Implied Volatility Surface Dynamics: from Parameter-Driven to Observation-Driven Models and Beyond

Xia Zou,^(a) Yicong Lin,^(a) André Lucas^(a)

(a) Vrije Universiteit Amsterdam and Tinbergen Institute

August 27, 2024

▶ ★ 臣 ▶ ★ 臣 ▶

< □ > < 四

ж

• Modeling the dynamics in the Implied Volatilities (IV) surface: common factors.

- A typical approach for the dynamics in factors: state-space framework (parameter driven).
- Challenge: state-space models beyond the linear Gaussian is computationally expensive.
- An alternative: score-driven approach (observation-driven) with an explicit expression for the likelihood function.

- Modeling the dynamics in the Implied Volatilities (IV) surface: common factors.
- A typical approach for the dynamics in factors: state-space framework (parameter driven).
- Challenge: state-space models beyond the linear Gaussian is computationally expensive.
- An alternative: score-driven approach (observation-driven) with an explicit expression for the likelihood function.

- Modeling the dynamics in the Implied Volatilities (IV) surface: common factors.
- A typical approach for the dynamics in factors: state-space framework (parameter driven).
- Challenge: state-space models beyond the linear Gaussian is computationally expensive.
- An alternative: score-driven approach (observation-driven) with an explicit expression for the likelihood function.

- Modeling the dynamics in the Implied Volatilities (IV) surface: common factors.
- A typical approach for the dynamics in factors: state-space framework (parameter driven).
- Challenge: state-space models beyond the linear Gaussian is computationally expensive.
- An alternative: score-driven approach (observation-driven) with an explicit expression for the likelihood function.

Image: A image: A

- Koopman et al. (2016) in a univariate framework: point forecasts and density forecasts based on simple score-driven models perform similarly to their state-space counterpart.
- Koopman et al. (2017) in a multivariate framework:
 - Point forecasts: comparable performance.
 - Density forecasts: much worse performance of score-driven models.
- We explore the origins of this difference in a multivariate framework between the two model classes in more detail.
- Koopman et al. (2017): by assuming the error terms in the score-driven have an equicorrelation structure, the performances become more comparable.

▶ < ⊒ ▶

- Koopman et al. (2016) in a univariate framework: point forecasts and density forecasts based on simple score-driven models perform similarly to their state-space counterpart.
- Koopman et al. (2017) in a multivariate framework:
 - Point forecasts: comparable performance.
 - Density forecasts: much worse performance of score-driven models.
- We explore the origins of this difference in a multivariate framework between the two model classes in more detail.
- Koopman et al. (2017): by assuming the error terms in the score-driven have an equicorrelation structure, the performances become more comparable.

▶ < ∃ ▶</p>

- Koopman et al. (2016) in a univariate framework: point forecasts and density forecasts based on simple score-driven models perform similarly to their state-space counterpart.
- Koopman et al. (2017) in a multivariate framework:
 - Point forecasts: comparable performance.
 - Density forecasts: much worse performance of score-driven models.
- We explore the origins of this difference in a multivariate framework between the two model classes in more detail.
- Koopman et al. (2017): by assuming the error terms in the score-driven have an equicorrelation structure, the performances become more comparable.

▶ < ∃ ▶</p>

- Koopman et al. (2016) in a univariate framework: point forecasts and density forecasts based on simple score-driven models perform similarly to their state-space counterpart.
- Koopman et al. (2017) in a multivariate framework:
 - Point forecasts: comparable performance.
 - Density forecasts: much worse performance of score-driven models.
- We explore the origins of this difference in a multivariate framework between the two model classes in more detail.
- Koopman et al. (2017): by assuming the error terms in the score-driven have an equicorrelation structure, the performances become more comparable.

▶ < ∃ >

- Koopman et al. (2016) in a univariate framework: point forecasts and density forecasts based on simple score-driven models perform similarly to their state-space counterpart.
- Koopman et al. (2017) in a multivariate framework:
 - Point forecasts: comparable performance.
 - Density forecasts: much worse performance of score-driven models.
- We explore the origins of this difference in a multivariate framework between the two model classes in more detail.
- Koopman et al. (2017): by assuming the error terms in the score-driven have an equicorrelation structure, the performances become more comparable.

