When Conflict is a Political Strategy: A Model of Diversionary Incentives

Melika Liporace Tilburg University

EEA ESEM 2024, Rotterdam

November 2022

Introduction

How can diversionary conflict exist?

Diversionary conflict:

- Use of external force when domestic unrest
- Wars are costly → optimal?
- Diversion and patriotism → "behavioral" agents?

Introduction

How can diversionary conflict exist if no agent is behavioral?

Diversionary conflict:

- Use of external force when domestic unrest
- Wars are costly → optimal?
- Diversion and patriotism → "behavioral" agents?

Introduction

How can diversionary conflict exist if no agent is behavioral?

Diversionary conflict:

- Use of external force when domestic unrest
- Wars are costly → optimal?
- Diversion and patriotism → "behavioral" agents?

Why does it matter?

- To understand root of inefficient political actions
- To formalize a concept extensively discussed in political science
- To give new meaning to famous historical events

- Propose new mechanism:
 - Ousting leader more costly during conflict
 - ★ Weakens country's international position
 - ★ Relies on the enemy being a threat (objective or subjective)
 - Formalized through a very simple game
 - ★ Two players; complete and perfect information

- Propose new mechanism:
 - Ousting leader more costly during conflict
 - ★ Weakens country's international position
 - ★ Relies on the enemy being a threat (objective or subjective)
 - Formalized through a very simple game
 - ★ Two players; complete and perfect information
- Justify rally around the flag reactions:
 - Rally = advertising you don't like your enemy → gets more threatening
 - ▶ Rally = commitment device to avoid further escalation of conflict

- Propose new mechanism:
 - Ousting leader more costly during conflict
 - ★ Weakens country's international position
 - ★ Relies on the enemy being a threat (objective or subjective)
 - Formalized through a very simple game
 - ★ Two players; complete and perfect information
- Justify rally around the flag reactions:
 - Rally = advertising you don't like your enemy → gets more threatening
 - ▶ Rally = commitment device to avoid further escalation of conflict
- Prove existence of diversionary incentive:
 - Leader can initiate conflict only to gain popular support about conflict

- Propose new mechanism:
 - Ousting leader more costly during conflict
 - ★ Weakens country's international position
 - ★ Relies on the enemy being a threat (objective or subjective)
 - Formalized through a very simple game
 - ★ Two players; complete and perfect information
- Justify rally around the flag reactions:
 - Rally = advertising you don't like your enemy → gets more threatening
 - Rally = commitment device to avoid further escalation of conflict
- Prove existence of diversionary incentive:
 - Leader can initiate conflict only to gain popular support about conflict
- Study long-run effects:
 - Barriers to rebellion opportunities to keep peace

Literature

Diversionary Theory of War

- Principles: Bodin and Tooley (1955), Mayer (1969)
- FPA: either tested or assumed (Hagan 2017, for review)
- Microeconomic insights:
 - Information:
 - ★ Microfoundation: signaling (Richards et al. 1993, ...)
 - ★ Incorporated in international relations models (Tarar 2006; Gent 2009)
 - ▶ Rally effects:
 - ★ Incorporated in bargaining model (Arena and Bak 2013).
 - ★ Microfoundation:
 → this paper!

Literature

Diversionary Theory of War

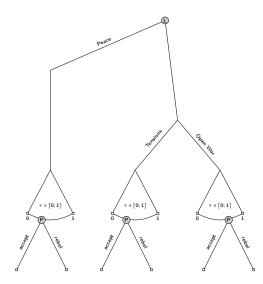
- Principles: Bodin and Tooley (1955), Mayer (1969)
- FPA: either tested or assumed (Hagan 2017, for review)
- Microeconomic insights:
 - Information:
 - ★ Microfoundation: signaling (Richards et al. 1993, ...)
 - ★ Incorporated in international relations models (Tarar 2006; Gent 2009)
 - Rally effects:
 - ★ Incorporated in bargaining model (Arena and Bak 2013).
 - **★** Microfoundation: → this paper!

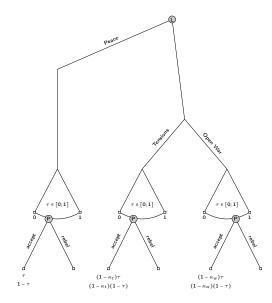
Theory of Conflict:

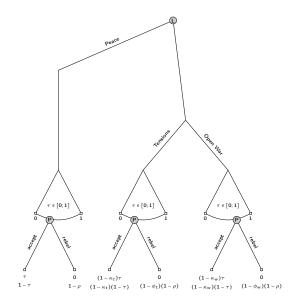
- Rationalist Explanation for War (Fearon 1995)
 - → Agency Problems (Jackson and Morelli 2011)

