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Motivation

Modeling the dynamics in the Implied Volatilities (IV) surface: common factors.

A typical approach for the dynamics in factors: state-space framework (parameter driven).

Challenge: state-space models beyond the linear Gaussian is computationally expensive.

An alternative: score-driven approach (observation-driven) with an explicit expression for
the likelihood function.
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Motivation

Koopman et al. (2016) in a univariate framework: point forecasts and density forecasts
based on simple score-driven models perform similarly to their state-space counterpart.

Koopman et al. (2017) in a multivariate framework:

Point forecasts: comparable performance.
Density forecasts: much worse performance of score-driven models.

We explore the origins of this difference in a multivariate framework between the two
model classes in more detail.

Koopman et al. (2017): by assuming the error terms in the score-driven have an
equicorrelation structure, the performances become more comparable.
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Contributions

We pinpoint the origin of performance difference in the state-space and the score-driven
framework: a (too) restrictive assumption on the covariance structure of the
measurement noise.

We introduce a simple adaptation of the measurement equation in the score-driven model
→ comparable density forecast performance of score-driven models with their state-space
counterparts.

After closing the performance gap, the score-driven approach can easily be adapted to
accommodate non-Gaussian features, without any complication to the ML estimation and
inference procedures.
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Empirical Study

We apply our findings to model the dynamics of IV surfaces of S&P500 index options
using data from January 2010 to December 2022.

We find that a linear Gaussian state-space model outperforms a plain-vanilla score-driven
model by a large margin, both in terms of density fit, and Value-at-Risk (VaR) violation
rates.

After adapting the score-driven model with the adjusted covariance structure for the
measurement errors, the score-driven model behaves roughly at par with the state-space
model.

Adding Student t error terms to the score-driven model even increases the density fit
beyond that of its state-space counterpart.
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Standard state-space and score-driven models

We model log implied volatilities IVt ∈ Rqt for t = 1, . . . ,T , over a grid of moneyness values
mt ∈ RKt and times-to-maturity τt ∈ RTT .

We assume that IVt evolves as follows:

IVt = Mtβt + εt , εt ∼ h (εt | Ht ;ϑ) ,

βt+1 = (I− B) θ + B βt + ξt ,

We gather all static parameters of the model into a vector ψ that needs to be estimated.

This set-up accommodates both a state-space and a score-driven framework, depending
on our choice of ξt .
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Standard state-space and score-driven models

Linear Gaussian state-space : (ε⊤t , ξ
⊤
t )

⊤ is normally distributed.

Estimation

ℓ(ψ) = −1
2

∑T
t=1

(
ln |2πFt |+

(
IVt − IVt|t−1

)⊤ F−1
t

(
IVt − IVt|t−1

))
.

Score-driven framework: ξt is chosen as the derivative (with respect to βt) of the log
predictive density of IVt .

Estimation

ξt = A (M⊤
t H−1

t Mt)
−1M⊤

t H−1
t εt ,

ℓ(ψ) = −1
2

∑T
t=1

(
ln |2πHt |+ ε⊤t H−1

t εt
)
,
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Adjusted measurement equation of the score-driven model

Consider a typical specification with diagonal error covariance matrix Ht .

Assume the DGP to be a state-space model and fit a score-driven model to it:

The true error:

IV ssf
t − ÎV

sd

t = εt + Mt ξ
ssf
t + Mt

(
(I− B)

(
θ − θ̂

)
+ B

(
βssf
t−1 − β̂sd

t−1

))
,

where βsd
t is the βt from the score-driven model, and βssf

t is that from the state-space.

The first component has an uncorrelated covariance structure.

The final term is typically small given the good forecast performance of score-driven
models even for a state-space DGP. (see Koopman et al., 2016).

It is the second term that results in a cross-correlated prediction errors, which contrasts
with the assumed uncorrelated structure.
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Adjusted measurement equation of the score-driven model

The solution: include one iteration of the state-space dynamics into the score-driven
measurement equation.

Adjusted measurement equation

IVt = Mtβt + εt , εt ∼ h
(
εt

∣∣ Ht + MtCM⊤
t ,ϑ

)
,

In our single level factor example above, the adjusted measurement equation induces an
equicorrelation structure.