- We pinpoint the origin of performance difference in the state-space and the score-driven framework: a (too) restrictive assumption on the covariance structure of the measurement noise.
- We introduce a simple adaptation of the measurement equation in the score-driven model
 → comparable density forecast performance of score-driven models with their state-space
 counterparts.
- After closing the performance gap, the score-driven approach can easily be adapted to accommodate non-Gaussian features, without any complication to the ML estimation and inference procedures.

▶ < ∃ ▶</p>

- We pinpoint the origin of performance difference in the state-space and the score-driven framework: a (too) restrictive assumption on the covariance structure of the measurement noise.
- We introduce a simple adaptation of the measurement equation in the score-driven model
 → comparable density forecast performance of score-driven models with their state-space
 counterparts.
- After closing the performance gap, the score-driven approach can easily be adapted to accommodate non-Gaussian features, without any complication to the ML estimation and inference procedures.

▶ < ∃ ▶</p>

- We pinpoint the origin of performance difference in the state-space and the score-driven framework: a (too) restrictive assumption on the covariance structure of the measurement noise.
- We introduce a simple adaptation of the measurement equation in the score-driven model
 → comparable density forecast performance of score-driven models with their state-space
 counterparts.
- After closing the performance gap, the score-driven approach can easily be adapted to accommodate non-Gaussian features, without any complication to the ML estimation and inference procedures.

▶ < ∃ >

- We apply our findings to model the dynamics of IV surfaces of S&P500 index options using data from January 2010 to December 2022.
- We find that a linear Gaussian state-space model outperforms a plain-vanilla score-driven model by a large margin, both in terms of density fit, and Value-at-Risk (VaR) violation rates.
- After adapting the score-driven model with the adjusted covariance structure for the measurement errors, the score-driven model behaves roughly at par with the state-space model.
- Adding Student *t* error terms to the score-driven model even increases the density fit beyond that of its state-space counterpart.

→ < ∃→

- We apply our findings to model the dynamics of IV surfaces of S&P500 index options using data from January 2010 to December 2022.
- We find that a linear Gaussian state-space model outperforms a plain-vanilla score-driven model by a large margin, both in terms of density fit, and Value-at-Risk (VaR) violation rates.
- After adapting the score-driven model with the adjusted covariance structure for the measurement errors, the score-driven model behaves roughly at par with the state-space model.
- Adding Student *t* error terms to the score-driven model even increases the density fit beyond that of its state-space counterpart.

▶ < ∃ ▶</p>

- We apply our findings to model the dynamics of IV surfaces of S&P500 index options using data from January 2010 to December 2022.
- We find that a linear Gaussian state-space model outperforms a plain-vanilla score-driven model by a large margin, both in terms of density fit, and Value-at-Risk (VaR) violation rates.
- After adapting the score-driven model with the adjusted covariance structure for the measurement errors, the score-driven model behaves roughly at par with the state-space model.
- Adding Student *t* error terms to the score-driven model even increases the density fit beyond that of its state-space counterpart.

- We apply our findings to model the dynamics of IV surfaces of S&P500 index options using data from January 2010 to December 2022.
- We find that a linear Gaussian state-space model outperforms a plain-vanilla score-driven model by a large margin, both in terms of density fit, and Value-at-Risk (VaR) violation rates.
- After adapting the score-driven model with the adjusted covariance structure for the measurement errors, the score-driven model behaves roughly at par with the state-space model.
- Adding Student *t* error terms to the score-driven model even increases the density fit beyond that of its state-space counterpart.

Image: A image: A

Xia Zou (VU & TI)

August 27, 2024

▶ ★ 臣 ▶ ★ 臣 ▶

< □ > < 同

7 / 20

ж

ssume that IV_t evolves as follows: $IV_t = M_t\beta_t + \varepsilon_t, \qquad \varepsilon_t \sim h(\varepsilon_t \mid H_t; \vartheta),$ $\beta_{t+1} = (I - B) \ \theta + B \ \beta_t + \varepsilon_t$

- ullet We gather all static parameters of the model into a vector ψ that needs to be estimated.
- This set-up accommodates both a state-space and a score-driven framework, depending on our choice of ξ_t.

