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Abstract. We study a decision maker who approaches an uncertain decision prob-

lem by formulating a set of plausible probabilistic models of the environment but is

aware that these models are only stylized and incomplete approximations. We in-

troduce the concept of a best-fit map that identifies the most suitable model within

this potentially misspecified set based on observable data. Building on this, we

develop an axiomatic foundation for preferences that are averse to misspecification.

In particular, we introduce a novel criterion that discriminates between aversion

to misspecification and attitudes toward model ambiguity. First, conditional on a

model having the best fit, the decision maker forms a misspecification-robust eval-

uation by considering a range of models in proximity to the best-fit one. Then,

she aggregates these robust evaluations via a monotone and quasiconcave aggrega-

tor incorporating uncertainty about what model is the best approximation of the

environment.

1. Introduction

Economic agents often employ simplified and stylized descriptions of the complex

environment they face in order to help guide their decisions. This implies that model
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misspecification is a pervasive phenomenon affecting many decision problems. For

example, a policymaker might have an incorrect description of how the economy

would respond to a fiscal or monetary stimulus, or a company’s marketing department

might have a wrong assessment of how demand would react to changes in the price of a

product. As a result, a growing literature studies the implications of using misspecified

models in the context of decision making and strategic interaction. Starting with

Esponda and Pouzo (2016), many papers have examined the asymptotic behavior of

actions and beliefs when agents take repeated decisions in a stochastic environment of

which they have a possibly incorrect or only partial understanding (see, for instance,

Frick, Iijima, and Ishii, 2022; Fudenberg, Lanzani, and Strack, 2021). A related strand

of the literature has focused on studying whether misspecification is asymptotically

persistent. For example, Ba (2021), Fudenberg and Lanzani (2023), and He and

Libgober (2021) provide conditions to identify whether and which misspecifications

will persist in the long run. These papers suggest that misspecification matters in

shaping agents’ behavior and beliefs and that it is a persistent phenomenon, even

when agents collect many observations generated by the true data-generating process.

A common assumption in this literature is that once agents have settled on using a

specific statistical model of the environment, they disregard the possibility of it being

misspecified and act in a fully Bayesian fashion, as they evaluate alternative actions by

computing their expected utility with respect to their model. However, sophisticated

enough agents should realize that their model is only a simplified approximation

of reality. As suggested by Hansen and Sargent (2001), a decision maker who is

concerned with acting on the basis of an incorrectly formulated model should make

decisions that are robust; that is, policies that do not depend on the fine details of their

reference model, but work reasonably well across all models that are perturbations

of that reference model. Following this idea, first axiomatic treatments of decision
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criteria featuring misspecification aversion have been proposed by Cerreia-Vioglio

et al. (2020) and Lanzani (2022).

In this paper, we provide an axiomatic foundation of a general class of prefer-

ences that are averse to the possibility of misspecification. We introduce a way of

meaningfully disentangling misspecification aversion from the more commonly stud-

ied aversion to model ambiguity and show that these are captured independently

by two different elements of decision criterion obtained in the main representation

result. In particular, we study a decision maker who faces a decision problem in a

generalized version of the Anscombe-Aumann setting. The uncertainty is captured

by a set of states of the world Ω and the decision maker needs to choose an act f

that maps states of the world to outcomes. The decision maker does not know the

true stochastic process governing the environment, but she has statistical informa-

tion in her possession. This is given by a set M of distributions over states of the

world. Following Cerreia-Vioglio et al. (2020) and Hansen and Sargent (2022), we

interpret distributions in M as being explicitly motivated on the basis of scientific

knowledge or empirical considerations. This is in keeping with the classical setup

of Wald (1950), according to which the set M would be interpreted as a collection

of alternative hypotheses regarding the data-generating process (DGP) under study.

Unlike Wald (1950), we allow for the possibility that the set M does not include the

true DGP. A decision maker who is aware that models are only imperfect and styl-

ized descriptions of the real environment might become concerned that, in fact, no

structured model is an accurate approximation of the DGP. In order to differentiate

between the ambiguity about which structured model is the best approximation to

the DGP and the decision maker’s perception of and concern about misspecification,

we follow the approach in Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio

(2013) and formalize the notion of the missing information the decision maker would

need to determine the best structured model via the idea of sufficient statistics and
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information (Dynkin, 1978). In particular, we assume that there exists a best-fit map

q : Ω → M measurable with respect to a sigma-algebra A that encodes the sufficient

information to determine the best structured model. This can be seen as the decision

maker having a possibly misspecified statistical procedure that would allow the deci-

sion maker to identify the best approximation in M to the true DGP given different

realizations of the state of the world. After observing the additional information in

A, she would be able to dissipate the model ambiguity within this misspecified pro-

cedure, but she would not be able to infer whether the statistical procedure itself is

misspecified or not. In other words, q can be interpreted as an estimator of the DGP

that, because of the possibility of using a misspecified set of models, converges almost

surely not necessarily to the true probability law, but to its closest approximation

(see Berk, 1966) among the structured models.

Endowed with this structure, we provide an axiomatic foundation of a general

misspecification averse decision criterion. First of all, we characterize preferences

conditional on a structured model m ∈ M being the best-fit model and show that

they are represented by the misspecification-robust criterion

V m(f) = min
p∈∆(Ω)

{Ep[u(f)] + c(p, m)}(1)

where u is a utility over outcomes and c(·, m) is an index of misspecification aversion.

That is, even conditional on observing sufficient information to determine that m is

the best structured model, the decision maker would not completely trust it out of

misspecification concerns. Therefore, in evaluating an act f , she would also take into

account other distributions p outside of M that are not too far apart from m. The

index c(·, m) captures exactly the decision maker’s confidence in the structured model

m. An important special case is given by c(·, m) = λR(·||m), where R is the relative

entropy and λ > 0 is a parameter of misspecification aversion. When the decision
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maker’s concern for misspecification is high, λ is low, and therefore, she would give

preference to acts that perform robustly well across a larger set of models around m.

The idea that even if aware of the possibility of misspecification, the decision maker

still puts substantive trust in the set of structured models is captured by an axiom

of consistency. If the misspecification-robust evaluation of an act f dominates that

of another act g unanimously according to all structured models, the decision maker

should prefer f to g. This axiom, which is the misspecification averse analogue of the

consistency requirement in Cerreia-Vioglio et al. (2013), allows us to show that the

preferences of a misspecification averse decision maker are represented by aggregating

together the misspecification-robust evaluations:

(2) V (f) = Î

(V m(f))m∈M


= Î



min
p∈∆(Ω)

{Ep[u(f)] + c(p, ·)}


where Î : RM → R is a monotone and quasiconcave aggregator capturing the deci-

sion maker’s attitudes towards the ambiguity regarding what structured model is the

best-fit one. After the main representation result, we perform a comparative statics

exercise that clarifies how the decision criterion above disentangles misspecification

aversion from aversion to model ambiguity. In particular, we show that we can rank

two decision makers in terms of their degree of misspecification aversion by only com-

paring their misspecification index c (without imposing any mutual restrictions on

their aggregators Î). In particular, decision maker 1 is more misspecification averse

than decision maker 2 if and only if the index of misspecification aversion of the first

one is always lower than that of the second one for each structured model; that is,

c1(·, m) ≤ c2(·m) for all m ∈ M. Similarly, we show that we can rank decision makers

in terms of their attitudes toward model ambiguity by only comparing their aggre-

gator Î (without imposing any mutual restrictions on their misspecification aversion

indexes). In particular, decision maker 1 is more averse to model ambiguity than
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decision maker 2 if and only if Î1 ≤ Î2. Since we can interpret the aggregator as a

certainty equivalent, this amounts to saying the first decision maker is more model

ambiguity averse if she is willing to accept lower certainty equivalents than the second

to eliminate the ambiguity regarding the identity of the best-fit model.

Different assumptions regarding the linearity properties of the preferences will char-

acterize specific shapes of the aggregator Î. In particular, we provide an axiomatiza-

tion of two important cases. First, we show that when the decision maker confronts

the uncertainty regarding the identity of the best-fit model according to the subjective

expected utility tenets, she then aggregates the misspecification-robust evaluations in

a Bayesian fashion. In this case, the decision maker forms a subjective prior µ over the

set of structured models M and takes a quasi-mean of the robust evaluations using

this subjective belief and an index φ capturing her attitudes towards the uncertainty

about the best-fit model:

(3) Vφ,µ(f) =


M
φ



min
p∈∆(Ω)

{Ep[u(f)] + c(p, m)}


dµ(m).

In particular, if the decision maker is neutral towards model ambiguity and shows a

uniform concern for misspecification, this criterion becomes the average robust control

representation axiomatized by Lanzani (2022).1 It is also worth noticing how this cri-

terion collapses to the well-known smooth ambiguity model of Klibanoff et al. (2005)

under the assumption of misspecification neutrality; that is, when c(·, m) assigns an

infinite penalization to any probability model different from m itself. Moreover, we

show that if the decision maker is cautious and evaluates the uncertainty about the

best-fit model according to a worst-case scenario approach, then the aggregator takes

on a maxmin form and we obtain the criterion proposed by Cerreia-Vioglio et al.

1To be precise, we would also need to impose that the conditional misspecification-robust evaluations
are the multiplier preferences proposed by Hansen and Sargent (2001) and axiomatized by Strzalecki
(2011).
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(2020):

(4) Vmin(f) = min
p∈∆(Ω)


Ep[u(f)] + min

m∈M
c(p, m)


.

Discussion and Literature Review. In this paper we revisit the framework introduced

in Cerreia-Vioglio et al. (2013) and allow to incorporate misspecification aversion in

the preferences of a decision maker who uses exogenous, statistical information to

inform her choices. The Dynkin space structure (Ω, G, P) in Cerreia-Vioglio et al.

(2013) can be interpreted as the decision maker being sure she has available a sta-

tistical framework that is correctly specified. The sufficient σ-algebra A represents

for the decision maker exactly the missing information she would need to identify the

true probabilistic model of the world. Therefore, upon observing this information,

the decision maker should just evaluate acts according to their expected utility with

respect to P ∈ P . Therefore, the set of models induces an objectively rational pref-

erence; that is a dominance relation in terms of expected utility certainty equivalents

with respect to models in P :

∀P ∈ P ,


S
fdP 



S
gdP.

In our case, however, even after observing the missing information sufficient to pin

down a unique best-fit model m ∈ M, the decision maker, out of misspecification

concerns, would only trust m to be the best approximation to the DGP among the

structured models, but not necessarily the correct distributions of states of the world.

Therefore, our objectively rational dominance relation is given by the unanimity cri-

terion with respect to the preferences conditional on each structured model m ∈ M.

Since the possibility of misspecification implies that uncertainty about the true prob-

abilistic model is not resolved even after observing the additional information (only

the ambiguity regarding the identity of the best approximation is), such conditional
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preferences need not be expected utility with respect to the structured model but

can still display a preference for robustness across models that are in a vicinity of

m. From a mathematical perspective, Cerreia-Vioglio et al. (2013) show that consis-

tency of the subjective preferences with the objectively rational dominance relation

imply that any utility representation only depends on the profile of expected utility

evaluations (EP [u(f)])P ∈P . This allows their preferences to be represented via an

aggregator of the map P → EP [u(f)]. In our case, due to misspecification aversion,

in Theorem 4 we show that the representation of our class of misspecification averse

preferences only depends on the profile of misspecification robust conditional evalu-

ations (minp Ep[u(f)] + c(p, m))m∈M, so that the representation can be expressed as

a certainty equivalent Î of the map m → minp Epu(f) + c(p, m). The fact that this

map is no longer linear in the models m ∈ M is the main technical difficulty that we

deal with in this paper.2 In particular, we show that also in our case properties of

preferences over acts can be translated into properties of the certainty equivalent Î

without having to resort to second-order acts.

This paper is closely related to the literature on decision criteria that incorpo-

rate misspecification aversion. There are a few papers proposing axiomatizations of

such preferences. Cerreia-Vioglio et al. (2020) axiomatize the criterion (4) in a two-

preference setup. The decision maker has both a mental preference, assumed to be

an incomplete variational preference, and a behavioral preference that is, instead,

complete but satisfies independence only on constant acts. These two preferences are

connected to each other via two axioms that originated in the seminal work of Gilboa

et al. (2010). The first is a consistency requirement that the behavioral preferences

always agree with the mental ones. The second is that the decision maker exercises

caution; that is, if the mental preference is not confident enough to rank an uncertain

2In this respect, this paper is also related to Mu et al. (2021). In a different context, they show that
monotone additive statistics can be represented as averages of CARA certainty equivalents.
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act over a deterministic one, then the behavioral preferences rank the deterministic

outcome over the uncertain one (in other words, the decision maker picks the safe al-

ternative whenever in doubt according to her mental preferences). Moreover, the two

preferences are informed by the set of structured models via a coherence requirement

analogous to the one given in this paper. Lanzani (2022) also adopts the view of

Cerreia-Vioglio et al. (2013) by considering states of the world that describe both the

realization of the payoff relevant state and the distribution over such payoff states.

They assume that the decision maker has variational preferences and obtain the aver-

age robust criterion (3) by imposing that preferences on bets over models satisfy the

sure thing principle and uncertainty neutrality (thus obtaining an affine φ). More-

over, they propose axioms that characterize the asymptotic behavior of the index of

misspecification concern when the decision maker’s preferences evolve in reaction to

the arrival of new information. We show (Theorems 6 and 7) that the criteria intro-

duced by Lanzani (2022) and Cerreia-Vioglio et al. (2020) both fall within the general

class of misspecification averse preferences studied in this paper and represent two

opposite ends of the spectrum; the average robust criterion is neutral towards model

ambiguity, while the maxmin criterion displays an extreme form of model ambiguity

aversion. One contribution of our paper is to allow more flexible attitudes toward

model ambiguity while proposing a way to disentangle those from the degree of mis-

specification aversion. This is reflected in the fact that the representation parameters

capturing model misspecification aversion (the index c) and model ambiguity aversion

(the aggregator Î) are independent of each other.

This paper is also related to the recent axiomatization by Denti and Pomatto (2022)

of identifiable smooth ambiguity preferences. In a purely subjective framework, they

find conditions under which the preferences are represented by the smooth ambigu-

ity criterion, where the beliefs involved in the representation are identifiable; that
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is, they are completely orthogonal for some kernel κ. In this paper, we take the re-

verse approach. We start with a decision maker employing an exogenous statistical

model and then impose conditions so that the subjective preferences are informed by

this statistical model. This approach might be more natural in discussing the issue

of misspecification, which is usually defined in the context of parametric statistical

models which might fail to include the true parameter. However, it would be an

interesting exercise to extend the techniques of Denti and Pomatto (2022) to identify

in a purely subjective framework the perceived misspecification and misspecification

concern revealed by the preferences.

The rest of the paper is structured as follows. Section 2 lays out the decision frame-

work and the notions of structured space and best-fit map. Section 3 introduces and

discusses the axioms characterizing the misspecification averse preferences. Section 4

states and discusses the representation results. Section 5 concludes. All proofs can

be found in the Appendix.

2. Decision Framework

We begin by describing the decision environment faced by the decision maker (DM).

Uncertainty is described by a state space Ω endowed with a countably generated σ-

algebra G. Fix X to be the space of consequences, a non-empty, convex subset of a

linear space. The decision maker needs to choose simple acts, that is simple functions

f : Ω → X mapping states to consequences that are measurable with respect to G.

Denote by F the set of all such simple acts. As usual, we can embed X in F by

abusing notation and denoting with x ∈ X the constant act yielding consequence x

in each state of the world ω ∈ Ω. We can define the operation of convex combination

in F in the natural way: for all f, f ′ ∈ F and for all α ∈ [0, 1],

(αf + (1 − α)f ′)(ω) := αf(ω) + (1 − α)f ′(ω)
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for all ω ∈ Ω. The affine structure of X implies that αf + (1 − α)f ′ ∈ F . Then, the

set of simple acts F with the operation just defined is a mixture space, as defined by

Herstein and Milnor (1953). We introduce a few useful pieces of notation. Given any

E ∈ G and simple acts f, g ∈ F , denote by fEg the act taking value f(ω) if ω ∈ E

and value g(ω) if ω ∈ Ω \ E. Moreover, if E is a sub-σ-algebra of G, denote by F(E)

the subset of simple acts in F that are measurable with respect to E .

We model the decision maker’s subjective preferences on the set of simple acts F

via a binary relation  and we denote by ≻ and ∼ respectively the asymmetric and

symmetric part of . We say that an even E ∈ G is null if for all acts f, f ′ ∈ F ,

f |Ω\E = f̃ |Ω\E implies that f ∼ f ′. We say that an event is nonnull if it is not null.

2.1. Structured Models and Best-Fit Map. We denote by ∆ := ∆(Ω, G) and

∆σ := ∆σ(Ω, G) respectively the space of finitely and countably additive probability

measures on (Ω, G). Moreover, we endow ∆σ with the natural σ-algebra D generated

by the family of evaluations maps and any subset of ∆σ, with its relative σ-algebra.3

We assume that the decision maker has constructed a set M ⊆ ∆σ of probability

distributions over states of the world that, due to external information and consid-

erations, she believes are plausible descriptions of the uncertain environment she is

facing. Following the terminology established in Hansen and Sargent (2022) and

Cerreia-Vioglio et al. (2020), we call the probabilities distributions in this set struc-

tured models. We interpret structured models as being statistical descriptions of the

environment that are based on substantive motivations, like scientific theories and

evidence. Following Box and Cox’s idea that models are only approximations, we do

not assume that the set of structured models includes the data-generating process

(DGP), that is, the true probability law governing state uncertainty. Moreover, we

allow for the possibility that the decision maker is aware of this fact; that is, the

3Appendix A provides rigorous definitions of the mathematical concepts and details regarding the
notation.
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decision maker perceives the possibility that her set of structured models might be

misspecified.