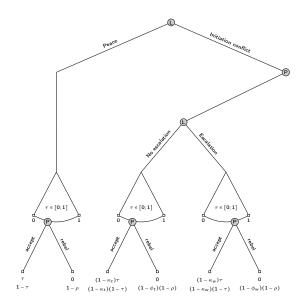
Outline

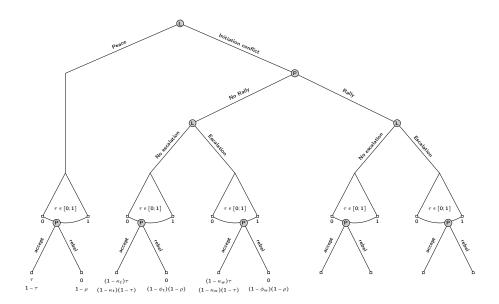
- Introduction
- Setup
- Equilibrium
- 4 Diversionary Incentive
- **5** Long Run Effects

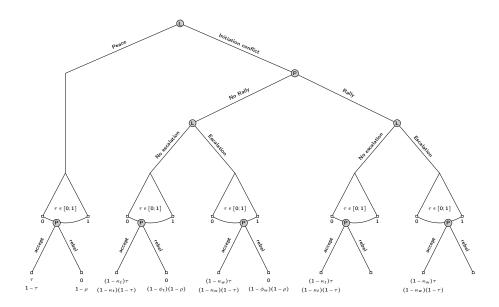

• Two players: leader (she) and population (they)


- Two players: leader (she) and population (they)
- Actions:
 - Leader:
 - ★ Foreign policy (peace, tension or open war)
 - ★ Domestic policy (tax rate $\tau \in [0,1]$)


- Two players: leader (she) and population (they)
- Actions:
 - Leader:
 - ★ Foreign policy (peace, tension or open war)
 - ★ Domestic policy (tax rate $\tau \in [0,1]$)
 - Population:
 - ★ Support foreign policy (rally) or not
 - * Accept domestic policy, or rebel


- Two players: leader (she) and population (they)
- Actions:
 - Leader:
 - ★ Foreign policy (peace, tension or open war)
 - ★ Domestic policy (tax rate $\tau \in [0,1]$)
 - Population:
 - ★ Support foreign policy (rally) or not
 - * Accept domestic policy, or rebel
- Payoffs:
 - Interior product normalized to 1
 - Tax is a transfer


- Two players: leader (she) and population (they)
- Actions:
 - Leader:
 - ★ Foreign policy (peace, tension or open war)
 - ★ Domestic policy (tax rate $\tau \in [0,1]$)
 - Population:
 - ★ Support foreign policy (rally) or not
 - * Accept domestic policy, or rebel
- Payoffs:
 - Interior product normalized to 1
 - Tax is a transfer
 - Conflict has a cost: κ_t or κ_w
 - Rebellion has a cost: ρ or ρ'
 - Forfeiting has a cost: ϕ_t or ϕ_w





Theorem 1

There are 4 possible outcomes: peace, (unsupported) war, unsupported tensions and supported tensions.

Theorem 1

There are 4 possible outcomes: peace, (unsupported) war, unsupported tensions and supported tensions.

- War occurs iff $\kappa_w < \bar{\kappa}_w$; and $\kappa_w \kappa_t < \bar{\kappa}_w \bar{\kappa}_t$; and either $\kappa_w \kappa_t < \underline{\kappa}_w \underline{\kappa}_t$, or $r_\phi \ge r_\rho$.
- Supported tensions occur iff $\underline{\kappa}_w \underline{\kappa}_t \le \kappa_w \kappa_t < \overline{\kappa}_w \overline{\kappa}_t$; and $r_\phi < r_\rho$; and $\kappa_t < \underline{\kappa}_t + \rho' \rho$.
- Unsupported tensions occur iff $\kappa_t < \bar{\kappa}_t$; and $\kappa_w \kappa_t \ge \bar{\kappa}_w \bar{\kappa}_t$.
- Peace occurs iff $\kappa_w \geq \bar{\kappa}_w$; and $\kappa_t \geq \bar{\kappa}_t$; and either $\kappa_t \geq \underline{\kappa}_t + \rho' \rho$, or $r_\phi \geq r_\rho$, or $\kappa_w \kappa_t < \underline{\kappa}_w \underline{\kappa}_t$, or $\kappa_w \kappa_t \geq \bar{\kappa}_w \bar{\kappa}_t$.