We assume that IV_t evolves as follows:

$$egin{aligned} & m{lV}_t = m{M}_teta_t + arepsilon_t, & arepsilon_t \sim h\left(arepsilon_t \mid m{H}_t;artheta
ight), \ & m{eta}_{t+1} = \left(m{l} - m{B}
ight) m{ heta} + m{B} m{eta}_t + m{\xi}_t &, \end{aligned}$$

- ullet We gather all static parameters of the model into a vector ψ that needs to be estimated.
- This set-up accommodates both a state-space and a score-driven framework, depending on our choice of ξ_t.

We assume that IV_t evolves as follows:

$$egin{aligned} & m{lV}_t = m{M}_teta_t + arepsilon_t, & arepsilon_t \sim h\left(arepsilon_t \mid m{H}_t;artheta
ight), \ & m{eta}_{t+1} = \left(m{I} - m{B}
ight) \, m{ heta} + m{B} \, m{eta}_t + m{\xi}_t \end{aligned}$$

- ullet We gather all static parameters of the model into a vector ψ that needs to be estimated.
- This set-up accommodates both a state-space and a score-driven framework, depending on our choice of ξ_t.

We assume that IV_t evolves as follows:

$$egin{aligned} & m{lV}_t = m{M}_teta_t + arepsilon_t, & arepsilon_t \sim h\left(arepsilon_t \mid m{H}_t;artheta
ight), \ & m{eta}_{t+1} = \left(m{I} - m{B}
ight) m{ heta} + m{B}m{eta}_t + m{\xi}_t \end{aligned}$$

- ullet We gather all static parameters of the model into a vector ψ that needs to be estimated.
- This set-up accommodates both a state-space and a score-driven framework, depending on our choice of ξ_t.

• Linear Gaussian state-space : $(\varepsilon_t^{\top}, \boldsymbol{\xi}_t^{\top})^{\top}$ is normally distributed.

Estimation

$$\ell(\boldsymbol{\psi}) = -\frac{1}{2} \sum_{t=1}^{T} \left(\ln |2\pi \boldsymbol{F}_t| + \left(\boldsymbol{I} \boldsymbol{V}_t - \boldsymbol{I} \boldsymbol{V}_{t|t-1} \right)^{\top} \boldsymbol{F}_t^{-1} \left(\boldsymbol{I} \boldsymbol{V}_t - \boldsymbol{I} \boldsymbol{V}_{t|t-1} \right) \right).$$

Score-driven framework: ξ_t is chosen as the derivative (with respect to β_t) of the log predictive density of IV_t.

Estimation

$$\begin{split} \boldsymbol{\xi}_t &= \boldsymbol{A} \; (\boldsymbol{M}_t^\top \boldsymbol{H}_t^{-1} \boldsymbol{M}_t)^{-1} \boldsymbol{M}_t^\top \boldsymbol{H}_t^{-1} \boldsymbol{\varepsilon}_t, \\ \ell(\boldsymbol{\psi}) &= -\frac{1}{2} \sum_{t=1}^T \left(\ln |2\pi \boldsymbol{H}_t| + \boldsymbol{\varepsilon}_t^\top \boldsymbol{H}_t^{-1} \boldsymbol{\varepsilon}_t \right), \end{split}$$

• Linear Gaussian state-space : $(\varepsilon_t^{\top}, \xi_t^{\top})^{\top}$ is normally distributed.

Estimation

$$\ell(\boldsymbol{\psi}) = -rac{1}{2} \sum_{t=1}^{T} \left(\ln |2\pi \boldsymbol{F}_t| + \left(\boldsymbol{I} \boldsymbol{V}_t - \boldsymbol{I} \boldsymbol{V}_{t|t-1}
ight)^{ op} \boldsymbol{F}_t^{-1} \left(\boldsymbol{I} \boldsymbol{V}_t - \boldsymbol{I} \boldsymbol{V}_{t|t-1}
ight)
ight).$$

Score-driven framework: ξ_t is chosen as the derivative (with respect to β_t) of the log predictive density of IV_t.

Estimation

$$\begin{split} \boldsymbol{\xi}_t &= \boldsymbol{A} \; (\boldsymbol{M}_t^\top \boldsymbol{H}_t^{-1} \boldsymbol{M}_t)^{-1} \boldsymbol{M}_t^\top \boldsymbol{H}_t^{-1} \boldsymbol{\varepsilon}_t, \\ \ell(\boldsymbol{\psi}) &= -\frac{1}{2} \sum_{t=1}^T \left(\ln |2\pi \boldsymbol{H}_t| + \boldsymbol{\varepsilon}_t^\top \boldsymbol{H}_t^{-1} \boldsymbol{\varepsilon}_t \right), \end{split}$$

イロト 不得下 イヨト イヨト

• Linear Gaussian state-space : $(\varepsilon_t^{\top}, \xi_t^{\top})^{\top}$ is normally distributed.