In this paper, we want to discern between ambiguity about which structured model

is the best approximation to the DGP and concern about misspecification; that is, the

fact that no structured model is an accurate approximation of the DGP. Uncertainty

about models is usually motivated in terms of “lack of information” preventing the

the DM from selecting the best one. Following Cerreia-Vioglio, Maccheroni, Mari-

nacci, and Montrucchio (2013),4 we formalize this missing information via the idea of

sufficient statistics and information (Dynkin, 1978).

Definition 1: We say that a measurable space and the posited set of structured

models (Ω, G, M) form a structured space if M is measurable and we can find a best-

fit map q : Ω → ∆σ and a sufficient sub σ-algebra A of G, satisfying the following

properties:

(i) A is the σ-algebra generated by q,

(ii) m({ω ∈ Ω : q(ω) = m}) = 1 for all m ∈ M.

Note that in our definition of structured space, we allow the best-fit map to select

also probability models that are not in M. However, if we denote by Ω0 the set

of states of the world ω ∈ Ω such that q(ω) ∈ M, we can see that condition (ii)

implies that m(Ω0) = 1 for all structured models m ∈ M. The requirement that

each structured model m ∈ M is selected by the best-fit map with probability one5

is equivalent to the notion of sufficient statistics introduced by Dynkin (1978) and is

related to the strong law of large numbers. We interpret this framework as follows.

Suppose that the well-specified description of the environment is given by the set of

models P and a map p : ω → pω ∈ ∆σ such that P ({ω ∈ Ω : pω = P}) = 1 for

4See also Amarante (2009), Al-Najjar and De Castro (2014), Epstein and Seo (2010), and Klibanoff
et al. (2014) for related approaches.
5In mathematics and probability, this property is what is known as complete orthogonality of the
set of probability models M. See, for example, Mauldin et al. (1983) and Weis (1984).



13

all P ∈ P . The interpretation is that the realization of the state of the world also

pins down what is the true DGP pω, so that sigma-algebra of events A that makes pω

captures the sufficient information to determine what is the true probability law over

states. Moreover, the statement that pω = P with probability one according to P is a

requirement that the correct description of the environment is not contradictory; that

is, whenever P is the true DGP, then it is selected with probability one by the map

pω.6 However, the decision maker posits a misspecified set of models P0 that does not

necessarily include all models in P7. Now, suppose the decision maker observed the

missing information in A that would be sufficient to infer P ∈ P . However, since the

decision maker has posited a misspecified set of models, the insight from the classical

result of Berk (1966) suggests she would select from P0 the closest model to P ; that

is, she would select the unique minimizer q∗(P ) ∈ P0 solving minq∈P0 R(q||P ), where

R(·||·) is the relative entropy.8 Then, if we define q(ω) = q∗(pω)9 and M = {m ∈

∆σ : ∃P ∈ P , m = q∗(P )}, we can notice that for all m ∈ M we would, indeed, have

that m ({ω : q(ω) = m}) = 110. It is in this sense that we interpret q as a best-fit

map and the information in A as the sufficient information to determine the best

approximation of the DGP among those in M. That is, if the decision maker were

able to observe ω, she would infer that the model mω = q(ω) is the model that closest

resembles the true DGP.

6We can see the analogy to the strong law of large numbers if we interpret each ω as the realization
of an infinite sequence of random variables and pω as the limit of a consistent estimator.
7Assume that P0 is compact and convex and that for each P ∈ P, there exists a model q ∈ P0 such
that q is absolutely continuous with respect to P (written q ≪ P ).
8Recall that for every q, p ∈ ∆σ, R(q||p) =


Ω ln dq

dp dq if q ≪ p and equal to ∞ otherwise. Notice
that a minimizer exists since we are assuming that P0 is compact and contains at least one q ≪ P
and it is unique since R is strictly convex in its first argument and P0 is assumed to be a convex set.
9Notice that by the measurable maximum theorem, p → arg maxq∈P0:q≪p R(q||p) is a measurable
function, so that q so defined is A-measurable.
10For each m ∈ M, there exists P ∈ S such that m = q∗(P ), so that {ω : pω = P} ⊆ {ω : q(ω) =
q∗(pω)} and, therefore, P (Ω \ {ω : q(ω) = m}) ≤ P (Ω \ {ω : pω = P}) = 0. Since m ≪ P , it then
must be the case that m(Ω \ {ω : q(ω) = m}) = 0.
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Example 1 (Exchangeability): Suppose S is an underlying finite set of contem-

poraneous states and assume that at each time period t ∈ N, the uncertainty is

described by the realization of a contemporaneous state st ∈ S. Then, a state of the

world is an infinite sequence of realizations from S, and the state space is given by

the sequence space Ω = SN. In this case, the relevant σ-algebra G is that generated

by all cylinders. Let Π be the group of all finite permutations of N. If we let A be

the set of all exchangeable events; that is, events E ∈ G for which π−1E = E for all

permutations π ∈ Π. If we let P = {P : ∀π ∈ Π, ∀E ∈ G, P (π−1E) = P (E)} be

the set of all exchangeable probability measures, we know that (Ω, G, P) is a Dynkin

space with sufficient σ-algebra A and the set of extreme points S is given by the

models P ∈ P that take on 0-1 values on the sufficient σ-algebra A. For example,

if S = {0, 1}, the set of structured models could be given by the iid Bernoulli dis-

tributions with success parameter in between p < p̄; that is, P0 = {q = ×n∈Np :

p ∼ Ber(p) for some p ∈ (p, p̄).}

3. Subjective Rationality, Coherence, and Consistency

In all the following discussion, we fix a structured space (Ω, G, M) with a best-fit

map q and sufficient σ-algebra A satisfying the properties outlined in Definition 1.

3.1. Subjective Rationality. First of all, we assume that the preferences of the

decision maker satisfy behavioral axioms capturing the idea of subjective rationality.

We state some axioms characterizing the notion that the preferences of the decision

maker are subjectively rational.

Axiom 1 (Subjective Rationality):

(i) Weak Order.  is complete and transitive.

(ii) Monotonicity. For all f, f ′ ∈ F , if f(ω)  f ′(ω) for all ω ∈ Ω, then f  f ′.
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(iii) Mixture Continuity. If f, f ′, f ′′ ∈ F , the sets {α ∈ [0, 1] : αf ′ +(1−α)f ′′  f}

and {α ∈ [0, 1] : f  αf ′ + (1 − α)f ′′} are both closed.

(iv) Risk Independence. For all x, y, z ∈ X and α ∈ [0, 1],

x  y ⇐⇒ αx + (1 − α)z  αy + (1 − α)z .

(v) Uncertainty Aversion. For all f, f ′ ∈ F and α ∈ (0, 1),

f ∼ f ′ =⇒ αf ′ + (1 − α)f  f .

(vi) Unboundedness. There exist x, y ∈ X such that x ≻ y and for all α ∈ (0, 1),

there are z, z′ ∈ X such that

αz + (1 − α)y ≻ x ≻ y ≻ αx + (1 − α)z′ .

The first four requirements of subjective rationality guarantee that the preferences

are a continuous and monotone weak order satisfying independence when restricted to

constant acts. Then, the theorem of Herstein and Milnor (1953) implies that the pref-

erences are represented on X by an affine utility u. If we interpret the mixture space

X as the set of simple lotteries over outcomes, these axioms imply that the decision

maker evaluates lotteries - i.e., constant acts that are not affected by ambiguity but

only involve risk - according to their objective expected utility. Requirement (v) is

the classical axiom capturing a preference for hedging due to Schmeidler (1989), and

is usually interpreted in terms of averse attitudes towards uncertainty. The last re-

quirement could be substituted with the much weaker non-triviality assumption that

there exist constant acts x, y ∈ X such that x ≻ y. We go with this stronger require-

ment for technical convenience, as it guarantees that the utility over consequences u

will be unbounded above and below.
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Finally, the next axiom guarantees that preferences are robust to small perturba-

tions and guarantees the countable additivity of the subjective probabilities.

Axiom 2 (Monotone Continuity): For all f, f ′ ∈ F and x ∈ X, for all (En)n∈N ⊆ G

such that E1 ⊇ E2 ⊇ · · · and 
n∈N En = ∅, if f ≻ f ′, then, there exists n0 ∈ N such

that xEn0f ≻ f ′.

3.2. Coherence and Consistency. Define for each structured model m ∈ M the

set of states of the world for which the best-fit map would imply that m is the best

approximation of the DGP. This is the set Em := q−1(m) and notice that Em ∈ A.

Moreover, given p ∈ ∆(Ω), for each simple act f , define

Ep[f ] :=


x∈Im f

xp

f−1(x)



be the “average” of f according to the probability model p. Notice that since f

has finite image and X is convex, Ep[f ] ∈ X and it is the certainty equivalent of f

for an Anscombe-Aumann EU maximizer who holds belief p over the state space Ω.

The following axiom captures the idea that the preferences of the decision maker are

coherent with the statistical framework embodied by the structured space.

Axiom 3 (Coherence):

(i) For all structured models m ∈ M, Em is nonnull and fEmh  gEmh if and

only if fEmh′  gEmh′ for all f, g, h, h′ ∈ F .

(ii) For all m ∈ M and f, g, h ∈ F ,

f = g a.e. [m] =⇒ fEmh ∼ gEmh .

(iii) For all m ∈ M, if p ≪ m but p ∕= m, then there exist f ∈ F and x ∈ X such

that fEmx  x but x ≻ Ep[f ].

(iv) For all x ∈ X and f ∈ F , the set {m ∈ M : fEmx  x} is measurable.
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Coherence requires that the decision maker’s preferences are adapted to the statis-

tical information implied by the structured models and the best-fit map. First of all,

point (i) requires that for each structured model m, the preferences of the decision

maker deem possible the event that m is the best approximation of the true DGP.

We can think of this as a parsimony requirement: if the decision maker thought that

a structured model could never be the best-fit one, then she might just as well drop

it altogether. Moreover, the second part of the first point requires that the decision

maker is able to identify for each structured model the event that such model is the

best approximation of the DGP and make conditional assessments of the acts based

on this event. In particular, this guarantees that we can define nontrivial preferences

m conditional on a structured model m ∈ M being the best approximation to the

true model in an unambiguous way: for all f, g ∈ F ,

f m g ⇐⇒ (∃h ∈ F , fEmh  gEmh) .

The second requirement ensures that the preferences of the decision maker recognize

the substantive motivations underlying the selected structured models and incorpo-

rate the information provided by the best-fit map. Indeed, if two acts are equal with

probability one according to a structured model m ∈ M, the fact that the decision

maker pays special attention to the model when it is the best-fit one is reflected by

the fact that the two acts are ranked as indifferent conditional on the event that m

is, indeed, the best approximation. The third point clarifies the interpretation of m

being substantively motivated in the eyes of the decision maker compared to other

models not in M. This is reflected in the fact that for each non-structured model p

that also assigns probability one to the event Em, there exists a (possibly) uncertain

act f that the decision maker would be willing to take over a deterministic outcome

x conditional on m being the best-fit model even if x is strictly preferred to the EU
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certainty equivalent of f according to p. Finally, the last point is a measurability

requirement of preferences with respect to the sufficient σ-algebra. To summarize,

coherence implies that each structured model m ∈ M induces a well-defined and non-

trivial conditional preference m that ranks as indifferent acts that are equal with

probability one according to m and changes in a measurable fashion with respect to

the structured models.

The next axiom is key in tying together the subjectively rational preferences with

the set of structured models and the conditional preferences they induce.

Axiom 4 (Consistency): For all f, f ′, g ∈ F ,

(∀m ∈ M, fEmg  f ′Emg) =⇒ f  f ′ .

This assumption is analogous in nature to the consistency axiom introduced in

Gilboa et al. (2010) and Cerreia-Vioglio et al. (2013). We can think of the set of

structured models M as identifying an objective preference over acts. If an act f

dominates act f ′ conditional on each structured model m ∈ M, then f is objectively

preferred by the decision maker to f ′. Consistency requires that the subjectively

rational preferences of the decision maker are informed by the objectively rational

preferences.

3.3. Misspecification Aversion. We next state a conditional version of the axiom

characterizing the variational preferences of Maccheroni et al. (2006). That is, the

preferences after conditioning on the event that the structured model m ∈ M is the

best-fit one satisfy a stronger form of independence, weak certainty independence, but

they still do not need to satisfy full-fledged independence because of misspecification

concerns.



19

Axiom 5 (Misspecification Aversion): For all structured models m ∈ M, f, f ′ ∈ F ,

x, y ∈ X, and α ∈ (0, 1),

αf + (1 − α)x  αf ′Emf + (1 − α)x =⇒ αf + (1 − α)y  αf ′Emf + (1 − α)y .

We interpret Axiom 5 as capturing the idea that the decision maker is aware that

the set of structured models is possibly misspecified and is concerned about it. Recall

that we interpret ambiguity as the lack of information needed to pin down a unique

probability distribution over states of the world. Now, suppose the decision maker

was able to observe sufficient information to determine that a structured model m

is the best-fit among all those in M. If she was completely certain that the true

DGP is included in M, she should conclude as a matter of fact that m is the correct

description of the uncertainty about the states. If such were the case, having received

the missing information to determine the DGP, there is no reason why the decision

maker’s preferences should exhibit any ambiguity aversion but should instead behave

according to the subjective expected utility tenets. The fact that even after being

told that m is the best-fit structured model, the decision maker’s preferences might

still feature violations of independence implies that she does not trust that the best-

fit model m is, in fact, the true DGP, reflecting a concern for the set of structured

models being misspecified.

4. Representation of Misspecification Averse Preferences

In this section we discuss our main representation results. We begin by defining

the preferences under analysis.

Definition 2 (Misspecification Averse Preferences): A preference relation  on F

is said to be Misspecification Averse if it satisfies Axioms 1, 2, 3, 4, and 5.
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As a first step, we provide a representation for the preferences m conditional on

the event that the structured model m ∈ M is the best-fit one. The result is that

each m is a variational preference (Maccheroni et al., 2006).

Proposition 1: Suppose (Ω, G, M) is a structured space and  is a misspecifi-

cation averse preference relation. Then, there exist an affine and surjective utility

function u : X → R and a convex statistical distance11 c : ∆ × M → [0, ∞], such that

for each m ∈ M, f, g ∈ F ,

f m g ⇐⇒ Im(u(f)) ≥ Im(u(g))

where Im : B(G) → R is defined as

(5) Im(ϕ) = min
p∈∆



Ω
ϕdp + c(p, m)



for all ϕ ∈ B(G) and satisfies for all ϕ, ϕ′ ∈ B(G),

ϕ = ϕ′ a.e. [m] =⇒ Im(ϕ) = Im(ϕ′).

Moreover, u is unique up to positive affine transformations, and c is unique given u.

We can interpret the result in Proposition 1 in terms of a robust approach to the

possibility of misspecification. Suppose that the decision maker has observed sufficient

information to determine that m is the best-fit structured model she has available.

Because of the possibility of misspecification, in evaluating an act f conditional on

this information, the decision maker forms a variational evaluation of the act f

(6) V m(f) := Im(u(f)) = min
p∈∆



Ω
u(f)dp + c(p, m)


.

The statistical distance c(·, m) captures how distant in a statistical sense an unstruc-

tured model p is from the structured model m. In particular, since the decision maker

11See Appendix A for a rigorous definition of the notion of statistical distance.
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is concerned that m might not be an accurate approximation of the true DGP, she

also takes into account other models p that are not too far apart from m. The in-

dex c(·, m) captures exactly the decision maker’s confidence in the structured model

m. When c(·, m) is (uniformly) lower, the decision maker potentially takes into ac-

count a larger set of models around m in evaluating an act; this reflects a lower

trust in m or, conversely, a higher aversion to misspecification, as reflected in the

concern that m is not a good approximation even if she knows it is the best struc-

tured model. An important and tractable case is when the misspecification index

takes the form c(·, m) = λR(·||m) for all structured models m ∈ M, where λ > 0 is

a parameter of misspecification aversion. In this case, the misspecification concern

is proportional to the relative divergence with respect to the structured model, and

it is uniform across structured models (see Lanzani (2022)). In this case, a higher

aversion towards misspecification is captured by a lower parameter λ. We now make

this intuition about the statistical distance c(·, m) precise by adapting to the present

context the well-established notion of comparative uncertainty aversion due to Ghi-

rardato and Marinacci (2002). Given two preferences 1 and 2, we say that 1 is

more misspecification averse than 2 if for all m ∈ M, f ∈ F and x ∈ X,

(7) fEmx 1 x =⇒ fEmx 2 x

The idea behind this notion is that also in this case, constant acts are unaffected

by the possibility that the set of structured models is misspecified, since they are

non-stochastic and, therefore, their evaluation does not depend on the probabilistic

assessment of state uncertainty. Therefore, if it is true that after conditioning on

any given structured model m ∈ M, a decision maker is not concerned enough about

misspecification to choose a constant act over an uncertain one, a fortiori, that should

also be true for a less misspecification averse decision maker. The following result
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shows that this definition agrees with the notion that the statistical distance in the

representation is an index of misspecification aversion.

