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Question and Outline

Main question

Question: Can we quantify the possibility of omitted variable bias
overturning reported results in a linear model?

Result is understood to be overturned if zero is contained in the
confidence interval for the true parameter

I provide an affirmative answer by building on Cinelli and Hazlett
(2020)

This paper connects to the literature on sensitivity analysis: Frank,
2000; Krauth, 2016; Ding and VanderWeele, 2016; VanderWeele and
Ding, 2017; Oster, 2019; Cinelli and Hazlett (2020); Diegert et al.,
2023,
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Question and Outline

Outline of talk

Omitted variable bias using partial R2

Benchmark covariate (or group of covariates) + 2 sensitivity
parameters, kD , kY

Cinelli and Hazlett (2020) show how to compute bias-adjusted
estimate and confidence interval for specific values of kD , kY

Easier to justify a range, rather than specific values of kD , kY

Once range of kD , kY is chosen, we can compute a probability of
OVB overturning result

Discuss an example
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Set Up

Full model:
Y = τ̂D + X β̂ + γ̂Z + ε̂full

Restricted model:

Y = τ̂resD + X β̂res + ε̂res

Omitted variable bias:
b̂ias = τ̂res − τ̂

Y : outcome variable
D: treatment variable (scalar)
X : vector of control variables
Z : unobserved confounder (omitted variable)
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Set Up

Using the FWL theorem and definitions of partial R2, Cinelli and Hazlett
(2020) show that

Expression for the absolute value of the omitted variable bias:

∣∣∣b̂ias∣∣∣ = ŝe (τ̂res)

√√√√df× R2
Y∼Z |D,X × R2

D∼Z |X

1− R2
D∼Z |X

Expression for standard error of the true estimate, τ̂ :

ŝe (τ̂) = ŝe (τ̂res)

√√√√1− R2
Y∼Z |D,X

1− R2
D∼Z |X

× df

df− 1

R2
Y∼Z |D,X : partial R

2 of Y and Z , conditional on D,X

R2
D∼Z |X : partial R

2 of D and Z , conditional on X
se: standard error
df : degrees of freedom of restricted regression
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What is partial R2?

The definition of the partial R2 is

R2
Y∼Z |X =

R2
Y∼Z+X − R2

Y∼X

1− R2
Y∼X

Numerator: increment in total R2 when Z is added to a regression of
Y on X

Denominator: 1 minus total R2 in a regression of Y on X
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Main Proposal

If we knew R2
Y∼Z |D,X and R2

D∼Z |X , we could

compute
∣∣∣b̂ias∣∣∣ and ŝe (τ̂)

and use it to construct bias-adjusted treatment effect and bias-adjusted
confidence intervals

Case 1: When estimated treatment effect, τ̂res, is positive

bias-adjusted estimate: τ̂ = τ̂res − |b̂ias|
bias-adjusted confidence interval (significance level α) for τ (true
value):

(τ̂res − |̂bias| − |t∗α/2|ŝe (τ̂) , τ̂res − |̂bias|+ |t∗α/2|ŝe (τ̂))

where |t∗α/2| is the absolute magnitude of the critical value.

Case 2: When estimated treatment effect, τ̂res, is negative

bias-adjusted estimate: τ̂ = τ̂res + |b̂ias|
bias-adjusted confidence interval (significance level α) for τ :

(τ̂res + |̂bias| − |t∗α/2|ŝe (τ̂) , τ̂res + |̂bias|+ |t∗α/2|ŝe (τ̂))
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Main Proposal

We do not know R2
Y∼Z |D,X and R2

D∼Z |X because Z is unobserved

What do we do?

We choose a (group of) benchmark covariate(s) from X (set of
included regressors): Xj

We define two sensitivity parameters, kD , kY
kD : captures relative strength of association of Z⊥X (part of omitted
variable orthogonal to covariates) with D (treatment variable)
compared to benchmark covariate(s) with D
kY : captures relative strength of association of Z⊥X (part of omitted
variable orthogonal to covariates) with Y (outcome variable) compared
to benchmark covariate(s) with Y

Strength of association can be measured in three ways

Total R2

Partial R2 without conditioning on D
Partial R2 with conditioning on D
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Main Proposal

Total R2-based benchmarking:

kD :=
R2
D∼Z⊥X

R2
D∼Xj

, kY :=
R2
Y∼Z⊥X

R2
Y∼Xj

Partial R2-based benchmarking without conditioning on treatment
variable:

kD :=
R2
D∼Z⊥X |X−j

R2
D∼Xj |X−j

, kY :=
R2
Y∼Z⊥X |X−j

R2
Y∼Xj |X−j

Partial R2-based benchmarking with conditioning on treatment
variable (for kY ):

kD :=
R2
D∼Z⊥X |X−j

R2
D∼Xj |X−j

, kY :=
R2
Y∼Z⊥X |X−j ,D

R2
Y∼Xj |X−j ,D
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Main Proposal

For any value of kD , kY , we can compute what we need

For total R2-based benchmarking, we have

R2
D∼Z |X =

kDR
2
D∼Xj

1− R2
D∼X

, R2
Y∼Z |X =

kYR
2
Y∼Xj

1− R2
Y∼X

.