Estimation

$$\ell(\psi) = -rac{1}{2} \sum_{t=1}^{T} \left(\ln |2\pi F_t| + \left(IV_t - IV_{t|t-1}
ight)^{ op} F_t^{-1} \left(IV_t - IV_{t|t-1}
ight)
ight).$$

Score-driven framework: ξ_t is chosen as the derivative (with respect to β_t) of the log predictive density of *IV_t*.

Estimation

$$\begin{split} \boldsymbol{\xi}_t &= \boldsymbol{A} \; (\boldsymbol{M}_t^\top \boldsymbol{H}_t^{-1} \boldsymbol{M}_t)^{-1} \boldsymbol{M}_t^\top \boldsymbol{H}_t^{-1} \boldsymbol{\varepsilon}_t, \\ \ell(\boldsymbol{\psi}) &= -\frac{1}{2} \sum_{t=1}^T \left(\ln |2\pi \boldsymbol{H}_t| + \boldsymbol{\varepsilon}_t^\top \boldsymbol{H}_t^{-1} \boldsymbol{\varepsilon}_t \right), \end{split}$$

• Linear Gaussian state-space : $(\varepsilon_t^{\top}, \xi_t^{\top})^{\top}$ is normally distributed.

Estimation

$$\ell(\psi) = -rac{1}{2} \sum_{t=1}^{T} \left(\ln |2\pi F_t| + \left(IV_t - IV_{t|t-1}
ight)^{ op} F_t^{-1} \left(IV_t - IV_{t|t-1}
ight)
ight).$$

Score-driven framework: ξ_t is chosen as the derivative (with respect to β_t) of the log predictive density of *IV_t*.

Estimation

$$\begin{split} \boldsymbol{\xi}_t &= \boldsymbol{\mathsf{A}} \; (\boldsymbol{\mathsf{M}}_t^\top \boldsymbol{\mathsf{H}}_t^{-1} \boldsymbol{\mathsf{M}}_t)^{-1} \boldsymbol{\mathsf{M}}_t^\top \boldsymbol{\mathsf{H}}_t^{-1} \boldsymbol{\varepsilon}_t, \\ \ell(\boldsymbol{\psi}) &= -\frac{1}{2} \sum_{t=1}^{\mathcal{T}} \left(\ln |2\pi \boldsymbol{\mathsf{H}}_t| + \boldsymbol{\varepsilon}_t^\top \boldsymbol{\mathsf{H}}_t^{-1} \boldsymbol{\varepsilon}_t \right), \end{split}$$

9 / 20

• Consider a typical specification with diagonal error covariance matrix H_t .

• Assume the DGP to be a state-space model and fit a score-driven model to it:

The true error:

$$IV_{t}^{\text{ssf}} - \widehat{IV}_{t}^{\text{sd}} = \varepsilon_{t} + M_{t} \xi_{t}^{\text{ssf}} + M_{t} \left((I - B) \left(\theta - \hat{\theta} \right) + B \left(\beta_{t-1}^{\text{ssf}} - \widehat{\beta^{\text{sd}}}_{t-1} \right) \right),$$

- The first component has an uncorrelated covariance structure.
- The final term is typically small given the good forecast performance of score-driven models even for a state-space DGP. (see Koopman et al., 2016).
- It is the second term that results in a cross-correlated prediction errors, which contrasts with the assumed uncorrelated structure.

- Consider a typical specification with diagonal error covariance matrix H_t .
- Assume the DGP to be a state-space model and fit a score-driven model to it:

The true error:

$$IV_{t}^{\text{ssf}} - \widehat{IV}_{t}^{\text{sd}} = \varepsilon_{t} + M_{t} \xi_{t}^{\text{ssf}} + M_{t} \left((I - B) \left(\theta - \hat{\theta} \right) + B \left(\beta_{t-1}^{\text{ssf}} - \widehat{\beta^{\text{sd}}}_{t-1} \right) \right)$$

- The first component has an uncorrelated covariance structure.
- The final term is typically small given the good forecast performance of score-driven models even for a state-space DGP. (see Koopman et al., 2016).
- It is the second term that results in a cross-correlated prediction errors, which contrasts with the assumed uncorrelated structure.