Proposition 2: Suppose (Ω, G, M) is a structured space and 1 and 2 are two

misspecification averse preference relations. Then, 1 is more misspecification averse

than 2 if and only if u2 is a positive affine transformation of u1 and, after normal-

izing u1 = u2, c1(·, m) ≤ c2(·, m) for all structured models m ∈ M.

From a mathematical standpoint, note that each function Im can be seen as a

non-linear expectation with respect to the structured model m ∈ M. Indeed, while it

fails to be linear, it satisfies many other characteristic properties of expectations, like

monotonicity, normalization and same evaluation of functions that are almost surely

equal. The next corollary shows that by focusing on structured space, we are able to

find a non-linear conditional expectation given A that is common to all structured

models m ∈ M.

Corollary 3: Suppose (Ω, G, M) is a structured space and (Im)m∈M are de-

fined as in (5). Then, there exists a generalized common conditional expectation

of (Im)m∈M given A. This is a map IA : B(G) → RΩ such that for all ϕ ∈ B(G),

IA(ϕ) is in B(A), IA(ϕ)(ω) = Iq(ω)(ϕ) for all ω ∈ Ω0 and for all A ∈ A and m ∈ M,

Im (IA(ϕ)χA) = Im(ϕχA).

Given the representation of the conditional preferences given in Proposition 1, we

are able to associate to each act f ∈ F a function m → I(f, m) := Im(f) that maps

each structured model m to the misspecification-robust evaluation of act f condi-

tional on m being the best-fit model. The axiom of Consistency then implies that

if I(f, m) ≥ I(g, m) for all m ∈ M, then f should be preferred to g. That is, if

for each structured model m, the corresponding misspecification-robust evaluation of

an act f is always higher than the robust evaluation of another act g, the decision
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maker is confident that act f is better than act g, and her preferences will follow suit.

As remarked in Cerreia-Vioglio et al. (2020), this exemplifies the special status of

structured models over unstructured ones. If the misspecification-robust evaluations

according to each structured model rank unanimously an act over another, this is suf-

ficient for the decision maker to decide to pick the first one. However, in general, the

set of structured models will not provide a unanimous robust ranking of every pair of

acts. The first main result is that the representation of misspecification averse pref-

erences will only depend on I(f, ·); that is, there exists a monotone, continuous, and

quasi-concave aggregator of these misspecification-robust evaluations that represents

the preferences of the decision maker.

Theorem 4: Suppose (Ω, G, M) is a structured space. The following are equivalent:

(i)  is a misspecification averse preference relation,

(ii) there exist a surjective utility function u : X → R, a convex statistical dis-

tance c : ∆ × M → [0, ∞], a monotone, normalized, quasiconcave, and

lower semicontinuous functional Î : B(M, DM) → R, which is continuous

on B0(M, DM) such that for all f, g ∈ F ,

(8) f  g ⇐⇒ Î (I(u(f), ·)) ≥ Î (I((u(g), ·))

where for all m ∈ M, I(·, m) = Im(ϕ) is given as in Proposition 1:

∀ϕ ∈ B(G), I(ϕ, m) = Im(ϕ) = min
p∈∆



Ω
ϕdp + c(p, m)


.

Moreover, u is unique up to positive affine transformations, and c and Î are unique

given u.

We already discussed how c(·, m) can be interpreted as an index of the decision

maker’s uncertainty aversion. On the other hand, quasiconcavity of Î reflects the

decision maker aversion towards uncertainty about the identity of the best-fit model,
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given that she lacks the sufficient information represented by the sigma-algebra A

to pin down the best approximation of the DGP at her disposal. We now make

precise the idea that Î captures attitudes towards the uncertainty regarding the best-

fit model. To this end, say that 1 is more averse to model ambiguity than 2 if for

all f ∈ F(A) and x ∈ X,

(9) f 1 x =⇒ f 2 x.

The intuition for this definition is that acts that are measurable with respect to

the sufficient information A are exactly those acts that are only affected by the

uncertainty regarding what is the best approximation among the set of structured

models but not by misspecification concerns regarding any structured models (notice

that they need to be constant on each event Em). Therefore, the definition above

states that if 1 is more averse to model ambiguity than 2 then, whenever model

ambiguity considerations are not enough for the first decision maker to prefer the

certain outcome x to the act f that is affected by ambiguity about the best-fit model,

then definitely they should not be enough for the less averse decision maker. We have

the following comparative statics result.

Proposition 5: Suppose (Ω, G, M) is a structured space and 1 and 2 are two

misspecification averse preference relations. Then, 1 is more model ambiguity averse

than 2 if and only if u2 is a positive affine transformation of u1 and, after normal-

izing u1 = u2, Î1 ≤ Î2.

Since Î1 and Î2 are normalized, they can be interpreted as certainty equivalents of

uncertain bets on the likelihood of which model is the best-fit one. The result can

then be taken as stating that 1 is more averse to model ambiguity than 2 if DM 1 is

willing to accept lower certainty equivalents than DM 2 as compensation for uncertain

bets over the likelihood of the best approximation in M. In this sense, Proposition 5
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allows us to interpret the aggregator Î as incorporating the decision maker’s attitudes

towards uncertainty about the identity of the best structured model. This result,

together with Proposition 2, clarifies how representation (8) achieves a separation

of attitudes regarding the ambiguity about the identity of the best-fit model and

misspecification concerns. Indeed, aversion to model ambiguity is captured by the

aggregator Î, while the statistical distance c(·, m) is an index of the degree of aversion

to the possibility that the set of structured models is misspecified.

The abstract form of Î in the general representation of Theorem 4 is due to the fact

that no behavioral assumptions regarding the independence properties of the prefer-

ence relation  have been made other than risk independence. The next two results

characterize two specific shapes of the monotone aggregator of the misspecification-

robust evaluations. The first result provides a foundation for a Bayesian version of the

misspecification averse preferences, where the DM forms a subjective belief capturing

her uncertainty regarding the identity of the best-fit structured model in M.

Theorem 6: (Ω, G, M) is a structured space. The following are equivalent:

(i)  is a misspecification averse preference relation whose restriction to F(A)

satisfies Savage (1954)’s Axioms P2-P6,

(ii) there exist a surjective and affine utility function u : X → R, a convex sta-

tistical distance c : ∆ × M → [0, ∞], a strictly increasing, continuous, and

concave function φ : R → R and a nonatomic prior µ ∈ ∆σ(M, DM) such

that  is represented on F by:

(10) V (f) :=


M
φ


min
p∈∆



Ω
u(f)dp + c(p, m)


dµ(m) .

Moreover, u is unique up to positive affine transformations, c is unique given u, φ

is unique up to positive affine transformations given u, and µ is unique.
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As before, the decision maker’s concern for misspecification is captured by the fact

that even conditioning on the information to determine m as the structured model,

she still takes into account models that are not structured but are close enough to

m. In this case, the perception of uncertainty regarding the identity of the best-fit

model in the absence of the information in the sufficient sigma-algebra A and the

attitudes towards this uncertainty are captured, respectively, by the Bayesian prior µ

over the set of structured models and the index of uncertainty aversion φ. The sub-

jective belief µ quantifies what structured models the decision maker considers more

likely to be good approximations of the true DGP. The nonlinearity of φ captures the

negative attitude exhibited by the decision maker towards this ambiguity about the

best-fit model. The Bayesian criterion (10) can be seen as an extension of the smooth

ambiguity model of Klibanoff et al. (2005) to incorporate misspecification concerns.

We can recover the smooth ambiguity model by letting the misspecification aversion

index c go to infinity (except on the diagonal, where it is always 0). This is equivalent

to taking a limit case where the decision maker is neutral to misspecification. As al-

ready remarked in the introduction, this criterion becomes the average robust control

criterion axiomatized by Lanzani (2022) when the decision maker is neutral towards

the ambiguity regarding the identity of the best-fit model. This would, indeed, imply

that the index φ is affine. The relative entropy formulation of the misspecification

aversion index c(·, m) = λR(·||m) could be obtained by imposing suitable versions of

the multiplier preferences axioms discussed by Strzalecki (2011).

Finally, the next theorem shows that the criterion axiomatized in Cerreia-Vioglio

et al. (2020) can arise as a special case of the representation in Theorem 4 when we

assume that preferences exhibit a cautious attitude with respect to the uncertainty

about the best-fit model.
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Axiom 6 (M-Caution): For all f ∈ F and x ∈ X,

∃m ∈ M, x ≻ fEmx =⇒ x  f.

This axiom is the conceptually similar to the caution axiom in Gilboa et al. (2010).

Indeed, the set of structured models induces a typically incomplete dominance relation

M, where for all f, g ∈ F ,

f M g ⇐⇒ ∀m ∈ M, f m g.

If f M g, this means that f is better than g according to each structured model m ∈

M after taking into account misspecification concerns. Because of the substantive

motivation the decision maker attaches to the set of structured models, when f M g,

the decision maker is sure that f is better than g. Then, Axiom 6 can be rewritten

as the requirement that if f ∕M x, then x  f . The interpretation is that if the

decision maker is not sure that the uncertain act f is better than the constant (and

therefore unaffected by uncertainty considerations) act x, then she should behave

cautiously and prefer the certain act over the uncertain one. We also impose the

following technical axiom.

Axiom 7 (M-Lower Semicontinuity): For all x ∈ X and f ∈ F , the set {m ∈ M :

x  fEmx} is closed.

This axiom is a strengthening of requirement (iii) in the axiom of Coherence (it

requires closedness and not only measurability) and it is only needed to ensure that

minima are achieved in the criterion. The following result shows that M-Caution

delivers the criterion of Cerreia-Vioglio et al. (2020).

Theorem 7: Suppose (Ω, G, M) is a structured space and M is compact.12 The

following are equivalent:

12As for Axiom 7, closedness of M is only needed to ensure that minima are achieved.
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(i)  is a misspecification averse preference relation satisfying Axioms 6 and 7,

(ii) there exists a surjective utility function u : X → R, a convex statistical dis-

tance c : ∆ × M → [0, ∞] such that  is represented on F by:

(11) V (f) = min
p∈∆



Ω
u(f)dp + min

m∈M
c(p, m).

Moreover, u is unique up to positive affine transformations, and c is unique given u.

Notice that minm∈M c(m′, m) = 0 for all structured models m′ ∈ M. Therefore,

CM(·) := minm∈M c(·, m) can be seen as a statistical distance between probability

distributions and the set of structured models M capturing the degree of misspecifi-

cation concern of the decision maker, when she takes a worst-case scenario approach

to the uncertainty regarding what is the best structured model.

5. Conclusion

This paper provides an axiomatic foundation of general preferences that are mis-

specification averse. We study a framework where the decision maker formulates a

possibly misspecified set of structured models that she considers plausible descrip-

tions of the environment. We introduce the notion of a best-fit map that identifies

the most suitable approximation of the true DGP based on (in principle) observable

states. This allows us to discern between the decision maker’s concern about the set of

structured models being misspecified and negative attitudes towards the uncertainty

about what structured models are more likely to be the best description of the en-

vironment. The main result is that the decision maker’s preferences are a monotone

and quasiconcave aggregation of misspecification-robust evaluations based on each

structured model. In particular, this representation achieves a separation of attitudes

towards model ambiguity, captured by the aggregator, and misspecification concerns,

captured by the misspecification-robust conditional evaluations. Many specific shapes

of the aggregator can be obtained by imposing additional suitable behavioral axioms
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on the decision maker’s preferences. We show that two important decision criteria

recently introduced in the literature by Lanzani (2022) and Cerreia-Vioglio et al.

(2020) fall within the general class of misspecification averse preferences we studied.

In particular, we provide specific axioms to obtain the Bayesian aggregator and the

cautious criterion from the general case.
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Appendix

Appendix A. Mathematical Preliminaries

A.1. Basic Notions. Given an arbitrary measurable space (Y, Y), we denote by

∆(Y, Y) and ∆σ(Y, Y) respectively the space of finitely and countably additive prob-

ability measures on (Y, Y). Sometimes, we will omit making explicit reference to the

σ-algebra whenever no ambiguities can arise. Since both these spaces can be iden-

tified with subsets of the dual space of B0(Y, Y), the space of Y-measurable simple

functionals mapping Y to the real line, endowed with the supnorm || · ||∞, we endow

them with the weak* topology. We endow ∆σ(Y, Y) with the Borel σ-algebra gener-

ated by this topology; which is the same as the natural σ-algebra DY,Y generated by

the family of evaluations maps:

∀E ∈ Y , E∗ : ∆σ(Y, Y) → R, p → p(E) .

and any subset Q of ∆σ, with the relative σ-algebra DY,Y
M := DY,Y ∩ M. Moreover,

denote by B(Y, Y) the set of bounded Y-measurable functionals from Y to R. We

know that B(Y, Y) is the supnorm closure of B0(Y, Y).

Given a nonempty subset B̃ of B(Y, Y), a functional Ψ : B̃ → R is said to be a

niveloid if for all ϕ, ϕ′, ∈ B̃,

Ψ(ϕ) − Ψ(ϕ′) ≤ sup(ϕ − ϕ′)

A niveloid is Lipschitz continuous with respect to the supnorm. Indeed:

Ψ(ϕ) − Ψ(ϕ′) ≤ sup(ϕ − ϕ′) ≤ | sup(ϕ − ϕ′)| ≤ sup |ϕ − ϕ′| = ||ϕ − ϕ′||∞

Ψ(ϕ′) − Ψ(ϕ) ≤ sup(ϕ′ − ϕ) ≤ | sup(ϕ′ − ϕ)| ≤ sup |ϕ′ − ϕ′| = ||ϕ − ϕ′||∞
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so that |Ψ(ϕ) − Ψ(ϕ′)| ≤ ||ϕ − ϕ′||∞ for all ϕ, ϕ′ ∈ B̃. Moreover, the functional

Ψ is said to be normalized if Ψ(k) = k for all k ∈ R such that k ∈ B̃, where we

identify each real number with the constant function yielding it everywhere. Finally,

the functional Ψ is said to be monotone if whenever ϕ, ϕ′ ∈ B̃ and ϕ ≥ ϕ′, then

Ψ(ϕ) ≥ Ψ(ϕ′).13 We say that Ψ is monotone continuous if for all ϕ, ϕ′ ∈ B̃ and

k ∈ B̃, for all monotone sequences (En)n ∈ Y such that En ↓ ∅, if Ψ(ϕ) > Ψ(ϕ′),

then there exists n0 ∈ N such that Ψ(kχEn0
+ ϕχEc

n0
)ϕ > Ψ(ϕ′).

We define on B(Y, Y) the lattice operations ∨ and ∧ as follows: for all ϕ, ϕ′ ∈

B(Y, Y), (ϕ ∨ ϕ′)(ω) = max{ϕ(y), ϕ′(y)} and (ϕ ∧ ϕ′)(ω) = min{ϕ(y), ϕ′(y)} for all

y ∈ Y . We say that a nonempty subset L of ⊆ B(Y, Y) is a lattice if for all ϕ, ϕ′ ∈ L,

ϕ ∨ ϕ′, ϕ ∧ ϕ′ ∈ L. If (ϕn)N is a sequence of functions in ⊆ B(Y, Y) and ϕ ∈ B(Y, Y),

we write ϕn → ϕ to mean that (ϕn)n converges uniformly to ϕ. If we want to stress

that the uniformly convergent sequence is monotone, we write ϕn ↗ ϕ if ϕn ≤ ϕn+1

for all n ∈ N and ϕn ↘ ϕ if ϕn ≥ ϕn+1 for all n ∈ N. Finally, we write ϕn ↑ ϕ if

ϕn ≤ ϕn+1 for all n ∈ N and (ϕn)n converges pointwise to ϕ and, similarly, ϕn ↓ ϕ if

ϕn ≥ ϕn+1 for all n ∈ N and (ϕn)n converges pointwise to ϕ.

A.2. Probabilities and Statistical Distances. We now discuss some basic math-

ematical notions about probabilities and statistical distances. Fix an arbitrary mea-

surable space (Y, Y). For any p, q ∈ ∆(Y, Y), we write p ≪ q to denote that p is

absolutely continuous with respect to q. Moreover, if q ∈ ∆(Y, Y) and f and g are

Y-measurable functions mapping Y to some arbitrary set, we write f = g a.e. [q]

whenever q({y ∈ Y : f(y) = g(y)}) = 1. As it is standard in measure-theoretic

contexts, we assume throughout the convention 0 · ∞ = 0. If f is a function mapping

Y to some measurable space, we denote by σ(f) the σ-algebra generated by f .

13See Maccheroni et al. (2006) and Cerreia-Vioglio et al. (2014) for an in-depth discussion of niveloids
and their properties.
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Given a convex subset C of ∆(Y, Y) and an extended real valued function ϕ : C →

R̄, we denote by dom ϕ the effective domain of ϕ, that is the subset of its domain on

which ϕ takes on finite values; that is, dom ϕ := {p ∈ C : |ϕ(p)| < ∞}. Moreover, we

say such function ϕ to be grounded if infp∈C ϕ(p) = 0. Fix a subset Q ⊆ ∆σ(Y, Y) of

countably additive probability measures. A function c : ∆(Y, Y) × Q → [0, ∞] is said

to be a statistical distance if it satisfies the following two properties:

(i) for each q ∈ M, p = q implies c(p, q) = 0,

(ii) c(·, q) is lower semicontinuous for all q ∈ Q.

Furthermore, a statistical distance c is convex if the section c(·, q) is a convex function

for each q ∈ Q and is said to be a divergence if for all q ∈ Q, p ∈ dom c(·, q) implies

that p ≪ q.