For partial R2-based benchmarking without conditioning on treatment
variable, we have

R2
D∼Z |X =

kDR
2
D∼Xj |X−j

1− R2
D∼Xj |X−j

, R2
Y∼Z |X =

kYR
2
Y∼Xj |X−j

1− R2
Y∼Xj |X−j

In both cases, we then compute

R2
Y∼Z |D,X =

(∣∣RY∼Z |X
∣∣− ∣∣RY∼D|X

∣∣ ∣∣RD∼Z |X
∣∣)2(

1− R2
Y∼D|X

)(
1− R2

D∼Z |X

) .
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Main Proposal

For partial R2-based benchmarking with conditioning on treatment
variable:

R2
D∼Z |X =

kDR
2
D∼Xj |X−j

1− R2
D∼Xj |X−j

, R2
Y∼Z |D,X = η2f 2Y∼Xj |X−j ,D

where

η =

√
kY +

∣∣∣fkD × fD∼Xj |X−j

∣∣∣√
1− f 2kD × f 2D∼Xj |X−j

and

f 2D∼Xj |X−j
=

R2
D∼Xj |X−j

1− R2
D∼Xj |X−j

fkD =

√
kDR

2
D∼Xj |X−j√

1− kDR
2
D∼Xj |X−j
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Main Proposal

Since 0 ≤ R2
D∼Z |X ≤ 1 and 0 ≤ R2

Y∼Z |D,X ≤ 1, this gives us
permissible values of kD and kY .

Example: For total R2-based benchmarking, we have

R2
D∼Z |X =

kDR
2
D∼Xj

1− R2
D∼X

, R2
Y∼Z |X =

kYR
2
Y∼Xj

1− R2
Y∼X

and so, we have

0 ≤ kD ≤
1− R2

D∼X

R2
D∼Xj

= kmax
D

and

0 ≤ kY ≤
1− R2

Y∼X

R2
Y∼Xj

= kmax
Y
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Main Proposal: Summary

For any value of kD , kY , we compute R2
Y∼Z |D,X and R2

D∼Z |X
And we get bias-adjusted estimate and confidence intervals for our
choice of kD , kY
Then we compute

contour plots of lower (or upper) boundary of confidence interval over
all permissible values of kD , kY ⇒ look at level 0

if estimated effect is positive, look at lower boundary
if estimated effect is negative, look at upper boundary

probability that OVB can overturn reported result

When estimated treatment effect is positive, this is

1−
(
area where lower boundary of conf int is > 0

valid area of contour area

)
When estimated treatment effect is negative, this is

1−
(
area where lower boundary of conf int is < 0

valid area of contour area

)
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Example

PeaceIndexi = β0 + β1DirectHarmi + Controlsi + εi ,

i index for individual

PeaceIndex (outcome, Y ): index of attitude towards peace efforts

DirectHarm (treatment, D): measures the exposure to violence

Control variables, X : gender of the individual, age, whether the
individual was a farmer, herder, merchant or trader, household size,
whether or not the individual voted in the past, and village-level fixed
effects.

Omitted variable, Z : wealth

Benchmark, Xj : gender of the individual
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Bias-adjusted estimate and confidence interval

Panel A: kD = 1, kY = 1 Panel B: kD = 3, kY = 3

Total Partial 1 Partial 2 Total Partial 1 Partial 2

R2
Y∼D|X 0.022 0.022 0.022 0.022 0.022 0.022

R2
D∼Z |X 0.003 0.009 0.009 0.008 0.027 0.027

R2
Y∼Z |D,X 0.259 0.125 0.125 0.781 0.381 0.374

Estimate 0.097 0.097 0.097 0.097 0.097 0.097
Bias-Adj Estimate 0.080 0.075 0.075 0.046 0.030 0.030
Bias-Adj Standard Error 0.020 0.022 0.022 0.011 0.019 0.019
Lwr Bdary of Bias-Adj Conf. Int. 0.041 0.032 0.032 0.024 -0.007 -0.006
Upr Bdary of Bias-Adj Conf. Int. 0.120 0.118 0.118 0.067 0.066 0.067

Total: total R2-based covariate benchmarking

Partial 1: partial R2-based covariate benchmarking without conditioning on
treatment

Partial 2: partial R2-based covariate benchmarking with conditioning on treatment
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Contour plot (Total R2)
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Contour plot (Partial R2 without conditioning)
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Contour plot (Partial R2 with conditioning)
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Probability of reported result being overturned