Where:

•
$$\kappa_t = \phi_t (1 - \rho')$$

•
$$\bar{\kappa}_t = \phi_t (1 - \rho)$$

•
$$r_{\rho} = \frac{1-\rho'}{1-\rho}$$

•
$$\underline{\kappa}_w = \phi_w (1 - \rho')$$

•
$$\bar{\kappa}_w = \phi_w (1 - \rho)$$

- (i) Both low- and high- level conflicts occur in equilibrium
- (ii) In equilibrium, the population can indeed rally around the flag.

- (i) Both low- and high- level conflicts occur in equilibrium
- (ii) In equilibrium, the population can indeed rally around the flag.
- (i) Mechanism → conflicts; can be seen as diversionary conflicts.

- (i) Both low- and high- level conflicts occur in equilibrium
- (ii) In equilibrium, the population can indeed rally around the flag.
- (i) Mechanism → conflicts; can be seen as diversionary conflicts.
- (ii) Rally around the flag are thus rational.

 They avoid escalation, so Pareto improvement.

- An increase in ϕ_t , ϕ_w tends to:
 - increase occurrence of conflict
 - increase extractive power in case of conflict

 \rightarrow bad!

- An increase in ϕ_t , ϕ_w tends to:
 - increase occurrence of conflict
 - increase extractive power in case of conflict
- \rightarrow bad!

- An increase in κ_t , κ_w tends to:
 - decrease occurrence of conflict
 - increase deadweightloss in case of conflict

→ generally good!

- An increase in ϕ_t , ϕ_w tends to:
 - increase occurrence of conflict
 - increase extractive power in case of conflict
- \rightarrow bad!

- An increase in κ_t , κ_w tends to:
 - decrease occurrence of conflict
 - increase deadweightloss in case of conflict
- → generally good!

- An increase in ρ , ρ' tends to:
 - ... have ambiguous effects
 - ρ = 0 rarely optimal; peace impossible if $\kappa < \phi$
 - even ρ' optimal level ambiguous

→ ... depends...

Definition

A leader initiates conflict because of a diversionary incentive when:

- the leader anticipates the public to support it; and
- the leader would not have initiated it, were it not supported by the public.

Definition

A leader initiates conflict because of a diversionary incentive when:

- the leader anticipates the public to support it; and
- the leader would not have initiated it, were it not supported by the public.

Corollary 1

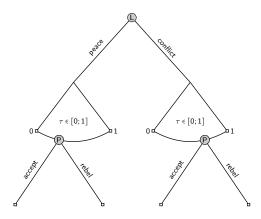
A diversionary incentive emerges when:

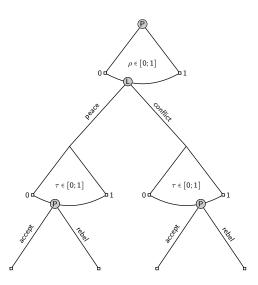
- The leader initiates conflict: $\kappa_t < \underline{\kappa}_t \rho' + \rho$.
- 2 Support can credibly be anticipated: $\underline{\kappa}_w \underline{\kappa}_t \le \kappa_w \kappa_t < \overline{\kappa}_w \overline{\kappa}_t$ and $r_\phi < r_\rho$.
- **3** Neither conflict would be initiated otherwise: $\kappa_t \geq \bar{\kappa}_t$ and $\kappa_w \geq \bar{\kappa}_w$.

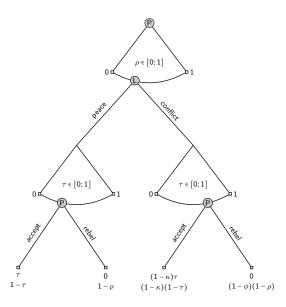
Theorem 2

There exists a non-zero measure parameter space \mathcal{D} for which the leader has a diversionary incentive to initiate conflict.

Theorem 2


There exists a non-zero measure parameter space \mathcal{D} for which the leader has a diversionary incentive to initiate conflict.


Proof: Consider \mathcal{D}' defined as follows:


$$\mathcal{D}' = \left\{ (\kappa_t, \kappa_w, \phi_t, \phi_w, \rho, \rho') : \forall (x, \epsilon) \in \mathcal{E}, \begin{array}{l} \rho = x; & \phi_t = x + \epsilon_2; & \kappa_t = x + \epsilon_4; \\ \rho' = x + \epsilon_1; & \phi_w = x + \epsilon_3; & \kappa_w = x + \epsilon_5; \end{array} \right\}$$
 where
$$\mathcal{E} = \left\{ (x, \epsilon) \in (0, 1)^6 : \begin{array}{l} 1 - x > \epsilon_4 + \epsilon_1 > \epsilon_5 > \epsilon_4 + (1 - \epsilon_1)(\epsilon_3 - \epsilon_2) \\ \epsilon_5 > \epsilon_3 > \frac{3}{2}\epsilon_1 + \epsilon_2 \end{array} \right.$$
 and
$$\min\{t, \frac{1}{3}\} > x \text{ with } t = \frac{\sqrt{(\epsilon_1 + \epsilon_2)^2 + 4(\epsilon_1 + \epsilon_3 - \epsilon_5 - \epsilon_1 \epsilon_3) - (\epsilon_1 + \epsilon_2)}}{2} \right\}$$

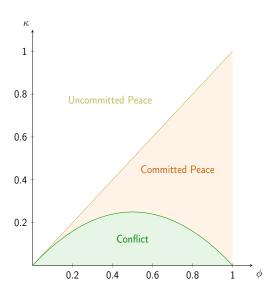
Because \mathcal{E} has positive measure, so does \mathcal{D}' .