Appendix B. Structured Spaces

Fix a measurable space (Ω, G) where G is a countably generated σ-algebra and a

set of structured models M ⊆ ∆σ(G) := ∆σ(Ω, G), where we denote by Let D := DΩ,G

and D)M := DΩ,G
M respectively the natural σ-algebra on ∆σ(G) and the relative σ-

algebra on M. Throughout the section, assume that (Ω, G, M) is a structured space

with sufficient sub σ-algebra A ⊆ G and best-fit map q : Ω → ∆σ(G) satisfying the

properties in Definition 1. In particular, recall that Em := q−1(m) and m(Em) = 1

for all m ∈ M. Denote by Λ the set of all the events in G that have probability either

0 or 1 according to all models m ∈ M:

Λ := {E ∈ G : ∀m ∈ M, m(E) = 1 or m(E) = 0}.

Lemma B.1: The σ-algebra generated by q is in Λ: A = σ(q) ⊆ Λ. In particular,

m(E) ∈ {0, 1} for all E ∈ A and structured model m ∈ M.
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Proof of Lemma B.1: By definition of the σ-algebra D, σ(q) is generated by

the class:

C :=

q−1 ({p ∈ ∆σ(G) : p(E) ≤ x}) : x ∈ [0, 1], E ∈ G


.

Then, take any x ∈ [0, 1] and E ∈ G. We have that for any m ∈ M,

m

q−1 ({p ∈ ∆σ(G) : p(E) ≤ x})


= m ({ω ∈ Ω : qω(E) ≤ x})

= m ({ω ∈ Ω : qω(E) ≤ x} ∩ Em)

=






1 if m(E) ≤ x

0 if m(E) > 0
,

and, therefore, q−1 ({p ∈ ∆σ(G) : p(E) ≤ x}) ∈ Λ, showing that C ⊆ Λ.

It is clear that Ω, ∅ ∈ Λ and that if E ∈ Λ, then Ω \ E ∈ Λ. Moreover, if we take

(E)n∈N ⊆ Λ, for each m ∈ M, we have either of two cases. If m(En) = 0 for all

n ∈ N, then:

m(∪n∈NEn) ≤


n∈N
m(En) = 0 =⇒ m(∪n∈NEn) = 0.

If, instead, there exists k ∈ N such that m(Ek) = 1, then:

m(∪n∈NEn) ≥ m(Ek) = 1 =⇒ m(∪n∈NEn) = 1.

It follows that ∪n∈NEn ∈ Λ. We can, thus, conclude that Λ is a σ-algebra containing

M and, therefore, σ(q) = σ(C) ⊆ Λ. 

Suppose that u : X → R is an affine and surjective function. If E is a sub-σ-algebra

of G, we can define the operator u : F(E) → B0(E) as follows: for each f ∈ F(E),

u(f)(ω) = u(f(ω))
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for all ω ∈ Ω.

Lemma B.2: Suppose u is affine and surjective. Then, u : F(E) → B0(E) is an

affine operator and {u(f) : f ∈ F(E)} = B0(E).

Proof: Take any f ∈ F(E). Then, there exists a finite, measurable partition of

Ω, (Ei)k
i=1 ⊆ E , and consequences (xi)k

i=1 ⊆ X such that f = k
i=1 χEi

xi. Then, for

all Ei and for all ω ∈ Ei,

u(f)(ω) = u(f(ω)) = u(xi)

and therefore, u(f) = k
i=1 χEi

u(xi). Therefore, u(f) ∈ B0(E) for all f ∈ F(E) so

that the operator is well-defined and {u(f) : f ∈ F(E)} ⊆ B0(E). Moreover, take

α ∈ (0, 1) and f, f ′ ∈ F(E). We have that for all ω ∈ Ω,

u(αf + (1 − α)f ′)(ω) = u((αf(ω) + (1 − α)f ′(ω))

= αu(f(ω)) + (1 − α)u(f ′(ω))

= αu(f)(ω) + (1 − α)u(f ′)(ω)

proving affinity. Finally, take any ϕ ∈ B0(E). Then, there exist a finite, measurable

partition of Ω, (Ei)k
i=1 ⊆ E , and reals (ri)k

i=1 ⊆ R such that ϕ = k
i=1 χEi

ri. Since

Im u = R, for each ri we can pick xi ∈ X such that ri = u(xi). Setting f = k
i=1 χEi

xi

we can see that ϕ = u(f) and ϕ ∈ F(E). This shows that B0(E) ⊆ {u(f) : f ∈

F(E)}. 

Appendix C. Proof of Proposition 1

We say that a binary relation  over F is solvable if, for each act f ∈ F , there

exists a constant act xf ∈ X such that xf ∼ f . We call such (possibly non-unique) act

the certainty equivalent of f . Next, we show that a preference relation that satisfies

Axiom 1 is solvable.
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Lemma B.3: Suppose that  is a preference relation on F satisfying Axiom 1.

Then,  is solvable.

Proof of Lemma B.3: Fix any f ∈ F . Since f takes on only finitely many

values, we can pick x∗ and x∗ in X such that for all ω ∈ Ω, x∗  f(ω)  x∗. By

Axiom 1.ii, this implies that x∗  f  x∗. Now, {α ∈ [0, 1] : αx∗ + (1 − α)x∗  f}

and {α ∈ [0, 1] : f  αx∗ + (1 − α)x∗} are closed by mixture continuity and are

non-empty, since the first one contains 1 and the second one contains 0. Moreover,

by completeness of , their union is the whole [0, 1]. Since the closed, unit interval is

connected, such sets must have a non-empty intersection. This shows the existence

of xf ∈ X such that xf ∼ f . 

We proceed by defining the preferences conditional on a given structured model

m ∈ M being the best-fit model and show that they inherit some properties from the

unconditional preferences. Let us first recall the following axioms characterizing the

variational preferences axiomatized by Maccheroni et al. (2006).

Axiom B.1 (Variational):

• Weak Certainty Independence. For all f, f ′ ∈ F , x, y ∈ X, and α ∈ (0, 1),

αf + (1 − α)x  αf ′ + (1 − α)x =⇒ αf + (1 − α)y  αf ′ + (1 − α)y .

• Uncertainty Aversion. For all f, f ′ ∈ F and α ∈ (0, 1),

f ∼ f ′ =⇒ αf ′ + (1 − α)f  f .

Lemma B.4: Suppose that (Ω, G, M) is a structured space and that the preference

relation  satisfies Axioms 1, 2, 3, 4, and 5. For all m ∈ M, define m as follows:

for all f, f ′ ∈ F ,

f m f ′ ⇐⇒ ∃g ∈ F , fEmg  f ′Emg.
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Then, m is well-defined, satisfies Axiom 1, 2, and B.1 and coincides with  when

restricted to constant acts in X.

Proof of Lemma B.4: Fix any m ∈ M and consider m as defined in Equation

B.4. We show that this is a well-defined binary relation over F . Indeed, suppose that

for f, f ′ ∈ F , there exists some g ∈ F such that fEmg  f ′Emg. Then, Axiom 3

implies that fEmh  f ′Emh for all h ∈ F . Therefore, in the following, we just fix

a g ∈ F and notice that f m f ′ ⇐⇒ fEmg  f ′Emg. Moreover, note that for

any f, f ′, g ∈ F and α ∈ [0, 1], (αf + (1 − α)f ′)Emg = α(fEmg) + (1 − α)(f ′Emg).

Indeed, if ω ∈ Em:

((αf + (1 − α)f ′)Emg) (ω) = (αf + (1 − α)f ′)(ω)

= αf(ω) + (1 − α)f ′(ω)

= α(fEmg)(ω) + (1 − α)(f ′Emg)(ω)

= (α(fEmg) + (1 − α)(f ′Emg)) (ω)

and, if ω ∈ Ω \ Em:

((αf + (1 − α)f ′)Emg) (ω) = g(ω)

= αg(ω) + (1 − α)g(ω)

= α(fEmg)(ω) + (1 − α)(f ′Emg)(ω)

= (α(fEmg) + (1 − α)(f ′Emg)) (ω) .

Step 1: Weak Order. Take any f, f ′ ∈ F . Then, since  is complete, it follows

that either fEmg  f ′Emg or f ′Emg  fEmg. That is, either f m f ′ or f ′ m f ,

showing that m is complete. Moreover, suppose that there are f, f ′, f ′′ ∈ F such

that f m f ′ and f ′ m f ′′. Then, fEmg  f ′Emg and f ′Emg  f ′′Emg. Since  is
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transitive, it follows that fEmg  f ′′Emg and, therefore, that f m f ′′. This shows

that m is also transitive.

Step 2: Mixture Continuity. Take any f, f ′, f ′′ ∈ F . We show that {α ∈ [0, 1] :

αf ′ + (1 − α)f ′′ m f} is closed. Indeed, take any α0 ∈ [0, 1] and let g = f :

α0 ∈ {α ∈ [0, 1] : αf ′ + (1 − α)f ′′ m f}

⇐⇒ α0f
′ + (1 − α0)f ′′ m f

⇐⇒ (α0f
′ + (1 − α0)f ′′)Emg  fEmg

⇐⇒ α0(f ′Emf) + (1 − α0)(f ′′Emf)  f

⇐⇒ α0 ∈ {α ∈ [0, 1] : α(f ′Emf) + (1 − α)(f ′′Emf)  f}

so that {α ∈ [0, 1] : αf ′ + (1 − α)f ′′ m f} = {α ∈ [0, 1] : α(f ′Emf) + (1 −

α)(f ′′Emf)  f} and the latter is closed by Axiom 1. By an analogous argument, it

follows that also {α ∈ [0, 1] : f m αf ′ + (1 − α)f ′′} is closed. Hence, m satisfies

mixture continuity.

Step 3: Weak Certainty Independence. Take any f, f ′ ∈ F , x, y ∈ X and α ∈ (0, 1).

Then,

αf + (1 − α)x m αf ′ + (1 − α)x =⇒ [αf + (1 − α)x]Emg  [αf ′ + (1 − α)x]Emg

and letting g = αf + (1 − α)x this implies that:

αf + (1 − α)x  [αf ′ + (1 − α)x]Em[αf + (1 − α)x]

= αf ′Emf + (1 − α)x.
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But, then, by Axiom 5,

αf + (1 − α)y  αf ′Emf + (1 − α)y

= [αf ′ + (1 − α)y]Em[αf + (1 − α)y],

which, then, implies that αf +(1−α)y m αf ′ +(1−α)y. If follows that m satisfies

Weak Certainty Independence. A fortiori, it satisfies Risk Independence.

Step 4: Non-triviality. Since Em is nonnull, there must exist f, f ′, g ∈ F such

that fEmg ≻ f ′Emg. Since f and f ′ are finite-valued, we can pick x, y ∈ X so that

x  f(ω) and f ′(ω)  y for all ω ∈ Em. But then, monotonicity implies that

xEmg  fEmg ≻ f ′Emg  yEmg

and, by transitivity, xEmg ≻ yEmg so that x ≻m y. It follows that m is non-trivial.

Step 5. m|X =X . By Axiom 1,  is a non-trivial weak order satisfying mixture

continuity and independence when restricted to X. By Steps 1-4, the same is true for

m. Then, by Herstein and Milnor (1953), there exist affine functions u, um : X → R

such that u represents |X and um represents m|X . Moreover, since both  and m

are non-trivial, u and um are non-constant. Now, take any x, y ∈ X such that x  y.

Then, for all ω ∈ Ω,

ω ∈ Em =⇒ (xEmg)(ω) = x  y = (yEmg)(ω)

ω ∈ Ω \ Em =⇒ (xEmg)(ω) = g(ω) = (yEmg)(ω)
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so that, since  satisfies reflexivity and monotonicity by Axiom 1, xEmg  yEmg

and, therefore, x m y. Thus, for all x, y ∈ X:

u(x) ≥ u(y) =⇒ x |Xy

=⇒ x  y

=⇒ x m y

=⇒ x m|Xy

=⇒ um(x) ≥ um(y) .

By Corollary B.3 in Ghirardato et al. (2004), there exists a ∈ R++ abd b ∈ R such

that u = aum + b. This implies the claim.

Step 6: Monotonicity. Take f, f ′ ∈ F and assume that f(ω) m f ′(ω) for all

ω ∈ Ω. Since by Step 4, m|X =X , it is also the case that f(ω)  f ′(ω) for all

ω ∈ Ω. Then, since  satisfies Axiom 1, reflexivity and monotonicity imply that

fEmg  f ′Emg and, therefore, f m f ′, proving the statement.

Step 7: Unboundedness. This follows immediately by Step 5.

Step 8. Uncertainty Aversion

Take any f, f ′ ∈ F and α ∈ (0, 1) and suppose that f ∼m f ′. Then, taking g = f

in the definition of m and since  satisfies Axiom 5, we have

f ∼m f ′ =⇒ f ∼ f ′Emf

=⇒ αf + (1 − α)f ′Emf  f

=⇒ [αf + (1 − α)f ′]Emf  fEmf

=⇒ αf + (1 − α)f ′ m f

showing that m satisfies Uncertainty Aversion.

Step 9: Monotone Continuity.
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Take any f, f ′ ∈ F such that f ≻m f ′, x ∈ X, and (An)n∈N ⊆ G such that

A1 ⊇ A2 ⊇ · · · and 
n∈N An = ∅. Taking g = f in the definition of m, we have

that f ≻ f ′Emf . Moreover, for each n ∈ N, let En := An ∩ Em and observe that

En = An ∩ Em ⊇ An+1 ∩ Em = En+1 and



n∈N
En =



n∈N
(An ∩ Em) = (



n∈N
An) ∩ Em = ∅ ∩ Em = ∅.

Since  satisfies Axiom 2, we can find n0 ∈ N such that xEn0f ≻ f ′Emf . Moreover,

ω ∈ En0 = An0 ∩ Em =⇒ (xEn0f)(ω) = x = ((xAn0f)Emf)(ω),

ω ∈ Em \ An0 =⇒ (xEn0f)(ω) = f(ω) = ((xAn0f)Emf)(ω),

ω ∕∈ Em =⇒ (xEn0f)(ω) = f(ω) = ((xAn0f)Emf)(ω).

Therefore, (xAn0f)Emf = xEn0f ≻ f ′Emf which implies that xAn0f ≻m f ′ as we

wanted to show. 

We are now ready to prove Proposition 1.

Proof of Proposition 1: (i) implies (ii) Suppose that (Ω, G, M) is a structured

space and the preference relation  satisfies Axioms 1, 2, 3, 4, and 5. Since  is a non-

trivial, continuous weak order satisfying independence when restricted to constant

acts, we know by Herstein and Milnor (1953) that there exists an affine and non-

constant function u : X → R representing  over X. Moreover, such u is cardinally

unique. Next, we show that Im u = R. Clearly, being u affine and X convex, Im u

must be an interval. Pick x, y ∈ X such that x  y and a monotonically decreasing

sequence (αn)n ⊆ [0, 1] such that αn → 0. Then, by unboundedness, for each n ∈ N,

there exists zn, z′
n ∈ X such that:

αnzn + (1 − αn)y ≻ x ≻ y ≻ αnz′
n + (1 − αn)x



42

Since u represents  on X and is affine, this implies:

αnu(zn) + (1 − αn)u(y) > u(x) > u(y) > αnu(z′
n) + (1 − αn)u(x)

and, rearranging:

u(zn) >
u(x) − u(y)

αn

+ u(y) and u(z′
n) < −u(x) − u(y)

αn

+ u(x)

for all n ∈ N. Therefore, (u(zn))n and (u(z′
n))n are sequences in Im u, the first

monotonically increasing and diverging to +∞, the second monotonically decreasing

and diverging to −∞. This implies that Im u = R.

Now, fix m ∈ M. By Lemma B.4, m|X =|X . Therefore, m is represented

by u when restricted to constant acts in X. Define the functional Im
0 : B0(G) → R

as follows: for each ϕ ∈ B0(G), Im(ϕ) = u(xfϕ) where fϕ ∈ F is chosen such that

ϕ = u(fϕ) and xfϕ ∼m fϕ. This functional is well-defined by Lemmas B.4 and B.2.

Moreover, define V m(f) := Im
0 ◦ u : F → R. Again, by Lemma B.2, V m is a well-

defined functional over F . Moreover, it represents m. Indeed, for any f, f ′ ∈ F :

f m f ′ ⇐⇒ xf m xf ′

⇐⇒ u(xf ) ≥ u(xf ′)

⇐⇒ Im
0 (u(f)) ≥ Im

0 (u(f ′))

⇐⇒ V m(f) ≥ V m(f ′) .

Lemma B.5: Im
0 is a normalized and concave niveloid.

Proof: Step 1: Monotonicity. Take ϕ, ψ ∈ B0(G) and assume that ϕ ≥ ψ. By

Lemma B.2, we can find fϕ, fψ ∈ F such that u(fϕ) = ϕ and u(fψ) = ψ. Then, for

all ω′ ∈ Ω,

u(fϕ(ω′)) = u(fϕ)(ω′) = ϕ(ω′) ≥ ψ(ω′) = u(fψ)(ω′) = u(fψ(ω′))
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and, therefore, fϕ(ω) m fψ(ω). Then, since by Lemma B.4, m satisfies monotonic-

ity and transitivity, fϕ m fψ and, therefore, xfϕ m xfψ
. We can, thus, conclude

that

Im
0 (ϕ) = u(xfϕ) ≥ u(xfψ

) = Im
0 (ψ)

which proves the claim.

Step 2: Normalization. Take k ∈ R. Since Im u = R, we can find xk ∈ X such that

u(xk) = k. Then:

Im
0 (k) = u(xk) = k

showing that Im
0 is normalized.