- Consider a typical specification with diagonal error covariance matrix H_t .
- Assume the DGP to be a state-space model and fit a score-driven model to it:

The true error:

$$\mathcal{W}_{t}^{\mathrm{ssf}} - \widehat{\mathcal{W}}_{t}^{\mathrm{sd}} = \varepsilon_{t} + \mathcal{M}_{t} \xi_{t}^{\mathrm{ssf}} + \mathcal{M}_{t} \left((\mathbf{I} - \mathbf{B}) \left(\theta - \hat{\theta} \right) + \mathbf{B} \left(eta_{t-1}^{\mathrm{ssf}} - \widehat{eta^{\mathrm{sd}}}_{t-1}
ight) \right)$$

- The first component has an uncorrelated covariance structure.
- The final term is typically small given the good forecast performance of score-driven models even for a state-space DGP. (see Koopman et al., 2016).
- It is the second term that results in a cross-correlated prediction errors, which contrasts with the assumed uncorrelated structure.

- Consider a typical specification with diagonal error covariance matrix H_t .
- Assume the DGP to be a state-space model and fit a score-driven model to it:

The true error:

$$\mathcal{W}_{t}^{\mathrm{ssf}} - \widehat{\mathcal{W}}_{t}^{\mathrm{sd}} = \varepsilon_{t} + \mathcal{M}_{t} \boldsymbol{\xi}_{t}^{\mathrm{ssf}} + \mathcal{M}_{t} \left((\mathbf{I} - \boldsymbol{B}) \left(\theta - \hat{ heta}
ight) + \boldsymbol{B} \left(eta_{t-1}^{\mathrm{ssf}} - \widehat{eta^{\mathrm{sd}}}_{t-1}
ight)
ight),$$

- The first component has an uncorrelated covariance structure.
- The final term is typically small given the good forecast performance of score-driven models even for a state-space DGP. (see Koopman et al., 2016).
- It is the second term that results in a cross-correlated prediction errors, which contrasts with the assumed uncorrelated structure.

Adjusted measurement equation

 $IV_t = M_t \beta_t + \varepsilon_t, \qquad \varepsilon_t \sim h\left(\varepsilon_t \mid H_t + M_t C M_t^{\top}, \vartheta\right),$

- In our single level factor example above, the adjusted measurement equation induces an equicorrelation structure.
- This explains the huge improvements in density fit that Koopman et al. (2017) find when imposing equicorrelation structures.
- Our approach above can, however, also be used for richer factor structures.

Adjusted measurement equation

 $IV_t = M_t eta_t + arepsilon_t, \qquad arepsilon_t \sim h\left(arepsilon_t \mid H_t + M_t C M_t^ op, artheta
ight),$

- In our single level factor example above, the adjusted measurement equation induces an equicorrelation structure.
- This explains the huge improvements in density fit that Koopman et al. (2017) find when imposing equicorrelation structures.
- Our approach above can, however, also be used for richer factor structures.

Adjusted measurement equation

 $oldsymbol{IV}_t = oldsymbol{M}_teta_t + oldsymbol{arepsilon}_t, \qquad oldsymbol{arepsilon}_t \sim h\left(oldsymbol{arepsilon}_t \mid oldsymbol{H}_t + oldsymbol{M}_toldsymbol{C}oldsymbol{M}_t^ op, artheta
ight),$

- In our single level factor example above, the adjusted measurement equation induces an equicorrelation structure.
- This explains the huge improvements in density fit that Koopman et al. (2017) find when imposing equicorrelation structures.
- Our approach above can, however, also be used for richer factor structures.

Adjusted measurement equation

 $oldsymbol{IV}_t = oldsymbol{M}_teta_t + oldsymbol{arepsilon}_t, \qquad oldsymbol{arepsilon}_t \sim h\left(oldsymbol{arepsilon}_t \mid oldsymbol{H}_t + oldsymbol{M}_toldsymbol{C}oldsymbol{M}_t^ op, artheta
ight),$

- In our single level factor example above, the adjusted measurement equation induces an equicorrelation structure.
- This explains the huge improvements in density fit that Koopman et al. (2017) find when imposing equicorrelation structures.
- Our approach above can, however, also be used for richer factor structures.