This explains the huge improvements in density fit that Koopman et al. (2017) find when
imposing equicorrelation structures.

Our approach above can, however, also be used for richer factor structures.
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Empirical modeling choices

Practitioners have long tried to fit linear parametric models to the cross-section of implied
volatility at a point in time, linking IV to time-to-maturity and moneyness,
e.g. Andreou et al. (2010), Dumas et al. (1998), Goncalves and Guidolin (2006), and
Pena et al. (1999).

Goncalves and Guidolin (2006): simple model linear in coefficients and nonlinear in
moneyness and time-to-maturity achieves a good fit to the IV surface of S&P 500 index
options.

To illustrate our main findings, we also employ the simple 5 factor models of Goncalves
and Guidolin (2006) to the IV surface of S&P 500 index options.

For robustness checks, we also consider a more flexible factor presentation that includes a
nonparametric factor.
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Restricted factor specification

Parametric factor specification

IVt(m, τ ) = Mtβt + εt ,

IVt(m, τ ) is a qt-dimensional vector

Mt = (m1,m2, . . . ,mqt ) is a matrix (qt × 5) with mj = (1,mj ,m
2
j , τj ,mjτj)

′

βt is vector of latent factors (5× 1),

εt is the disturbance (qt × 1 ),

qt is the number of option contracts at time t.
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Data

We use a dataset comprising European call options on the S&P 500 index, encompassing
all call and put options traded on the Chicago Board Option Exchange (CBOE).

We follow van der Wel et al. (2016) to filter option contracts.

We restrict our analysis to out-of-the-money options, defined by a ∆ less than 0.5 in
absolute value.

We exclude observations characterized by time-to-maturity periods exceeding 360 days or
shorter than 7 days.

Options with implied volatilities greater than 0.7 and option prices below 0.05 are omitted
from the dataset to mitigate the effect of potential data errors.
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Empirical results

We compare the performance of the linear Gaussian state-space and socre-driven models
in forecasting out-of-sample IV, both statistically and economically.

For the score-driven models, we consider four variants: normal and student-t distributions
without and with adjusted measurements, of which we denote as GAS(N ),GAS(Σ,N ),
GAS(t), and GAS(Σ, t) respectively.
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Empirical results

Table 1: Statistical Accuracy Measures for various estimators of the
implied volatility surface: Out-of-sample

Model MSE (×103) MAE (×103) loglik (×10−3) AIC (×10−3) # Pars

Whole sample: 2012-2022

State Space 2.83 33.21 1557.45 -3114.86 16
GAS(N ) 2.81 32.90∗∗∗ 1203.19 -2406.35 16

GAS(Σ,N ) 2.88∗∗ 33.99∗∗∗ 1555.56 -3111.08 21
GAS(t) 2.86 33.36 1551.76 -3103.49 17

GAS(Σ, t) 2.97∗∗∗ 34.59 1926.21 -3852.38 22
Static Model 6.00∗∗∗ 53.37∗∗∗

Note: Diebold and Mariano test is conducted with the state space model as a benchmark on MSE and

MAE, and the null hypothesis is that both models are equally accurate.
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Empirical results: VaR applications

We compare the VaR forecasts for the equally-weighted average implied volatility of S&P 500
options.

Table 2: Out-of-sample evaluation for 99% Value-at-Risk Estimation

Violation ratio (×102) Tickloss (×103)

The whole period: 2012-2022

State Space 0.04 3.68
GAS(N ) 41.07 9.99∗∗∗

GAS(Σ,N ) 0.04 5.16∗∗∗

GAS(t) 50.88 14.60∗∗∗

GAS(Σ, t) 0.00 6.14∗∗∗
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Conclusion

We compare state-space and score-driven models for option implied volatility surface
dynamics.

We find that point forecasts of both models behave similarly, but density forecasts of the
plain-vanilla score-driven model are substantially worse.

We show how a simple adjustment of the measurement density of the score-driven model
can put both models back on an equal footing.

After this correction, the score-driven model can easily be extended with non-Gaussian
features without complicating parameter estimation, unlike its state-space counterpart.
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