Step 3: Translation Invariance. Take any ϕ, ψ ∈ B0(G) and k, r ∈ R. By Lemma

B.2 and surjectivity, we can find fϕ, fψ ∈ F and xk, xr ∈ X such that u(fϕ) = ϕ,

u(fψ) = ψ, u(xk) = k, and u(xr) = r. Now, for any α ∈ (0, 1), since u is an affine

operator, we have for each ξ ∈ {ϕ, ψ}, l ∈ {k, r},

u(αfξ + (1 − α)xl) = αu(fξ) + (1 − α)u(xl) = αξ + (1 − α)l .

Moreover, by Lemma B.4 and the fact that Im
0 ◦ u represents m:

Im
0 (αϕ + (1 − α)k) = Im

0 (αψ + (1 − α)k)

=⇒ Im
0


u(αfϕ + (1 − α)xk)


= Im

0


u(αfψ + (1 − α)xk)



=⇒ αfϕ + (1 − α)xk ∼m αfψ + (1 − α)xk

=⇒ αfϕ + (1 − α)xr ∼m αfψ + (1 − α)xr

=⇒ Im
0 (u(αfϕ + (1 − α)xr)) = Im

0 (u(αfψ + (1 − α)xr))

=⇒ Im
0 (αϕ + (1 − α)r) = Im

0 (αψ + (1 − α)r) .
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Then, for any ϕ′, ψ′ ∈ B0(G) and k′, r′ ∈ R, by letting ϕ = ϕ′/α, ψ = ψ′/α, k =

k′/(1 − α), and r = r′/(1 − α) in the previous implication:

Im
0 (ϕ′ + k′) = Im

0 (ψ′ + k′) =⇒ Im
0 (ϕ′ + r′) = Im

0 (ψ′ + r′) .

Then, take any ξ ∈ B0(G) and l ∈ R. By Step 2, Im
0 is normalized and, therefore,

Im
0 (ξ) = Im

0 (Im
0 (ξ)). By what is shown above, this implies:

Im
0 (ξ + l) = Im

0 (Im
0 (ξ) + l) = Im

0 (ξ) + l

proving the claim.

Step 4: Quasi-concavity. Take any ϕ, ψ ∈ B0(G) such that Im
0 (ϕ) = Im

0 (ψ) and

α ∈ (0, 1). By Lemma B.2, we can find fϕ, fψ ∈ F such that ϕ = u(fϕ) and ψ = u(fψ).

Then:

V m(fϕ) = Im
0 (u(fϕ)) = Im

0 (ϕ) = Im
0 (ψ) = Im

0 (u(fψ)) = V m(fψ)

so that fϕ ∼m fψ. Since m satisfies Axiom B.1, uncertainty aversion implies that

αfϕ + (1 − α)fψ m fψ

and, therefore:

Im
0 (αϕ + (1 − α)ψ) = Im

0 (αu(fϕ) + (1 − α)u(fψ))

= Im
0 (u(αfϕ + (1 − α)fψ))

= V m(αfϕ + (1 − α)fψ)

≥ V m(fψ)

= Im
0 (u(fψ)) = Im

0 (ψ)

proving the claim.
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By Steps 1-4 and Theorem 4 in Cerreia-Vioglio et al. (2014), it follows that Im
0 is

a normalized and concave niveloid. □

Denote by Im : B(G) → R the unique normalized and concave niveloid extending

Im
0 (see Lemma 25 in Maccheroni et al. (2006)). It is clear that V m = Im ◦ u on

F . Then, by Lemma 26 in Maccheroni et al. (2006), there exists a grounded, lower

semicontinuous and convex function cm : ∆ → [0, 1] such that:

(12)
Im(ϕ) = min

p′∈∆(G)



Ω
ϕdp′ + cm(p′)



cm(p) = sup
ϕ′∈B(G)


Im(ϕ′) −



Ω
ϕ′dp



for all ϕ ∈ B(G) and p ∈ ∆(G). Then, define c(·, m) := cm(·) for all m ∈ M. We

have that for each m ∈ M and for each f, f ′ ∈ F ,

f m f ′ ⇐⇒ V m(f) ≥ V m(f ′)

⇐⇒ Im(u(f)) ≥ Im(u(f ′))

⇐⇒ min
p∈∆(G)



Ω
u(f)dp + c(p, m)


≥ min

p∈∆(G)



Ω
u(f ′)dp + c(p, m)


,

proving the representation in (5). We only need to check that c(·, m) is finite only on

probabilities that are absolutely continuous with respect to m. This is the content of

the next lemma.

Lemma B.6: For all m ∈ M, if p ∈ dom c(·, m), then p ≪ m and c(p, m) = 0 if

and only if p = m. In particular, c is a convex divergence.

Proof of Lemma B.6: Fix any m ∈ M.

We first show that if p ∈ dom c(·, m), then p is absolutely continuous with respect to

m. Suppose there exists a structured model m ∈ M and a p̂ ∈ dom c(·, m) that is not

absolutely continuous with respect to m. We show that  would violate Coherence.

Indeed, we can find a measurable set E ∈ G such that m(E) = 0 but p̂(E) > 0.
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Consider the sequence of acts (fn)n∈N ⊆ F such that for each n ∈ N, fn = xnEx0

where, since u is surjective, we can pick x0 ∈ u−1(0) and xn ∈ u−1 (−n). Since

m(E) = 0, fn = x0 a.e.[m] for any n ∈ N. Since p̂ ∈ dom c(·, m), c(p̂, m) < ∞, so

that there exists N ∈ N large enough such that c(p̂, m) < N · p̂(E). Therefore,

V m(fN) = Im(u(fN)) = min
p∈∆



Ω
u(fN)dp + c(p, m)



= min
p∈∆



E
−N dp + c(p, m)



= min
p∈∆

{−N p(E) + c(p, m)}

≤ −N p̂(E) + c(p̂, m)

< 0 = u(x0)

showing that x0 ≻m fN and, therefore, x0E
mx0 ∕∼ fNEmx0. But since x0 = fN with

probability 1 according to m, this violates Coherence.

We now show that c(p, m) = 0 if and only if p = m. Let P0 := {p0 ∈ ∆(Ω) :

c(p0, m) = 0}. First of all, P0 is non-empty because c(·, m) is grounded. Moreover,

P0 ⊆ {p0 ∈ ∆(Ω) : p0 ≪ m} by what just shown above. Take p0 ≪ m such that

p0 ∕= m. Then, by Coherence there must exist f ∈ F such that fEmx  x, but

x ≻


Ω fdp0. But, then,



Ω
u(f)dp0+c(p0, m) ≥ min

p∈∆(Ω)



Ω
u(f) + c(p, m)


≥ u(x) > u



Ω
u(f)dp0


=



Ω
u(f)dp0

which implies that c(p0, m) > 0. Since this holds for all p0 ≪ m sich that p0 ∕= m, it

must be the case that ∅ ∕= P0 ⊆ {m}. That is, c(p, m) = 0 if and only if p = m.

□
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As an almost immediate consequence of Lemma B.6, we show that for any m ∈ M,

if ϕ, ψ ∈ B(G) and ϕ = ψ a.e. [m], then Im(ϕ) = Im(ψ). Indeed:

m({ω : ϕ(ω) ∕= ψ(ω)}) = 0 =⇒ ∀p ≪ m, p({ω : ϕ(ω) ∕= ψ(ω)}) = 0

and, therefore,

Im(ϕ) = min
p≪m



Ω
ϕ dp + c(p, m)


= min

p≪m



Ω
ψ dp + c(p, m)


= Im(ψ).

Finally, as far as uniqueness, that u is cardinally unique follows from Herstein and

Milnor (1953). Moreover, the uniqueness of c given u is guaranteed by the fact that

m is an unbounded variational preference and Proposition 6 in Maccheroni et al.

(2006). 

Nest, we show the characterization of the comparative notion of misspecificaiton

aversion.

Proof of Proposition 2: Suppose that 1 and 2 are two misspecification

averse preferences. Let (u1, c1) and (u2, c2) represent respectively (m
2 )m∈M and (m

2

)m∈M as in Proposition 1 and define Im
1 and Im

2 accordingly for all m ∈ M. Suppose

that u2 is a positive affine transformation of u1 and c1 ≤ c2. Without loss of generality,

assume that u1 = u2 = u. Fix any m ∈ M and take any f ∈ F and x ∈ X such that

fEmx m
1 x. Then, f m

1 x and, therefore, Im
1 (u(f)) ≥ u(x). Then:

Im
2 (u(f)) = min

p∈∆



Ω
u(f)dp + c2(p, m)



≥ min
p∈∆



Ω
u(f)dp + c1(p, m)



= u(x)

so that f m
2 x, and, therefore, fEmx 2 x.
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As for the other direction, note that Equation 7 and nontriviality imply that u2 is

a positive affine transformation of u1. Without loss of generality, set u1 = u2 = u.

Fix any m ∈ M and take ϕ ∈ B0(G). Let f ∈ F be such that u(f) = ϕ and x ∈ X

such that f ∼m
1 x. Then, condition 7 implies that f m

2 x, so that

Im
1 (ϕ) = Im

1 (u(f)) = u(x) ≤ Im
2 (u(f)) = Im

2 (ϕ).

Therefore, Im
1 (ϕ) ≤ Im

2 (ϕ) for all ϕ ∈ B0(G). Since the latter is dense in the space

B(G), we conclude that I1 ≤ I2. Then, using Equation (12):

c1(p, m) = sup
ϕ′∈B(G)


Im

1 (ϕ′) −


Ω
ϕ′dp



≤ sup
ϕ′∈B(G)


Im

2 (ϕ′) −


Ω
ϕ′dp


= c2(p, m)

for all p ∈ ∆. 

We conclude this section by proving the existence of a generalized conditional

expectation.

Proof of Corollary 3: First, we show that for any given ϕ ∈ B(G), Im(ϕ) is

measurable as a function of m.

Lemma B.7: The map m → Im(ϕ) is a DM-measurable and bounded functional for

all ϕ ∈ B(Ω, G).

Proof of Lemma B.7: Fix ϕ ∈ B(Ω, G) arbitrarily. We first show that m →

Im(ϕ) is bounded. Indeed, since ϕ is bounded, there exist k, K ∈ R such that

k ≤ ϕ ≤ K. By Lemma B.5, for each m ∈ M, Im is normalized and monotone and,

therefore,

k = Im(k) ≤ Im(ϕ) ≤ Im(K) = K

proving boundedness. We now show that m → Im(ϕ) is also measurable. Take any

real number r ∈ R. We want to show that {m ∈ M : Im(ϕ) > r} is a measurable set
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in DM. Since u is surjective, take xr such that u(xr) = r. Moreover, by Lemma B.2,

we can pick fϕ such that u(fϕ) = ϕ. Then, we have:

{m ∈ M : Im(ϕ) > r} = {m ∈ M : Im(u(fϕ)) > u(xr)}

= {m ∈ M : fϕEmxr  xr}

and the latter is measurable since  satisfies Coherence. This proves that m → Im(ϕ)

is bounded and measurable for any ϕ ∈ B(Ω, G). 

Denote by q0 the restriction of q to Ω0. Clearly, q0 is AΩ0/DM, where AΩ0 is the

relative σ-algebra A ∩ Ω0. Fix any ϕ ∈ B(Ω, G). Since m → Im(ϕ) is bounded and

DM-measurable by Lemma B.7, it follows that the composition

Iq(·)(ϕ) : (Ω0, AΩ0) → (M, DM) → (R, B(R))

ω → q(ω) → Iq(ω)(ϕ)

is a AΩ0-measurable and bounded functional. Obtain IA(ϕ) by extending Iq(·)(ϕ) to

the whole Ω in the following way: IA(ϕ)(ω) = Iq(ω)ϕ if ω ∈ Ω0 and IA(ϕ)(ω) = 0 if

ω ∈ Ω \ Ω0. It is easy to see that IA(ϕ) ∈ B(A). Moreover, take any A ∈ A and

fix m ∈ M arbitrarily. We know that m(Em) = 1, so that m(Ω \ Em) = 0, where

we recall that Em = {ω ∈ Ω : q(ω) = m}. By Lemma B.6, we also have that if

p ∈ dom c(·, m), it must be the case that p is absolutely continuous with respect to

m. Then, p(Ω \ Em) = 0 and p(Em) = 1 for all p ∈ dom c(·, m). Moreover, since

A ∈ Λ by Lemma B.1, we have that either m(A) = 1 or m(A) = 0. In any case, this

implies that for any p ∈ dom c(·, m),

p(A ∩ Em) = p(A)p(Em) = p(A) = m(A).
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Then:

Im(IA(ϕ)χA) = min
p∈∆



Ω
IA(ϕ)(ω)χA(ω) dp(ω) + c(p, m)



= min
p∈dom c(·,m)



A∩Em
Iq(ω)(ϕ) dp(ω) + c(p, m)



= min
p∈dom c(·,m)



A∩Em
Im(ϕ) dp(ω) + c(p, m)



= min
p∈dom c(·,m)

{Iq(ϕ) q(A) + c(p, m)}

= Im(ϕ) m(A)

= Im(ϕχA).

The last equality follows from the fact that m(A) ∈ {0, 1}. Indeed, if m(A) = 0,

Im(ϕχA) = min
p∈dom c(·,m)



A
ϕdp + c(p, m)


= 0 = Im(ϕ)m(A)

and if m(A) = 1,

Im(ϕχA) = min
p∈dom c(·,m)



A
ϕdp + c(p, m)



= min
p∈dom c(·,m)



Ω
ϕdp + c(p, m)


= Im(ϕ)m(A) .



Appendix D. Structured Functionals

Throughout the section, assume that (Ω, G, M) is a structured space with sufficient

sub σ-algebra A ⊆ G and best-fit map q : Ω → ∆σ(G) satisfying the properties in

Definition 1, that Im is given as in the representation of Proposition 1 for all structured

models m ∈ M, and that IA is the common generalized conditional expectation of

M given A, which exists by Corollary 3. Notice that for each ϕ ∈ B(G, we can see
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Im(ϕ) as a function from structured models to R:

I(ϕ, ·) : M → R, m → I(ϕ, m) := Im(ϕ).

Define the operator T : B(Ω, G) → RM such that for all ϕ ∈ B(Ω, G),

T (ϕ)(m) = I(ϕ, m)

for all m ∈ M. By Lemma B.7, we have that Im T ⊆ B(M, DM).

Lemma B.8: Let T (B(A)) and T (B0(A)) be the images through T of B(A) and

B0(A) respectively. Then, T (B(A)) = Im T and T (B0(A)) is supnorm dense in Im T .

Moreover, T preserves lattice operations when restricted to B(A). In particular, Im T

is a lattice.

Proof of Lemma B.8: It is clear that

T (B(A)) = {I(ϕ, ·) : ϕ ∈ B(Ω, A)}

⊆ {I(ϕ, ·) : ϕ ∈ B(Ω, G)} = Im T

since A is a a sub-σ-algebra of G. As for the reverse inclusions, take any ξ ∈ Im T

and let ϕξ ∈ B(G) be such that ξ = T (ϕξ). Then, by Corollary 3, IA(ϕξ) ∈ B(A)

and for all m ∈ M,

T (IA(ϕξ))(m) = Im (IA(ϕξ)) = Im(ϕξ) = T (ϕξ)(m) = ξ(m),

so that ξ ∈ T (B(A)), showing that Im T ⊆ T (B(A)) Next, we show that T (B0(A))

is supnorm dense in Im T . Take ξ ∈ Im T and a corresponding ϕξ ∈ B(A) such that

ξ = T (ϕξ) (which exists given what shown above). Since B0(A) is supnorm dense in

B(A), we can find a sequence (ϕn)n ⊆ B0(A) such that ||ϕn − ϕξ||∞ → 0. Define

ξn = T (ϕn) for each n ∈ N and note that (ξn)n ⊆ T (B0(A)). We show that ξn
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converges to ξ in the supnorm. Indeed, for each m ∈ M, since Im is a niveloid and,

therefore, Lipschitz continuous, we have that:

|ξ(m) − ξn(m)| = |T (ϕ)(m) − T (ϕn)(m)| = |Im(ϕ) − Im(ϕn)| ≤ ||ϕ − ϕn||∞

and, therefore,

||ξ − ξn||∞ = sup
m∈M

|ξ(m) − ξn(m)| ≤ ||ϕ − ϕn||∞ → 0.

Finally, we show that T preserves lattice operations on B(A). Indeed, pick ϕ, ϕ̃ ∈

B(A) arbitrarily. Since B0(A) is supnorm dense in B(A), we can take sequences

(ϕ)n, (ϕ̃n)n ⊆ B0(A) such that ||ϕ − ϕn||∞, ||ϕ̃ − ϕ̃n||∞ → 0. For each n ∈ N, we can

find a finite partition (Ei
n)k

i=1 and reals (ri
n)k

i=1, (r̃i
n)k

i=1 such that:

ϕn =
k

i=1
χEi

n
ri

n, ϕ̃n =
k

i=1
χEi

n
r̃i

n.