글 제 제 글 제

Adjusted measurement equation

 $IV_t = M_t eta_t + arepsilon_t, \qquad arepsilon_t \sim h\left(arepsilon_t \mid oldsymbol{H}_t + M_t oldsymbol{C} M_t^ op, artheta
ight),$

- In our single level factor example above, the adjusted measurement equation induces an equicorrelation structure.
- This explains the huge improvements in density fit that Koopman et al. (2017) find when imposing equicorrelation structures.
- Our approach above can, however, also be used for richer factor structures.

글 제 제 글 제

Xia Zou (VU & TI)

• • = • • = •

< □ > < 同

э

- Practitioners have long tried to fit linear parametric models to the cross-section of implied volatility at a point in time, linking IV to time-to-maturity and moneyness,
 e.g. Andreou et al. (2010), Dumas et al. (1998), Goncalves and Guidolin (2006), and Pena et al. (1999).
- Goncalves and Guidolin (2006): simple model linear in coefficients and nonlinear in moneyness and time-to-maturity achieves a good fit to the IV surface of S&P 500 index options.
- To illustrate our main findings, we also employ the simple 5 factor models of Goncalves and Guidolin (2006) to the IV surface of S&P 500 index options.
- For robustness checks, we also consider a more flexible factor presentation that includes a nonparametric factor.

- Practitioners have long tried to fit linear parametric models to the cross-section of implied volatility at a point in time, linking IV to time-to-maturity and moneyness,
 e.g. Andreou et al. (2010), Dumas et al. (1998), Goncalves and Guidolin (2006), and Pena et al. (1999).
- Goncalves and Guidolin (2006): simple model linear in coefficients and nonlinear in moneyness and time-to-maturity achieves a good fit to the IV surface of S&P 500 index options.
- To illustrate our main findings, we also employ the simple 5 factor models of Goncalves and Guidolin (2006) to the IV surface of S&P 500 index options.
- For robustness checks, we also consider a more flexible factor presentation that includes a nonparametric factor.

- Practitioners have long tried to fit linear parametric models to the cross-section of implied volatility at a point in time, linking IV to time-to-maturity and moneyness,
 e.g. Andreou et al. (2010), Dumas et al. (1998), Goncalves and Guidolin (2006), and Pena et al. (1999).
- Goncalves and Guidolin (2006): simple model linear in coefficients and nonlinear in moneyness and time-to-maturity achieves a good fit to the IV surface of S&P 500 index options.
- To illustrate our main findings, we also employ the simple 5 factor models of Goncalves and Guidolin (2006) to the IV surface of S&P 500 index options.
- For robustness checks, we also consider a more flexible factor presentation that includes a nonparametric factor.

- Practitioners have long tried to fit linear parametric models to the cross-section of implied volatility at a point in time, linking IV to time-to-maturity and moneyness,
 e.g. Andreou et al. (2010), Dumas et al. (1998), Goncalves and Guidolin (2006), and Pena et al. (1999).
- Goncalves and Guidolin (2006): simple model linear in coefficients and nonlinear in moneyness and time-to-maturity achieves a good fit to the IV surface of S&P 500 index options.
- To illustrate our main findings, we also employ the simple 5 factor models of Goncalves and Guidolin (2006) to the IV surface of S&P 500 index options.
- For robustness checks, we also consider a more flexible factor presentation that includes a nonparametric factor.

Image: A image: A

Parametric factor specification

$$IV_t(m, au) = M_t eta_t + arepsilon_t,$$

- $IV_t(m, \tau)$ is a q_t -dimensional vector
- $\pmb{M}_t = (\pmb{m}_1, \pmb{m}_2, \dots, \pmb{m}_{q_t})$ is a matrix $(q_t \times 5)$ with $\pmb{m}_j = (1, m_j, m_j^2, au_j, m_j au_j)'$
- $oldsymbol{eta}_t$ is vector of latent factors (5 imes 1),
- $arepsilon_t$ is the disturbance $(q_t imes 1$),
- q_t is the number of option contracts at time t.

