2 , if 0 ≤ xD < α − ε,
xD , if α − ε ≤ xD ≤ α + ε,
xD+α+ε

2 , if α + ε < xD ≤ 1.

back
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Strict quasi-concavity register

Assumption

G0, G1 piecewise continuously differentiable,
πG0(. | xD), πG1(. | xD) strictly quasi-concave thm

Lemma
The assumption is satisfied for G(F , ε) if F fulfills the SHRCs

∂

∂x

(
x + F (x)

F ′(x)

)
≥ 0 and

∂

∂x

(
x − 1 − F (x)

F ′(x)

)
≥ 0.

Example

P.w. linear, truncated normal, triangular, classes of Beta distributions. pics
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Examples of πG0, πG1 for different distributions register

back
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A puzzle? tree register

‘‘The possibility that the person naming the price can be forced either to buy or to
sell keeps the first mover honest.’’

Circuit Chief Judge Easterbrook
Valinote v. Ballis, 295 F.3d 666 (7th Cir. 2002)

‘‘The cake-cutting mechanism has a disappointing performance, as it fails to
reach ex post efficiency.’’

McAfee, 1992
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Sketch of the proof register

Recall that πG0(· | xD), πG1(· | xD) are strictly quasi-concave and intersect in
p = xD . There are two main cases, depending on xD :

EU

0 pmG1(xD) mG0(xD)p 0.5
πG0

πG1

xD = 1
10 , G(U(0, 1), 1

5)

➤ xD < mG1(xD) < mG0(xD)

EU

0 pmG1(xD) mG0(xD)p

πG1πG0

xD = 1
2 , G(U(0, 1), 1

5)

➤ mG1(xD) < xD < mG0(xD)
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Interim utility pres register end

ΦD(x) := π(mα(x) | x),
ΦC (x) := min

G∈G
EG

[
max

{
x − (1 − α)m1−α(z), αm1−α(z)

}]
.

A chooser with valuation xC has worst case utility

ΦC (x) =


EG1 [m1−α(z)] , if xC < min m1−α(z),
EG∗(xC )[max{x − (1 − α)m1−α(z), αm1−α(z)}] , if xC ∈ range(m1−α),
EG0 [x − m1−α(z)] , if max m1−α(z) < xC ,

where G∗(x) is the distribution function that switches from G0 to G1 at
x∗ =

(
m1−α

)−1 (x).
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G∗ illustration pres register end

1 xC0

1
P

x∗

G∗
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You better not cut the cake. pres register end

For any valuation x and facing G one can define the worst-case EU of being the
divider resp. chooser ΦD(x) resp. ΦC (x).

Theorem

Let α = 1
2 . For all x

ΦD(x) ≤ ΦC (x),

with strict inequality if and only if G1(x) − G0(x) < 1.
(F ∼ U([0, 1])⇝ x ∈ [1 − ε, ε])

α ̸= 0.5 pics
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Comparison for ε = 0.02 pres register end
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Comparison for ε = 0.4 pres register end

EU

0.5

00 1 x

≈ 0.1
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Comparison for ε = 0.6 pres register end

EU

0.5

00 1 x0.4 0.6

ΦC

ΦD
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Better let me cut the cake! pres register end

Figure 3: Not for all valuations an agent prefers to be the chooser if α ̸= 1
2 .
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A trigger game register end

Agent 1 with valuation x1 and shares α = α1 etc.

1 \ 2 T DT
T 1

2Φ
α
D(x1) + 1

2Φ
α
C (x1), 1

2Φ
1−α
D (x2) + 1

2Φ
1−α
C (x2) Φα

D(x1),Φ1−α
C (x2)

DT Φα
C (x1),Φ1−α

D (x2) αx1, (1 − α)x2

DT dominates T for i iff both
Φαi

C (xi) ≥ Φαi
D (xi)

αixi ≥ Φαi
D (xi)

➤ If α = 1
2 then (DT , DT ) is an

equilibrium for xi ∈ [µαi
G1

, µαi
G0

].

cut the cake
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(T,T) as equilibrium register end

(T , T ) is an equilibrium iff Φαi
D (xi) ≥ max{αixi ,Φαi

C (xi)}

α1 = 99%, x1 = 0.3, x2 = 0.7, ε = 1
5 .
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(T,DT) as equilibrium register end

(T , D) is an equilibrium iff
Φα1

D (x1) ≥ max{α1x1,Φα1
C (x1)}, min{(1 − α1)x2,Φ1−α1

C (x2)} ≥ Φ1−α1
D (x2)

α1 = 99%, x1 = 0.3, x2 = 0.1, ε = 1
5 .
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Correlation register end

In a partnership one might expect xC ≈ xD .

E.g., if xC is drawn from the triangular distribution with mode xD .

1 xxD

2

=

Figure 4: PDF of TrixD for xD = 0.3
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Prices under Correlation register end

p

1 xD

1

0 1
2

mcorr
KU (xD)

mcorr
Bayes(xD)

mno corr
KU (xD)

Figure 5: Prices for the cases of correlated and uncertain G(TrixD , 1
5 ), the correlated

Bayesian G(TrixD , 0) and uncertain case without correlation G(Tri0.5, 1
5 ).
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