Fix any m ∈ M. By Lemma B.1, for each n ∈ N, there is a unique El
n in the

partition such that m(El
n) = 1. Therefore, ϕn = rl

n and ϕ̃n = r̃l
n a.e. [m], so that by

Proposition 1 and normalization, Im(ϕn) = Im(rl
n) = rl

n and Im(ϕ̃n) = Im(r̃l
n) = r̃l

n

for all n ∈ N. Clearly, it is also the case that ϕn ∨ ϕ̃n = rl
n ∨ r̃l

n a.e. [m] so that

Im(ϕn ∨ ϕ̃n) = Im(rl
n ∨ r̃l

n) = rl
n ∨ r̃l

n for all n ∈ N. Therefore:

Im(ϕn ∨ ϕ̃n) = rl
n ∨ r̃l

n = Im(ϕn) ∨ Im(ϕ̃n)

for all n ∈ N. Since lattice operations are continuous and Im is Lipschitz, taking

limits, it follows that

T (ϕ ∨ ϕ̃)(m) = Im(ϕ ∨ ϕ̃) = Im(ϕ) ∨ Im(ϕ̃) = T (ϕ)(m) ∨ T (ϕ̃)(m)



53

Since m was chosen arbitrarily, we can conclude that T (ϕ ∨ ϕ̃) = T (ϕ) ∨ T (ϕ̃). That

Im T is a lattice follows from the fact that Im T = T (B(A)) and T |B(A) preserves

lattice operations. 

Recall that B0(DM) := B0(M, DM) and B(DM) := B(M, DM) are, respectively,

the spaces of simple and bounded functions on the set of structured models M mea-

surable with respect to DM. The following result shows that these spaces can be

covered by applying the operator T respectively to B0(A) and B(A). Further, char-

acteristic functions of sets in DM can be recovered by applying the operator T to

characteristic functions of sets in A.

Lemma B.9: Im T = B(M, DM). Moreover, T (B0(A)) = B0(M, DM) and T ({χE :

E ∈ A}) = {χD : D ∈ DM}.

Proof of Lemma B.9: We prove the results via a series of steps.

Step (i). For all E ∈ A, there exists DE ∈ DM such that T (χE) = χDE
.

Proof: Take any E ∈ A. By Lemma B.1, E ∈ Λ and, thererfore, for all m ∈ M,

either m(E) = 1 or m(E) = 0. But then for all m ∈ M:

m(E) = 1 =⇒ χE = 1 a.e. [m] =⇒ T (χE)(m) = Im(χE) = Im(1) = 1,

m(E) = 0 =⇒ χE = 0 a.e. [m] =⇒ T (χE)(m) = Im(χE) = Im(0) = 0.

Therefore, Im T (χE) ∈ {0, 1}. Moreover, by Lemma B.7, DE := [T (χE)]−1({1}) ∈

DM and T (χE) = χDE
as we wanted to show. □

Step (ii). For all D ∈ DM, there exists ED ∈ A such that T (χED) = χD.

Proof: Take any D ∈ DM and let ED = q−1(D). Since the space is structured,

ED ∈ A and m(ED) = 1 if m ∈ D and m(ED) = 0 if m ∈ M \ D. But then for all
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m ∈ M:

m ∈ D =⇒ χED = 1 a.e. [m] =⇒ T (χED)(m) = Im(χED) = Im(1) = 1,

m(E) ∈ M \ D =⇒ χED = 0 a.e. [m] =⇒ T (χED)(m) = Im(χED) = Im(0) = 0,

and we can, thus, conclude that T (χED) = χD. □

Steps (i) and (ii) together imply that T ({χE : E ∈ A}) = {χD : D ∈ DM}.

Step (iii). T (B0(A)) ⊆ B0(M, DM).

Proof: Take ξ ∈ T (B0(A)). By definition, there exists ϕξ ∈ B0(A) such that

ξ = T (ϕξ). Then, there exists a partition (Ei)k
i=1 ⊆ A and reals (ri)k

i=1 such that

ϕξ = k
i=1 χEi

ri. By Step (i), we have that for each i = 1, . . . , k, we can find

DEi
∈ DM such that T (χEi

) = χDEi
. Moreover, since for all i = 1, . . . , k, Ei ∈ A ⊆ Λ

by Lemma B.1, either m(Ei) = 1 or m(Ei) = 0 for each m ∈ M . It follows that

for each m, there is a unique element in the partition Ejm such that m(Ejm) = 1 and

m(Ei) = 0 if i ∕= jm. Then, for each m ∈ M,

ϕξ = rjm a.e. [m] =⇒ T (ϕξ)(m) = Im(ϕξ) = Im(rjm) = rjm

and, since χEjm
= 1 a.e. [m] and χEi

= 0 a.e. [m] for i ∕= jm,

χDEjm
(m) = T (χEjm

)(m) = Im(χEjm
) = Im(1) = 1 =⇒ m ∈ DEjm

∀i ∕= jm, χDEi
(m) = T (χEi

)(m) = Im(χEi
) = Im(0) = 0 =⇒ m ∕∈ DEi

.

It follows that ϕξ = k
i=1 χDEi

ri ∈ B0(M, DM). □

Step (iv). B0(M, DM) ⊆ T (B0(A)), In particular, for all D ∈ DM, there exists

ED ∈ A such that χD = T (χED).

Proof: Take any ξ ∈ B0(M, DM). By definition, there exists a partition (Di)k
i=1 ⊆

DM of M and reals (ri)k
i=1 such that ξ = k

i=1 χDi
ri. By Step (ii), for each i =
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1, . . . , k, we can find EDi ∈ A such that χDi
= T (χEDi ). Define ϕξ := k

i=1 χEDi ri.

Clearly, ϕξ ∈ B0(A). Moreover, for each m ∈ M, let Djm be the unique element of

the partition such that m ∈ Djm . We know by Lemma B.1 that since EDjm ∈ A,

m(EDjm ) ∈ {0, 1}. If m(EDjm ) = 0, then χEDjm = 0 a.e. [m] and, therefore,

T (EDjm )(m) = Im(EDjm ) = Im(0) = 0 ∕= χDjm
(m) = 1, a contradiction. We con-

clude that m(EDjm ) = 1 so that ϕξ = rjm a.e. [m]. Therefore,

T (ϕξ)(m) = Im(ϕξ) = Im(rjm) = rjm = rjmχDjm
(m) = ξ(m).

for all m ∈ M. It follows that T (ϕξ) = ξ, showing that B0(M, DM) ⊆ T (B0(A)). □

Step (iii) and (iv) imply that B0(M, DM) = T (B0(A)). Then, we have the follow-

ing chain of inclusions:

B0(M, DM) ⊆ T (B0(A)) ⊆ B(M, DM).

Moreover, B0(M, DM) is supnorm dense in B(M, DM) and by Lemma B.8, T (B0(A))

is supnorm dense in Im T . Taking the supnorm closure of the previous chain of

inclusions, we obtain that:

B(M, DM) = cl B0(M, DM) ⊆ cl T (B0(A)) = Im T ⊆ cl B(M, DM) = B(M, DM)

and, therefore, we can conclude that Im T = B(M, DM). 

Lemma B.10:

(i) If ξ, ξ′ ∈ B0(M, DM) are such that ξ ≥ ξ′, then there exist ϕξ, ϕξ′ ∈ B0(A)

such that ϕξ ≥ ϕξ′ and ξ = T (ϕξ), ξ′ = T (ϕξ′).

(ii) If (ξn)n ⊆ T (B0(A)) is an increasing (decreasing) sequence uniformly bounded

above (below) by a constant K, there exists an increasing (decreasing) sequence

(ϕn)n ⊆ B0(A) such that ξn = T (ϕn) and ϕn ≤ K (ϕn ≥ K) for all n ∈ N.



56

(iii) If ξ ∈ Im T and (ξn)n ⊆ T (B0(A)) such that ξn ↑ ξ (ξn ↓ ξ), then we can

find an increasing (decreasing) sequence (ϕn)n ⊆ B0(A) and ϕ ∈ B(A) such

that ϕn ↑ ϕ (ϕn ↓ ϕ), ξ = T (ϕ), and ξn = T (ϕn) for all n ∈ N. Moreover, if

K ∈ R and ξ ≤ K (ξ ≥ K), then ϕ ≤ K (ϕ ≥ K).

Proof of Lemma B.10: We prove the lemma in a number of steps.

Proof of (i): Take ξ, ξ′ ∈ T (B0(A)) such that ξ ≥ ξ′. By definition, we can

pick ϕξ, ϕξ′ ∈ B0(A) such that ξ = T (ϕξ) and ξ′ = T (ϕξ′). Moreover, we can find a

partition (Ei)n
i=1 ⊆ A of Ω and reals (ri)n

i=1, (r′
i)n

i=1 such that

ϕξ =
n

i=1
χEi

ri, ϕξ′ =
n

i=1
χEi

r′
i.

Take an element Ek in the partition. If m(Ek) = 0 for all m ∈ M, we can assume

wlog that rk = r′
k. Indeed, for all m ∈ M, ϕξ′ = 

i ∕=k χEi
r′

i + χEk
rk a.e. [m] and by

Proposition 1, this implies

ξ′ = T (ϕξ′)(m) = Im(ϕξ′) = Im(


i ∕=k

χEi
r′

i + χEk
rk) = T (



i ∕=k

χEi
r′

i + χEk
rk)(m).

If there exists m ∈ M such that m(Ek) ∕= 0, then m(Ek) = 1 since Ek ∈ A ⊆ Λ by

Lemma B.1. Therefore, ϕξ = rk and ϕξ′ = r′
k a.e. [m] and, therefore:

rk = Im(rk) = Im(ϕξ) = T (ϕξ)(m) = ξ(m),

r′
k = Im(r′

k) = Im(ϕξ′) = T (ϕξ′)(m) = ξ′(m),

and, we conclude that rk = ξ(m) ≥ ξ′(m) = r′
k. We have thus shown that ri ≥ r′

i

for all i = 1, . . . , n. Hence, it follows that ϕξ ≥ ϕξ′ . It is then immediate to see that

since each Im is normalized, if ξ ≤ K for some K in R, we can find ϕξ ∈ B0(A) such

that ϕξ ≤ K and ξ = T (ϕξ). □
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Proof of (ii): Take a sequence (ξn)n ⊆ T (B0(A)) and K ∈ R such that ξn ≤

ξn+1 ≤ K for all n ∈ N. By Step (i), we can find a sequence ϕξn ∈ B0(A) such that

ξn = T (ϕξn) and ϕξn ≤ K for all n ∈ N. However, this sequence is not necessarily

increasing. Then, define for each n ∈ N, ϕn(ω) = supk≤n ϕξk
(ω) for all ω. Notice

that ϕn : Ω → R is well-defined and in B0(A). Moreover, the sequence (ϕn)n so

constructed is increasing and uniformly bounded above by K. Moreover, since T

preserves lattice operations by Lemma B.8, we have that for each n ∈ N,

T (ϕn) = T



sup
k≤n

ϕξk



= sup
k≤n

T (ϕξk
) = sup

k≤n
ξk = ξn,

where the last equality follows from the fact that (ξn)n is a monotonically increasing

sequence. □

Proof of (iii): Take a sequence (ξn)n ⊆ T (B0(A)) and ξ ∈ Im T such that ξn ↑ ξ.

Since ξ is bounded, K0 = supm∈Ω ξ is finite. Moreover, we have that ξn ≤ ξ ≤ K0

for all n ∈ N. By by point (ii), we can find an increasing sequence (ϕn)n ⊆ B0(A)

such that ξn = T (ϕn) and ϕn ≤ K0 for all n ∈ N. Since for each ω ∈ Ω, (ϕn(ω))n is a

monotonically increasing sequence of numbers bounded above by K0, it converges to

some limn ϕn(ω) ≤ K0. Therefore, the pointwise limit ϕ := limn ϕn is well-defined, it

is in B(A), and it is uniformly bounded above by K0. Moreover, we have that for all

n ∈ N,

k = min
ω∈Ω

ϕ1(ω) ≤ ϕ1 ≤ ϕn ≤ K0 =⇒ ||ϕn||∞ ≤ max{|k|, |K0|}.

Therefore, (ϕn)n is uniformly bounded in the norm. Moreover, for each m ∈ M,

Thereom 13 in Maccheroni et al. (2006) and Proposition 5 in Cerreia-Vioglio et al.

(2014), imply that Im has the Lebesgue property. Therefore:

T (ϕ)(m) = Im(ϕ) = Im(lim
n

ϕn) = lim
n

Im(ϕn) = lim
n

ξn(m) = ξ(m).
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It is immediate to see that for all k ∈ R such that ξ ≤ K, K ≥ K0 and, therefore,

ϕ ≤ K. □

This concludes the proof of the lemma. 

Proposition B.11: The following are equivalent:

(i) I : B(A) → R is normalized, monotone, and such that for all ϕ, ϕ′ ∈ B0(A),

(∀m ∈ M, Im(ϕ) ≥ Im(ψ)) =⇒ I(ϕ) ≥ I(ψ).

(ii) there exists a normalized and monotone functional Î : B0(M, DM) → R such

that for all ϕ ∈ B0(A),

I(ϕ) = Î(T (ϕ)).

Moreover, Î is unique and

• Î is continuous if and only if I is continuous.

• Î is quasiconcave if and only if I is quasiconcave.

• Î is monotone continuous if and only if I is monotone continuous.

Proof of Proposition B.11:

(i) implies (ii). Define Î : B0(DM) → R as follows: for all ξ ∈ B0(DM),

Î(ξ) = I(ϕξ),

where ϕξ ∈ B0(A) is chosen so that ξ = T (ϕξ).

Step 1: Î is well-defined. Pick ξ ∈ B0(DM) arbitrarily. That a ϕξ ∈ B0(A) such

that ξ = T (ϕξ) exists follows from Lemma B.9. Moreover, suppose there are two

ϕ, ψ ∈ B0(A) such that T (ϕ)(m) = Im(ϕ) = ξ(m) = Im(ψ) = T (ψ)(m) for all

m ∈ M. Then, by assumption, it must be the case that I(ϕ) = I(ψ), showing that

Î is well-defined.
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Step 2: Î is normalized. Take any k ∈ R. Then, since each Im is normalized, it

follows that k = Im(k) = T (k)(m) for all m ∈ M. By definition, it follows that

Î(k) = I(k) = k, where the last equality follows from the assumption that I is

normalized. This proves the step.

Step 3: Î is monotone. Take ξ, ξ′ ∈ Im T such that ξ ≥ ξ′. By Lemma B.9,

ξ, ξ′ ∈ T (B0(A)) and, therefore, Lemma B.10 implies that we can find ϕξ, ϕξ′ ∈ B0(A)

such that ϕξ ≥ ϕξ′ and ξ = T (ϕξ), ξ′ = T (ϕξ′). Since I is monotone

Î(ξ) = Î(T (ϕξ)) = I(ϕξ) ≥ I(ϕξ′) = Î(T (ϕξ′)) = Î(ξ′)

showing that also Î is monotone.

Step 4: Î is unique. Suppose there is another Ĩ : B0(M, DM) → R such that

I(ϕ) = Ĩ(T (ϕ)) for all ϕ ∈ B0(A). Then, take any ξ ∈ B0(M, DM). By Lemma B.9,

there exists ϕξ ∈ B0(A) and such that ξ = T (ϕξ). Then,

Ĩ(ξ) = Ĩ(T (ϕξ)) = I(ϕξ) = Î(T (ϕξ)) = Î(ξ).

It follows that Ĩ = Î.

Step 5: Î is continuous. Suppose that I is continuous. Fix any ξ, ξ′ ∈ B0(DM)

and c ∈ R. First we show that the set {α ∈ [0, 1] : Î(αξ + (1 − α)ξ′) ≤ c} is closed.

If it is empty, it is closed. If it is nonempty, take any sequence (αn)n ⊆ L such

that αn → α0. By Lemma B.9, we can pick ϕ, ϕ′ ∈ B0(A) such that ξ = T (ϕ) and

ξ′ = T (ϕ′). Moreover, we can pick we a finite partition (Ei)k
i=1 and reals (ri)k

i=1,

(r′
i)k

i=1 such that:

ϕ =
k

i=1
χEi

ri, ϕ′ =
k

i=1
χEi

r′
i.
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Fix any m ∈ M. Then, there is a unique Ejm such that m(Ejm) = 1 and m(Ei) = 0

if i ∕= jm. Therefore, it follows that for all n ∈ N,

Im(αnϕ + (1 − αn)ϕ′) = αnrjm + (1 − αn)r′
jm

= αnIm(ϕ) + (1 − αn)Im(ϕ′),

Im(α0ϕ + (1 − α0)ϕ′) = α0rjm + (1 − α0)r′
jm

= α0I
m(ϕ) + (1 − α0)Im(ϕ′).

Since m ∈ M was arbitrarily chosen, it follows that:

∀n ∈ N, αnξ + (1 − αn)ξ = αnT (ϕ) + (1 − αn)T (ϕ′) = T (αnϕ + (1 − αn)ϕ′)

α0ξ + (1 − α0)ξ = α0T (ϕ) + (1 − α0)T (ϕ′) = T (α0ϕ + (1 − α0)ϕ′)

Therefore, by definition of Î and continuity of I:

c ≥ lim inf
n

Î(αnξ + (1 − αn)ξ′)

= lim inf
n

I(αnϕ + (1 − αn)ϕ′)

= I(α0ϕ + (1 − α0)ϕ′)

= Î(α0ξ + (1 − α0)ξ′)

and, therefore, α0 ∈ {α ∈ [0, 1] : Î(αξ+(1−α)ξ′) ≤ c}, showing that this set is closed.

By a symmetric argument, we can show that {α ∈ [0, 1] : Î(αξ + (1 − α)ξ′) ≥ c} is

also closed. Siince this holds for all ξ, ξ′ ∈ B0(DM) and c ∈ R, and Î is monotone by

Step 3, Proposition 43 in Cerreia-Vioglio et al. (2011) implies that Î is continuous.