- We use a dataset comprising European call options on the S&P 500 index, encompassing all call and put options traded on the Chicago Board Option Exchange (CBOE).
- We follow van der Wel et al. (2016) to filter option contracts.
- We restrict our analysis to out-of-the-money options, defined by a Δ less than 0.5 in absolute value.
- We exclude observations characterized by time-to-maturity periods exceeding 360 days or shorter than 7 days.
- Options with implied volatilities greater than 0.7 and option prices below 0.05 are omitted from the dataset to mitigate the effect of potential data errors.

• • = • • = •

- We use a dataset comprising European call options on the S&P 500 index, encompassing all call and put options traded on the Chicago Board Option Exchange (CBOE).
- We follow van der Wel et al. (2016) to filter option contracts.
- We restrict our analysis to out-of-the-money options, defined by a Δ less than 0.5 in absolute value.
- We exclude observations characterized by time-to-maturity periods exceeding 360 days or shorter than 7 days.
- Options with implied volatilities greater than 0.7 and option prices below 0.05 are omitted from the dataset to mitigate the effect of potential data errors.

- We use a dataset comprising European call options on the S&P 500 index, encompassing all call and put options traded on the Chicago Board Option Exchange (CBOE).
- We follow van der Wel et al. (2016) to filter option contracts.
- We restrict our analysis to out-of-the-money options, defined by a Δ less than 0.5 in absolute value.
- We exclude observations characterized by time-to-maturity periods exceeding 360 days or shorter than 7 days.
- Options with implied volatilities greater than 0.7 and option prices below 0.05 are omitted from the dataset to mitigate the effect of potential data errors.

- We use a dataset comprising European call options on the S&P 500 index, encompassing all call and put options traded on the Chicago Board Option Exchange (CBOE).
- We follow van der Wel et al. (2016) to filter option contracts.
- We restrict our analysis to out-of-the-money options, defined by a Δ less than 0.5 in absolute value.
- We exclude observations characterized by time-to-maturity periods exceeding 360 days or shorter than 7 days.
- Options with implied volatilities greater than 0.7 and option prices below 0.05 are omitted from the dataset to mitigate the effect of potential data errors.

э.

- We use a dataset comprising European call options on the S&P 500 index, encompassing all call and put options traded on the Chicago Board Option Exchange (CBOE).
- We follow van der Wel et al. (2016) to filter option contracts.
- We restrict our analysis to out-of-the-money options, defined by a Δ less than 0.5 in absolute value.
- We exclude observations characterized by time-to-maturity periods exceeding 360 days or shorter than 7 days.
- Options with implied volatilities greater than 0.7 and option prices below 0.05 are omitted from the dataset to mitigate the effect of potential data errors.

Image: A image: A

э.

- We compare the performance of the linear Gaussian state-space and socre-driven models in forecasting out-of-sample IV, both statistically and economically.
- For the score-driven models, we consider four variants: normal and student-t distributions without and with adjusted measurements, of which we denote as $GAS(\mathcal{N}), GAS(\mathcal{D}, \mathcal{N}), GAS(t)$, and $GAS(\mathcal{D}, t)$ respectively.

- We compare the performance of the linear Gaussian state-space and socre-driven models in forecasting out-of-sample IV, both statistically and economically.
- For the score-driven models, we consider four variants: normal and student-t distributions without and with adjusted measurements, of which we denote as $GAS(\mathcal{N}), GAS(\mathcal{D}, \mathcal{N}), GAS(t)$, and $GAS(\mathcal{D}, t)$ respectively.

Table 1:STATISTICAL ACCURACY MEASURES FOR VARIOUS ESTIMATORS OF THEIMPLIED VOLATILITY SURFACE:OUT-OF-SAMPLE

Model	MSE ($\times 10^3$)	MAE ($\times 10^3$)	loglik ($ imes 10^{-3}$)	AIC ($\times 10^{-3}$)	# Pars
		Whole sample:	2012-2022		
State Space	2.83	33.21	1557.45	-3114.86	16
$GAS(\mathcal{N})$	2.81	32.90***	1203.19	-2406.35	16
$GAS(\boldsymbol{\varSigma},\mathcal{N})$	2.88**	33.99***	1555.56	-3111.08	21
GAS(t)	2.86	33.36	1551.76	-3103.49	17
$GAS(\boldsymbol{\varSigma},t)$	2.97***	34.59	1926.21	-3852.38	22
Static Model	6.00***	53.37***			

Note: Diebold and Mariano test is conducted with the state space model as a benchmark on MSE and MAE, and the null hypothesis is that both models are equally accurate.