We then verify that $\mathcal{D}' \subseteq \mathcal{D}$.

Theorem 3

There are 3 equilibrium outcomes: uncommitted peace, committed peace and conflict.

- Uncommitted peace occurs iff $\kappa \ge \phi$.
- Committed peace occurs iff $\phi > \kappa > \phi(1 \phi)$.
- Conflict occurs iff $\kappa \leq \phi(1-\phi)$.


Theorem 3

There are 3 equilibrium outcomes: uncommitted peace, committed peace and conflict.

- Uncommitted peace occurs iff $\kappa \ge \phi$.
- Committed peace occurs iff $\phi > \kappa > \phi(1 \phi)$.
- Conflict occurs iff $\kappa \leq \phi(1-\phi)$.

- (i) Conflicts occur despite perfectly flexible commitment means;
- (ii) Strength of foreign threat non-monotonically linked with conflict;
- (iii) Commitment positively linked with strength of foreign threat.

Possible Outcomes

- An increase in ϕ has a:
 - non-monotonic effect on social efficiency
 - negative effect on population's payoff
 - discontinuous piecewise positive effect on leader's payoff
 - lacktriangle at the threshold, decreasing ϕ is a Pareto improvement

- An increase in ϕ has a:
 - non-monotonic effect on social efficiency
 - negative effect on population's payoff
 - discontinuous piecewise positive effect on leader's payoff
 - \blacktriangleright at the threshold, decreasing ϕ is a Pareto improvement
- An increase in κ has a:
 - positive effect on social efficiency
 - positive effect on population's payoff
 - discontinuous piecewise negative effect on leader's payoff
 - at the threshold, increasing κ is a Pareto improvement

- An increase in ϕ has a:
 - non-monotonic effect on social efficiency
 - negative effect on population's payoff
 - discontinuous piecewise positive effect on leader's payoff
 - at the threshold, decreasing ϕ is a Pareto improvement
- An increase in κ has a:
 - positive effect on social efficiency
 - positive effect on population's payoff
 - discontinuous piecewise negative effect on leader's payoff
 - \blacktriangleright at the threshold, increasing κ is a Pareto improvement

Furthermore: decreasing ρ can be socially inefficient!

Conclusion

This paper:

- Proposes new mechanism:
 - Rebellion more costly during conflict because of the enemy's threat
 - Challenges idea that diversionary wars target less challenging rivals
- Justifies rally around the flag reactions:
 - ▶ Rally = commitment device
- Proves existence of diversionary incentive:
 - Non-zero measure set of parameters
- Studies long-run effects:
 - Conflict still occur
 - Barriers to rebellion grow with threatening environment

Further research: empirical implementation?

Thank you!

16 / 16

Bibliography

Philip Arena and Daehee Bak. Diversionary incentives, rally effects, and crisis bargaining. Foreign Policy Analysis, 2013.

Jean Bodin and Michael J Tooley. Six books of the commonwealth, volume 56. B. Blackwell Oxford, 1955.

James D Fearon, Rationalist explanations for war, International organization, 49(03):379-414, 1995.

Stephen E Gent. Scapegoating strategically: Reselection, strategic interaction, and the diversionary theory of war. *International Interactions*, 35(1): 1–29, 2009.

Joe D Hagan. Diversionary theory of war in foreign policy analysis. In Oxford Research Encyclopedia of Politics. 2017.

Matthew O Jackson and Massimo Morelli. The reasons for wars: an updated survey. The Handbook on the Political Economy of War, page 34, 2011.

Arno J Mayer. Internal causes and purposes of war in europe, 1870-1956: A research assignment. The Journal of Modern History, pages 292–303, 1969.

Diana Richards, Clifton T Morgan, Rick K Wilson, Valerie L Schwebach, and Garry D Young. Good times, bad times, and the diversionary use of force a tale of some not-so-free agents. *Journal of Conflict Resolution*, 37(3):504–535, 1993.

Ahmer Tarar. Diversionary incentives and the bargaining approach to war. International Studies Quarterly, 50(1):169-188, 2006.