Step 6: Î is quasiconcave. Fix any α ∈ R. We show that the set Uc = {ξ ∈

B0(DM) : ξ ≥ c} is convex. If it is empty, this holds vacuously true. Suppose it is

nonempty. Take ξ1, ξ2 ∈ Uc and α ∈ [0, 1]. By Lemma B.9, we can pick ϕ1, ϕ2 ∈

B0(A) such that ξ1 = T (ϕ1 and ξ2 = T = ϕ2. Notice that I(ϕ1) = Î(ξ1) ≥ c and

I(ϕ1) = Î(ξ1) ≥ c. Since I is quasiconcave, it follows that I(αϕ1 + (1 − α)ϕ2) ≥ c.

Now, pick a partition {Ei}k
i=1 ⊆ F and profiles of scalars (r1

i )k
i=1, (r2

i )k
i=1 ⊆ R such
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that ϕ1 = k
i=1 χEi

r1
i and ϕ2 = k

i=2 χEi
r2

i . Fix m ∈ M. Since the partition is in A,

there is a unique jm such that m(Ejm) = 1 and m(Ei) = 0 if i ∕= jm. Therefore,

Im(αϕ1+(1−α)ϕ2) = αr1
jm

+(1−α)r2
jm

= αIm(ϕ1)+(1−α)Im(ϕ2) = αξ1(m)+(1−α)ξ2(m)

Therefore, we can conclude that T (αϕ1 + (1 − α)ϕ2) = αξ1 + (1 − α)ξ2. Then:

Î(αξ1 + (1 − α)ξ2) = I(αξ1 + (1 − α)ξ2) ≥ c

and, therefore, αξ1+(1−α)ξ2 ∈ Uc, showing convexity. Since c was arbitrarily chosen,

we conclude that Î is quasiconcave.

Step 7: Î is monotone continuous Take ξ, ξ′ ∈ B0(DM) and k ∈ R, a monotone

sequence (Dn)n ∈ DM such that Dn ↓ ∅, and assume that Î(ξ) > Î(ξ′). Then,

we can find ϕ, ϕ′ ∈ B0(A) such that ξ = T (ϕ) and T (ϕ′) = ξ′. It follows that

I(ϕ) = Î(ξ) > Î(ξ′) = I(ϕ′). Let En := q−1(Dn) ∈ A and notice that En ↓ ∅.

Therefore, there exists n0 such that I(kEn0ϕ) > I(ϕ′). Since En0 ∈ A, for all m ∈ M,

m(En0) ∈ {0, 1} and

m(En0) = 1 =⇒ kEn0ϕ = k a.e. [m] =⇒ Im(kEn0ϕ) = Im(k) = k

m(En0) = 0 =⇒ kEn0ϕ = ϕ a.e. [m] =⇒ Im(kEn0ϕ) = Im(ϕ) = ξ(m)

Moreover, notice that m(En0) = 1 if and only if m ∈ Dn0 and m(En0) = 0 if and only

if m ∕∈ Dn0 . Therefore, kDn0ξ = T (kEn0ϕ) and we can conclude that Î(kDn0ξ) =

I(kEn0ϕ) > I(ϕ′) = Î(ξ′) as we wanted to show.

(ii) implies (i).

Suppose there exists a normalized, monotone, and continuous functional Î : B0(M, DM) →

R such that for all ϕ ∈ B0(A), I(ϕ) = Î(T (ϕ)).

Step 1: I is normalized.
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Take k ∈ R. Since Î is normalized, we have that Î(k) = k. Moreover, T (k)(m) =

Im(k) = k for all m ∈ M. Therefore, I(k) = Î(T (k)) = Î(k) = k, showing that I is

normalized.

Step 2: I is monotone.

Take ϕ, ϕ′ ∈ B0(A) such that ϕ ≥ ϕ′. For all m ∈ M, Im is monotone and,

therefore, T (ϕ)(m) = Im(ϕ) ≥ Im(ϕ′) = T (ϕ′)(m). But, then, since Î is monotone

I(ϕ) = Î(T (ϕ)) ≥ Î(T (ϕ′)) = I(ϕ′),

showing that I is monotone.

Step 3: If ϕ, ϕ′ ∈ B0(A) and Im(ϕ) ≥ Im(ϕ′) for all m ∈ M, then I(ϕ) ≥ I(ϕ′).

Take any two ϕ, ϕ′ ∈ B0(A) and assume that Im(ϕ) ≥ Im(ϕ′) for all m ∈ M.

Then, T (ϕ) ≥ T (ϕ′) and, therefore, since Î is monotone:

I(ϕ) = Î(T (ϕ)) ≥ Î(T (ϕ′)) = I(ϕ′).

Step 4: I is continuous. Take a sequence (ϕn)n ⊆ B0(A) such that ϕn → ϕ ∈ B0(A)

uniformly. Since for each m ∈ M, Im is Lipschitz continuous, it follows that for all

m, |Im(ϕn) − Im(ϕ)| ≤ ||ϕ − ϕn||∞ so that:

||T (ϕn) − T (ϕ)||∞ ≤ ||ϕ − ϕn||∞ → 0.

Thus, T (ϕn) converges uniformly to T (ϕ) and by Lemma B.9, T (ϕn), T (ϕ) ∈ B0(DM).

Therefore, by continuity of Î, we have that:

I(ϕn) = Î(T (ϕn)) → Î(T (ϕ)) = I(ϕ)

showing that I is continuous.
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Step 5: I is quasiconcave. Suppose Î is quasiconcave. Take ϕ1, ϕ2 ∈ B0(A) and

α ∈ [0, 1]. Since Im is concave, it follows that

Im(αϕ1 + (1 − α)ϕ2) ≥ αIm(ϕ1) + (1 − α)Im(ϕ2)

for all m ∈ M. Therefore, since Î is monotone and quasiconcave,

I(αϕ2 + (1 − α)ϕ2) = Î(T (αϕ1 + (1 − α)ϕ2))

≥ Î(αT (ϕ1) + (1 − α)T (ϕ2))

≥ min{Î(T (ϕ1)), Î(T (ϕ2))} = min{I(ϕ1), I(ϕ2)}

showing that I is quasiconcave.

Step 6: I is monotone continous. Take ϕ, ϕ′ ∈ B0(A) and k ∈ R, a monotone

sequence (En)n ∈ A such that En ↓ ∅, and assume that I(ϕ) > I(ϕ′). Then,

Î(T (ϕ)) = I(ϕ) > I(ϕ′) = Î(T (ϕ′)). Notice that for each n ∈ N, En ∈ A and,

therefore, m(En) ∈ {0, 1} for all m ∈ M. Then, let Dn = {m ∈ M : m(En) > 1
2}

and notice that m ∈ Dn if and only if m(En) = 1 and m ∕∈ Dn if and only if

m(En) = 0. Clearly, Dn is a decreasing sequence of sets. We show that ∩nDn = ∅.

Take any m ∈ M. Since m is countably additive, by continuity of finite measures,

it must be the case that m(En) → 0. However, since m(En) ∈ {0, 1} for all n ∈ N,

this implies that there is a N such that m(En) = 0 for all n > N . This implies that

m ∕∈ En for n > N and, therefore, m ∕∈ ∩nDn. It follows that Dn ↓ ∅. Since Î is

monotone continuous, there exists a n0 such that Î(χDn0
k + χDc

n0
T (ϕ)) > Î(T (ϕ′)).

Finally note that for all m ∈ M,

m ∈ Dn0 =⇒ m(Dn0) = 1 =⇒ Im(χDn0
k + χDc

n0
ϕ) = Im(k) = k

m ∈ Dc
n0 =⇒ m(Dn0) = 0 =⇒ Im(χDn0

k + χDc
n0

ϕ) = Im(ϕ) = T (ϕ)(m).
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Hence, T (χDn0
k + χDc

n0
ϕ) = χDn0

k + χDc
n0

T (ϕ) and, therefore,

I(χDn0
k + χDc

n0
ϕ) = Î(T ((χDn0

k + χDc
n0

ϕ))

= Î(χDn0
k + χDc

n0
T (ϕ))

> Î(T (ϕ′)) = I(ϕ′)

as we wanted to show. 

Appendix E. Proof of Theorem 4

Proof of Theorem 4: We know that  is represented by u when restricted to

constant acts. Define the functional I : B0(G) → R such that for each ϕ ∈ B0(G),

I(ϕ) := u(xfϕ), where fϕ ∈ F is chosen so that ϕ = u(fϕ). By Lemma B.2, such

act fϕ exists for all ϕ ∈ B0(G), while the certainty equivalent xfϕ ∼ fϕ exists by

Lemma B.3. Moreover, for any ϕ ∈ B0(G), if there are two fϕ, f ′
ϕ ∈ F such that

u(fϕ) = ϕ = u(f ′
ϕ), we then have that since u represents  over X,

u(fϕ)(ω) = u(f ′
ϕ)(ω) =⇒ u(fϕ(ω)) = u(f ′

ϕ(ω))

=⇒ fϕ(ω) ∼ f ′
ϕ(ω)

for all ω ∈ Ω. By Axiom 1.(ii) of monotonicity, it follows that fϕ ∼ f ′
ϕ and, by

transitivity, that xfϕ ∼ xf ′
ϕ
. Therefore, we can conclude that u(xfϕ) = u(xf ′

ϕ
),

showing that I is a well-defined functional on B0(G). It is easily seen that such

functional is also normalized, monotone, and continuous.14 Moreover, it is monotone

continuous and its restriction to B0(A) is quasiconcave.

14See for example the proof of Theorem 1 (Omnibus) in the working paper version of Cerreia-Vioglio
et al. (2022).
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Define the function V := I ◦ u : F → R. For all f, f ′ ∈ F ,

f  f ′ ⇐⇒ xf ′  xf ′

⇐⇒ V (f) = I(u(f)) = u(xf ) ≥ u(xf ′) = I(u(f)) = V (f ′) .

This shows that V represents  on F . Moreover, by Proposition 1, for each m ∈ M,

m is represented by Im ◦ u, where Im : B(G) → R is as defined in (12). Moreover,

let IA be the generalized conditional expectation as in Corollary 3. Take now ϕ, ψ ∈

B0(G) such that Im(ϕ) ≥ Im(ψ) for all m ∈ M. By Lemma B.2, we can find

fϕ, fψ ∈ F such that ϕ = u(fϕ) and ψ = u(fψ). Then, Im(u(fϕ)) ≥ Im(u(fψ)) for

all m ∈ M so that fϕ m fψ for all m ∈ M. Consistency implies that fϕ  fψ.

Therefore:

I(ϕ) = I(u(fϕ)) = V (fϕ) ≥ V (fψ) = I(u(fψ)) ≥ I(ψ) .

By this fact and since I is monotone, normalized, continuous, and quasiconcave,

by Lemma B.10, there exists a unique monotone, normalized, continuous, and quasi-

concave functional Î : B0(M, DM) → R such that I(ϕ) = Î(T (ϕ)) for all ϕ ∈ B0(A).

Moreover, since I is monotone continuous, so is Î. By Theorem 21 in Cerreia-

Vioglio et al. (2013), Î admits a unique monotone, normalized, lower semicontinuous,

and quasiconcave extension to B(DM), which, abusing notation, we also denote by

Î. Moreover, since Î is monotone continuous when restricted to B0(DM), it is in-

ner/outer continuous on B(DM). Take now any ϕ ∈ B0(G). Since IA(ϕ) ∈ B(A) and

B0(A) is dense in B(A), we can pick sequences (ψl
n)n∈N, (ψu

n)n∈N ∈ B0(A) such that

ψl
n ↗ IA(ϕ) and ψu

n ↘ IA(ϕ) uniformly. Fix any m ∈ M. Since Im is monotone, we

have that for all n ∈ N:

Im(ψl
n) ≤ Im(IA(ϕ)) ≤ Im(ψu

n) .
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By Proposition 1, we also have that Im(IA(ϕ)) = Im(ϕ) and, therefore, we have that

for all n ∈ N,

Im(ψl
n) ≤ Im(ϕ) ≤ Im(ψu

n)

for all m ∈ M. By what shown above, we have that for all n ∈ N:

Î(T (ψl
n)) = I(ψl

n) ≤ I(ϕ) ≤ I(ψu
n) ≤ I(T (ψl

u)).

Since Im is monotone and Lipschitz, we have that T (ψl
n) ↑ T (IA(ϕ)) = T (ϕ) and

T (ψu
n) ↓ T (IA(ϕ)) = T (ϕ). Then, since Î is inner/outer continuous, passing to the

limit in the above sequence of inequality, we obtain:

Î(T (ϕ)) = lim
n

Î(T (ψl
n)) ≤ I(ϕ) ≤ lim Î(T (ψl

u)) = Î(T (ϕ)).

This shows that I(ϕ) = Î(T (ϕ)) for all ϕ ∈ B0(G). It follows that for all f, g ∈ F ,

f  g ⇐⇒ I(u(f)) ≥ I(u(g)) ⇐⇒ Î(T (u(f))) ≥ Î(T (u(g))).



Proof of Proposition 5: Let 1 and 2 Suppose that 1 and 2 are two mis-

specification averse preferences represented respectively by (Î1, u1, c1) and (Î2, u2, c2)

as in Theorem 4. Suppose that u1 = u2 = u and that Î1 ≤ Î2. Take any f ∈ F(A)

and x ∈ X and assume that f 1 x. Since f is measurable with respect to A, for

each m ∈ M, f must be constant on Em and, therefore coherence and normalziation

imply:

I1(u(f), m) = I1 (u(f)χEm , m) = u(f |Em) = I2 (u(f)χEm , m) = I2(u(f), m).
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Then, we have that:

u(x) ≤ Î1 (I1(u(f), ·)) ≤ Î2 (I1(u(f), ·)) = Î2 (I2(u(f), ·))

so that f 2 x.

As for the other direction, equation (9) and nontriviality automatically imply that

u2 is a positive affine transformation of u1. Assume that u1 = u2 = u and take

ξ ∈ B0(DM). Then, by Lemmas B.9 and B.2, there exists f ∈ F(A) such that ξ =

I1(u(f), ·). By the same argument given above, it is also the case that ξ = I2(u(f), ·).

Take x ∈ X such that f ∼1 x. Then, condition (9) implies that f 2 x. Therefore:

Î1(ξ) = Î1(I1(u(f), ·)) = u(x) ≤ Î2(I2(u(f), ·)) = Î2(ξ).

Thus, Î1 ≤ Î2 on B0(DM). Since this set is dense in B(DM), we can find a monoton-

ically decreasing sequence (ξn)n ⊆ B0(DM) such that ξn ↘ ξ. Then, Î1(ξn) ≤ Î2(ξn)

for all n ∈ N. Since Î is inner/outer continuous, passing to the limit we can conclude

that Î1(ξ) ≤ Î2(ξ). 

E.1. Proof of Theorems 6 and 7. In this section we prove the general represen-

tation in Theorem 6. We start with the following lemma.

Lemma B.12: Suppose  is a misspecification averse preference whose restriction

to F(A) satisfies Savage’s P2-P6. There exist a non-constant, affine, and surjective

ũ : X → R, a strictly increasing φ : R → R, and a non-atomic ν ∈ ∆σ(Ω, A) such

that for all f, g ∈ F(A),

f  g ⇐⇒ φ−1


Ω
φ(ũ(f))dν


≥ φ−1



Ω
φ(ũ(g))dν


.

Moreover, ν is unique, ũ is unique up to positive affine transformations, and φ is

unique up to positive affine transformations given ũ.
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Proof of Lemma B.12: Since when restricted to acts measurable with respect

to A,  satisfies the Axioms of Savage (1954) and monotone continuity, there exist a

non-constant function v : X → R and a non-atomic probability measure ν ∈ ∆σ(Ω, A)

such that for all f, f ′ ∈ F(A):

f  f ′ ⇐⇒


Ω
v(f)dν ≥



Ω
v(f ′)dν.

Clearly, v represents  on X. By Herstein and Milnor (1953), there exists an affine

ũ : X → R representing  on X. Since  is unbounded, the argument in the

proof of Proposition 1 shows that u must be surjective. Then, there exists a strictly

increasing trasformation φ : R → R such that v = φ ◦ u. Now, Take any k, k′ ∈ Im φ

and λ ∈ (0, 1). Then, we can find xk, xk′ ∈ X such that φ(k) = φ(u(xk)) and

φ(k′) = φ(u(xk′)). Since ν is non-atomic, we can pick Eλ ∈ A such that ν(Eλ) = λ.

Then, fλ := xkEλxk′ ∈ F(A) and, by Lemma B.3, we can find xfλ
∈ X such that

xfλ
∼ fλ. Clearly, both fλ and xfλ

are measurable with respect to A. Therefore:

λφ(k) + (1 − λ)φ(k′), = ν(Eλ)φ(u(xk)) + ν(Ω \ Eλ)φ(u(xk′))

=


Ω
φ(u(fλ))dν

=


Ω
φ(u(xfλ

))dν

= φ(u(xfλ
)) ∈ Im φ .

Thus, φ : R → R is strictly increasing and has a convex image. It follows that φ is

continuous.

The uniqueness of the representation follows by standard arguments. 

Lemma B.13: Suppose (Ω, G, M) is a structured space and there exist a utility

function u : X → R, a convex statistical distance c : ∆ × M → [0, ∞], a strictly

increasing and continuous function φ : Im u → R and a prior µ ∈ ∆σ(M, DM) such
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that  is represented on F by



M
φ (Im(u(f))) dµ(m)

where Im is defined as in (5). Then, there exists a probability measure ν ∈ ∆σ(Ω, A)

such that the restriction of  to F(A) is represented by



Ω
φ(u(f))dν.