Xia Zou (VU & TI)

э

Difference in the state-space and score-driven models

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 August 27, 2024

We compare the VaR forecasts for the equally-weighted average implied volatility of S&P 500 options.

 Table 2:
 Out-of-sample evaluation for 99%
 Value-at-Risk Estimation

Vi	olation ratio ($ imes 10^2$	²) Tickloss ($\times 10^3$)
The	whole period: 201	.2-2022
State Space	0.04	3.68
$GAS(\mathcal{N})$	41.07	9.99***
$GAS(\boldsymbol{\varSigma},\mathcal{N})$	0.04	5.16***
GAS(t)	50.88	14.60***
$GAS(\boldsymbol{\Sigma},t)$		6.14***

▶ < ⊒ ▶

We compare the VaR forecasts for the equally-weighted average implied volatility of S&P 500 options.

Violation ratio ($\times 10^2$) Tickloss ($\times 10^3$)The whole period: 2012-2022State Space0.043.68CAS(A())0.043.68
The whole period: 2012-2022 State Space 0.04 3.68 CAS(A()) 41.07 0.00***
State Space 0.04 3.68 CAS(A()) 41.07 0.00***
GAS(N) 41.07 9.99
$GAS(\boldsymbol{\varSigma},\mathcal{N})$ 0.04 5.16^{***}
GAS(t) 50.88 14.60***
$GAS(\Sigma, t)$ 0.00 6.14^{***}

Table 2: Out-of-sample evaluation for 99% Value-at-Risk Estimation

▶ < ⊒ ▶

- We compare state-space and score-driven models for option implied volatility surface dynamics.
- We find that point forecasts of both models behave similarly, but density forecasts of the plain-vanilla score-driven model are substantially worse.
- We show how a simple adjustment of the measurement density of the score-driven model can put both models back on an equal footing.
- After this correction, the score-driven model can easily be extended with non-Gaussian features without complicating parameter estimation, unlike its state-space counterpart.

э

- We compare state-space and score-driven models for option implied volatility surface dynamics.
- We find that point forecasts of both models behave similarly, but density forecasts of the plain-vanilla score-driven model are substantially worse.
- We show how a simple adjustment of the measurement density of the score-driven model can put both models back on an equal footing.
- After this correction, the score-driven model can easily be extended with non-Gaussian features without complicating parameter estimation, unlike its state-space counterpart.

- We compare state-space and score-driven models for option implied volatility surface dynamics.
- We find that point forecasts of both models behave similarly, but density forecasts of the plain-vanilla score-driven model are substantially worse.
- We show how a simple adjustment of the measurement density of the score-driven model can put both models back on an equal footing.
- After this correction, the score-driven model can easily be extended with non-Gaussian features without complicating parameter estimation, unlike its state-space counterpart.

Image: A test in te

э.

- Andreou, Panayiotis C, Chris Charalambous, and Spiros H Martzoukos (2010). "Generalized parameter functions for option pricing". In: *Journal of Banking & Finance* 34.3, pp. 633–646.
- Dumas, Bernard, Jeff Fleming, and Robert E Whaley (1998). "Implied volatility functions: Empirical tests". In: Journal of Finance 53.6, pp. 2059–2106.
- Goncalves, Silvia and Massimo Guidolin (2006). "Predictable dynamics in the S&P 500 index options implied volatility surface". In: *Journal of Business* 79.3, pp. 1591–1635.
- Koopman, Siem Jan, André Lucas, and Marcel Scharth (2016). "Predicting time-varying parameters with parameter-driven and observation-driven models". In: *Review of Economics and Statistics* 98.1, pp. 97–110.
- Koopman, Siem Jan, André Lucas, and Marcin Zamojski (2017). "Dynamic term structure models with score-driven time-varying parameters: estimation and forecasting". In: Narowdy Bank Polski, NBP Working Paper No. 258.
- Pena, Ignacio, Gonzalo Rubio, and Gregorio Serna (1999). "Why do we smile? On the determinants of the implied volatility function". In: *Journal of Banking & Finance* 23.8, pp. 1151–1179.

van der Wel, Michel, Sait R Ozturk, and Dick van Dijk (2016). "Dynamic Factor Models for the Volatility Surface". In: *Dynamic Factor Models*. Vol. 35. Emerald Group Publishing Limited, pp. 127–174.