Moreover, ν is nonatomic if µ is nonatomic.

Proof of Lemma B.13: Suppose the premise holds and define the following

measure: for all A ∈ A,

ν(A) =


M
m(A)dµ(m)

and notice that ν ∈ ∆σ(Ω, A) and ν(Ω0) = 1. Moreover, for all D ∈ DM, since

m ∈ D =⇒ m ({ω ∈ Ω : q(ω) ∈ D}) ≥ m ({ω ∈ Ω : q(ω) = m}) = 1,

m ∕∈ D =⇒ m ({ω ∈ Ω : q(ω) ∈ D}) ≤ 1 − m ({ω ∈ Ω : q(ω) = m}) = 0

then,

ν ◦ q−1(D) = ν ({ω ∈ Ω : q(ω) ∈ D})

=


M
m({ω ∈ Ω : q(ω) ∈ D}) dµ(m)

=


D
m({ω ∈ Ω : q(ω) ∈ D}) dµ(m) +



M\D
m({ω ∈ Ω : q(ω) ∈ D}) dµ(m)

=


D
1dµ(m) = µ(D).
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Therefore, for any ψ ∈ B0(Ω, A), we have that



M
φ (Im(ψ)) dµ(m) =



M
φ (Im(ψ)) d(ν ◦ q−1)(m)

=


Ω0
φ


Iq(ω)(ψ)


dν(ω)

=


Ω
φ (IA(ψ)(ω)) dν(ω)

=


Ω
φ (ψ) dν.

where we apply the change of variable formula and IA is the generalized common

conditional expectation of (Im)m∈M given A of Corollary 3. It follows that for all

f, g ∈ A, f  f if and only if



Ω
φ(u(f))dν ≥



Ω
φ(u(g))dν.

as we wanted to show.

Furthermore, assume that µ is notatomic. We show that also ν is non-atomic. To

this end, take E ∈ A such that ν(A) > 0. Then, there exists by Lemma B.9 a set

DE ∈ DM such that Im(χE) = χDE
(m) for all m ∈ M. Then,

µ(DE) =


M
χDE

(m)dµ(m) =


M
Im(χE)dµ(m) =



M
m(E)dµ(m) = ν(E) > 0

where we use the fact that m(E) ∈ {0, 1} for all m ∈ M. Since µ is nonatomic, there

exists a subset D0 ⊆ DE in DM such that 0 < µ(D0) < µ(DE). Again by Lemma

B.9, we can find ED0 ∈ A such that χD0(m) = Im(χED0 ) for all m ∈ M. Then, let

E0 := E ∩ ED0 ⊆ E. We have that for all m ∈ M,

χD0 = χD0 χDE
= Im(χED0 ) Im(χE) = Im(χE0)
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where again we use Lemma B.1. Therefore,

ν(E0) =


M
m(E0)dµ(m) =



M
Im(χE0)dµ(m) =



M
χD0dµ(m) = µ(D0)

so that 0 < ν(E0) < ν(E), proving that ν is nonatomic. 

Proof of Theorem 6: (i) implies (ii).

We know that  is represented by u when restricted to constant acts. Define the

functional I : B0(G) → R such that for each ϕ ∈ B0(G), I(ϕ) := u(xfϕ), where fϕ ∈ F

is chosen so that ϕ = u(fϕ). By Lemma B.2, such act fϕ exists for all ϕ ∈ B0(G),

while the certainty equivalent xfϕ ∼ fϕ exists by Lemma B.3. Moreover, for any

ϕ ∈ B0(G), if there are two fϕ, f ′
ϕ ∈ F such that u(fϕ) = ϕ = u(f ′

ϕ), we then have

that since u represents  over X,

u(fϕ)(ω) = u(f ′
ϕ)(ω) =⇒ u(fϕ(ω)) = u(f ′

ϕ(ω))

=⇒ fϕ(ω) ∼ f ′
ϕ(ω)

for all ω ∈ Ω. By Axiom 1.(ii) of monotonicity, it follows that fϕ ∼ f ′
ϕ and, by

transitivity, that xfϕ ∼ xf ′
ϕ
. Therefore, we can conclude that

I(ϕ) = u(xfϕ) = u(xf ′
ϕ
) = I(f ′

ϕ)

showing that I is a well-defined functional on B0(G). It is easily seen that such

functional is also normalized, monotone, and continuous.15

Define the function V := I ◦ u : F → R. For all f, f ′ ∈ F ,

f  f ′ ⇐⇒ xf ′  xf ′

⇐⇒ V (f) = I(u(f)) = u(xf ) ≥ u(xf ′) = I(u(f)) = V (f ′) .

15See for example the proof of Theorem 1 (Omnibus) in the working paper version of Cerreia-Vioglio
et al. (2022).
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This shows that V represents  on F . Moreover, by Proposition 1, for each m ∈ M,

m is represented by Im ◦ u, where Im : B(G) → R is as defined in (12). Moreover,

let IA be the generalized conditional expectation from Corollary 3. Take now ϕ, ψ ∈

B0(G) such that Im(ϕ) ≥ Im(ψ) for all m ∈ M. By Lemma B.2, we can find

fϕ, fψ ∈ F such that ϕ = u(fϕ) and ψ = u(fψ). Then, Im(u(fϕ)) ≥ Im(u(fψ)) for

all m ∈ M so that fϕ m fψ for all m ∈ M. Consistency implies that fϕ  fψ.

Therefore:

I(ϕ) = I(u(fϕ)) = V (fϕ) ≥ V (fψ) = I(u(fψ)) ≥ I(ψ) .

Moreover, by Lemma B.12, there exist an unbounded and affine ũ : X → R,

a strictly increasing φ : R → R, and a non-atomic ν ∈ ∆σ(Ω, A) such that the

restriction of  to F(A) is represented by the functional:

f → φ−1


Ω
φ(ũ(f))dν


.

Moreover, since Ω \ Ω0 is null, ν(Ω \ Ω0) = 0. Without loss of generality, we can

assume that ũ = u and normalize φ(0) = 0 and φ(1) = 1. Now, define the map

J : B(A) → R such that

J(ϕ) = φ−1


Ω
φ(ϕ)dν



for all ϕ ∈ B(A). Since φ is continuous and strictly increasing, J is well-defined,

normalized, and continuous. Moreover, for all f, g ∈ F(A),

f  g ⇐⇒ J(u(f)) ≥ J(u(g)) .

Moreover, take any ϕ ∈ B0(A). By Lemma B.2, we can choose fϕ ∈ F(A) such that

ϕ = u(fϕ) = fϕ. Then, since both V and J ◦ u represent  on F(A),

I(ϕ) = I(u(fϕ)) = V (fϕ) = u(xfϕ) = J (u(fϕ)) = J(ϕ) .
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We conclude that I(ϕ) = J(ϕ) for all ϕ ∈ B0(A). Take now any ϕ ∈ B0(G). Since

IA(ϕ) ∈ B(A) and B0(A) is dense in B(A), we can pick sequences (ψl
n)n∈N, (ψu

n)n∈N ∈

B0(A) such that ψl
n ↗ IA(ϕ) and ψu

n ↘ IA(ϕ) uniformly. Fix any m ∈ M. Since Im

is monotone, we have that for all n ∈ N:

Im(ψl
n) ≤ Im(IA(ϕ)) ≤ Im(ψu

n) .

By Proposition 1, we also have that Im(IA(ϕ)) = Im(ϕ) and, therefore, we have that

for all n ∈ N,

Im(ψl
n) ≤ Im(ϕ) ≤ Im(ψu

n) .

Since m was chosen arbitrarily, this holds for all m ∈ M. This and the fact that I

and J coincide on B0(A) imply that for all n ∈ N:

J(ψl
n) = I(ψl

n) ≤ I(ϕ) ≤ I(ψu
n) = J(ψu

n)

Passing to the limit and using the fact that J is continuous, we obtain that:

J(IA(ϕ)) ≤ I(ϕ) ≤ J(IA(ϕ)) .

That is:

I(ϕ) = J(IA(ϕ))

= φ−1


Ω
φ (IA(ϕ)) ν(dω̃)



= φ−1


Ω0
φ


min
p∈∆



Ω
ϕ dp + c(p, q(ω̃))


ν(dω̃)


.

Finally, since q0 = q|Ω0 is a measurable transformation from (Ω0, A0) to (M, DM),

define the image measure µ := ν ◦ q−1
0 ∈ ∆σ(M, DM). Then, by Theorem 16.23 in
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Billingsley (1995):

I(ϕ) = φ−1


Ω0
φ


min
p∈∆



Ω
ϕ dp + c(p, q(ω̃))


dν(ω̃)



= φ−1


M
φ


min
p∈∆



Ω
ϕ dp + c(p, q(ω̃))


d(ν ◦ q−1)(m)



= φ−1


M
φ


min
p∈∆



Ω
ϕ dp + c(p, m)


dµ(m)


.

But, then,  is represented on F by

V (f) = I(u(f)) = φ−1


M
φ


min
p∈∆



Ω
u(f) dp + c(p, m)


dµ(m)



as we wanted to show. Next, we show that if χD = T (χE) for E ∈ A and D ∈ DM,

then ν(E) = µ(D). Indeed,

φ−1(ν(E)) = φ−1


Ω0
φ(χE)dν



= J(χED) = J(IA(χE)) = I(χE)

= φ−1


M
φ (I(χE, m)) dµ(m)



= φ−1


M
φ (χD) dµ(m)



= φ−1(µ(D)).

and since φ−1 is strictly increasing, this implies that ν(E) = µ(D). We now show

that µ is nonatomic. Take D ∈ DM such that µ(D) > 0. By Lemma B.9, there exists

ED ∈ A such that χD = T (χED). Therefore, by what shown above, ν(ED) = µ(D) >

0. Since ν is nonatomic, we can find E0 ∈ A such that E0 ⊆ ED and νE0 > 0. By

Lemma B.9, we can find DE0 ∈ DM such that χDE0
= T (χE0). Suppose m ∈ DE0 .

Then, I(χE0 , m) = 1 and since E0 ∈ A, it must be the case that m(E0) = 1. Since

E0 ⊆ ED, m(ED) = 1 and, therefore, χD(m) = I(χED , m) = 1, so that m ∈ D.

This shows that DE0 ⊆ D. Moreover, by what shows above µ(DE0) = ν(E0) > 0.
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This shows that µ is non-atomic. It only remains to show that φ is concave. Take

r1, r2 ∈ R and α = 1/2. Since ν is nonatomic, we can find E such that ν(E) = 1/2.

Moreover, we can pick x1, x2 ∈ X such that r1 = u(x1) and r2 = u(x2). Then:

J(u(x1Ex2)) = φ−1


Ω
φ (u(x1Ex2)) dν



= φ−1
1

2φ(r1) + 1
2φ(r2)



= φ−1


Ω
φ (u(x2Ex1)) dν


= J(u(x2Ex1)).

Thus, x1Ex2 ∼ x2Ex1. Since  satisfies uncertainty aversion, it follows that

1
2x1 + 1

2x2 = 1
2x1Ex2 + 1

2x2Ex1  x1Ex2

and, therefore, since φ is increasing:

φ
1

2r1 + 1
2r2


= φ


J


u

1
2x1 + 1

2x2



≥ φ (J (u (x1Ex2)))

= 1
2φ(r1) + 1

2φ(r2).

This shows that φ is midpoint concave. Since it is also strictly increasing on the

interval R, we conclude it is concave.

Uniqueness follows by standard arguments.

(ii) implies (i). It is clear that  satisfies Axioms 1-5 are satisfied. Moreover, by

Lemma B.13, there exists a nonatomic probability measure ν ∈ ∆σ(Ω, A such that

the restriction of  to F(A) is represented by the functional



Ω
φ(u(f))dν.

This implies that  satisfies Savage (1954)’s P2-P6 when restricted to F(A). 
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Proof of Theorem 7: (i) implies (ii). We know that there exists an affine

u : X → R and a normalized, monotone, continuous, and quasiconcave functional

I : B0(G) → R such that  is represented by I ◦ u on F . By Proposition 1, we know

that for each m ∈ M, there exists Im given as in (5) such that Im ◦ u represents m

on F . By consistency, we also know that for all ϕ, ψ ∈ B0(G), Im(ϕ) ≥ Im(ψ) for

all m ∈ M implies that I(ϕ) ≥ I(ψ). Therefore, by Proposition B.11, there exists a

unique normalized, monotone, and continuous Î : B0(DM) such that Î(I(ϕ, ·)) = I(ϕ)

for all ϕ ∈ B0(G). Moreover, Î is quasiconcave and monotone continuous. Take

ξ ∈ B0(DM). By Lemma B.9, we can find a ϕ ∈ B0(A) such that ξ = T (ϕ) and

f ∈ B0(G) such that ϕ = u(f). Notice that since there exists a K such that ξ(m) ≥ K

for all m ∈ M, r0 := infm∈M ξ(m) ≥ K and, therefore, r0 ∈ R. Pick r > r0. Then, we

can find x0, x ∈ X such that r0 = u(x0) and r = u(x). Take a sequence (αn) ∈ (0, 1)

such that αn ↓ 0 and let xn = αnx + (1 − αn)x0. Fix any n ∈ N. By affinity of u,

u(xn) = αnu(x)+(1−αn)u(x0) = αnr+(1−αn)r0 > r0 = inf
m∈M

ξ(m) = inf
m∈M

I(u(f), m).

Therefore, there exists mn ∈ M such that u(xn) > I(u(f), mn). This implies that

xn ≻m f and, therefore, Caution implies that xn  f . That is,

αnr + (1 − αn)r0 = u(xn) ≥ I(u(f)) = I(ϕ) = Î(ξ).

This holds for all n ∈ N and passing to the limit, we obtain r0 ≥ Î(ξ). On the

other hand, we have that for all m ∈ M, r0 = infm′∈M ξ(m′) ≤ ξ(m) and, therefore,

since Î is normalized and monotone, r0 = Î(r0) ≤ Î(ξ). It follows that Î(ξ) = r0 =

infm∈M ξ(m). Therefore, Î. Now, for all ξ, ξ′ ∈ B(DM,

Î(ξ) − Î(ξ′) = inf
m∈M

ξ(m) − inf
m∈M

ξ′(m) ≤ inf
m∈M

(ξ(m) − ξ(m)).



77

Thus, Î is a niveloid, and it is, therefore, Lipschitz continuous. It follows that it admits

a unique, monotone, and continuous extension to B(DM), wich, abusing notation, we

also denote Î. Then, pick any ξ ∈ B(DM). Since B0(DM) is dense in B(DM), we can

find two sequences (ξu
n)n, (ξl

n)n such that ξu
n ↘ ξ and ξl

n ↗ ξ. Since Î is monotone,

we have that for all n ∈ N, ξl
n ≤ ξ ≤ ξu

n and, therefore,

Î(ξl
n) = inf

m∈M
ξl

n(m) ≤ inf
m∈M

ξ(m) ≤ inf
m∈M

ξu
n(m) = Î(ξu

n).

Since Î is continuous, passing to the limit, we obtain that Î(ξ) = infm∈M ξ. Therefore,

we have that for all ϕ ∈ B0(G),

Î(I(ϕ, ·)) = inf
m∈M

min
p∈∆(G)



Ω
ϕdp + c(p, m)

= inf
p∈∆(G)

inf
m∈M



Ω
ϕdp + c(p, m)

= inf
p∈∆(G)



Ω
ϕdp + inf

m∈M
c(p, m).

Suppose that in addition M is closed and  satisfies. Fix any ϕ ∈ B(G). Take any

r ∈ R and pick f ∈ F and xr ∈ X such that ϕ = u(f) and r = u(xr). Then:

{m ∈ M : I(ϕ, m) ≤ r} = {m ∈ M : Im(u(f)) ≤ u(xr)}

= {m ∈ M : xr m f}

and the latter is closed by axiom. Therefore, m → I(ϕ, m) is lower semicontinuous.

Therefore, the functional Ĩϕ : ∆(G × M → R defined as Ĩϕ(p, m) := I(ϕ, m) −


Ω ϕdp

is lower semicontinuous in (p, m). Then, since

c(p, m) = sup
ϕ∈B0(G)


I(ϕ, m) −



Ω
ϕdp


= sup

ϕ∈B0(G)
Ĩϕ(p, m)

for all (p, m) ∈ ∆ × M and by the theorem of the maximum (see Aliprantis and

Border (2007), Lemma 17.29), we can conclude that c is lower semicontinuous in
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(p, m). Then applyin Aliprantis and Border (2007), Lemma 17.30 twice, we obtain

that infm∈M c(·, m) = minm∈M c(·, m) is lower semicontinuous and, therefore,

Î(I(ϕ, ·)) = inf
p∈∆(G)



Ω
ϕdp + inf

m∈M
c(p, m)

= min
p∈∆(G)



Ω
ϕdp + min

m∈M
c(p, m).

Since ϕ ∈ B0(G) was arbitrarily chosen, we conclude that this holds everywhere on

B0(G). Therefore, for all f, g ∈ F ,

f  g ⇐⇒ I(u(f)) ≥ I(u(g))

⇐⇒ Î(I(u(f), ·)) ≥ Î(I(u(g), ·))

⇐⇒ min
p∈∆(G)



Ω
u(f)dp + min

m∈M
c(p, m) ≥ min

p∈∆(G)



Ω
u(g)dp + min

m∈M
c(p, m)

as we wanted to show. 