Total Partial 1 Partial 2

Panel A: Full range:
0 ≤ kD ≤ kmax

D ; 0 ≤ kY ≤ kmax
Y 0.925 0.925 0.960

Panel B: Absolute upper bounds:
0 ≤ kD ≤ 1; 0 ≤ kY ≤ 1 0.000 0.000 0.000
0 ≤ kD ≤ 3; 0 ≤ kY ≤ 3 0.000 0.021 0.019
0 ≤ kD ≤ 5; 0 ≤ kY ≤ 5 0.000 0.336 0.335

Panel C: Relative upper bounds:
0 ≤ kD ≤ 0.1kmax

D ; 0 ≤ kY ≤ 0.1kmax
Y 0.046 0.046 0.116

0 ≤ kD ≤ 0.25kmax
D ; 0 ≤ kY ≤ 0.25kmax

Y 0.628 0.628 0.701

Memo:
kmax
D 373.134 109.119 109.119
kmax
Y 3.839 7.643 8.155
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Probability of reported result being overturned

Important message: result depends on choice of kmax
D and kmax

Y

Full permissible range of kD , kY gives very conservative answer

Can we do better?

Can we choose upper bounds for kD , kY that are lower than kmax
D and

kmax
Y ?

Two possibilities

Absolute bounds
Relative bounds: better because it is based on the sample (which
determines kmax

D and kmax
Y )

Some simulation evidence for a possible answer using relative bounds
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Simulation Set-up

X s : standardized k-dimensional multivariate Gaussian of size N with
mean 0k×1 and covariance matrix A′A (with A coming from k2 draws
from uniform(0,1))

I generate the scalar treatment variable, D, as

D = a0 + X s
1 a1 + X s

2 a2 + · · ·+ X s
k−1ak−1 + X s

k ak + uD ,

where a = (a0, a1, . . . , ak) is a (k +1)-vector formed by drawing k +1
random numbers from a uniform distribution over (−1, 1) and
uD ∼ i.i.d.N

(
0, σ2

uD

)
.

I generate the scalar outcome variable, Y , as

Y = b0 + X s
1b1 + X s

2b2 + · · ·+ X s
k−1bk−1 + X s

kbk + uY ,

where b = (b0, b1, . . . , bk) is a (k + 1)-vector formed by drawing
k + 1 random numbers from a uniform distribution over (−1, 1) and
uY ∼ i.i.d.N

(
0, σ2

uY

)
.
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Simulation Set-up

Y ,D,X s comprise the simulated data set.

Using this data set, I estimate the following model using OLS,

Y = β0 + Dτ + X s
1β1 + X s

2β2 + · · ·+ X s
k−1βk−1 + ε,

I treat the k-th column of X s as the unobserved confounder (the
omitted variable) and leave it out of the estimated model, i.e.
Z = X s

k .

I compute kD and kY and kmax
D and kmax

Y

I repeat this 1000 times

Look at the empirical distribution of kD/k
max
D and kY /k

max
Y
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Simulation results

Table: 90-th percentile of the empirical distribution of kd/k
max
d and ky/k

max
y

k = 10 k = 25 k = 50 k = 100

N kd
kmax
d

ky
kmax
y

kd
kmax
d

ky
kmax
y

kd
kmax
d

ky
kmax
y

kd
kmax
d

ky
kmax
y

250 0.408 0.398 0.206 0.213 0.126 0.106 0.074 0.067
500 0.433 0.435 0.212 0.210 0.115 0.109 0.061 0.057
1000 0.424 0.413 0.222 0.214 0.125 0.119 0.062 0.059
2500 0.385 0.413 0.190 0.179 0.107 0.113 0.057 0.053
5000 0.421 0.419 0.204 0.200 0.094 0.094 0.064 0.056

10000 0.422 0.417 0.202 0.190 0.119 0.115 0.056 0.064

I have used σuY = σuD = 1

Main takeaways:

result depends on k but not on N
kd/k

max
d and ky/k

max
y fall as k increases
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Simulation results

Table: 90-th percentile of the empirical distribution of kd/k
max
d and ky/k

max
y

k = 10 k = 25 k = 50 k = 100
kd

kmax
d

ky
kmax
y

kd
kmax
d

ky
kmax
y

kd
kmax
d

ky
kmax
y

kd
kmax
d

ky
kmax
y

σuY = σuD 0.42 0.44 0.20 0.21 0.11 0.11 0.06 0.06
σuY = 3σuD 0.43 0.08 0.21 0.03 0.10 0.02 0.06 0.01
3σuY = σuD 0.07 0.42 0.03 0.19 0.02 0.12 0.01 0.06
σuY = 5σuD 0.42 0.03 0.20 0.01 0.11 0.01 0.06 0.01
5σuY = σuD 0.03 0.41 0.01 0.20 0.01 0.11 0.01 0.05

Benchmark case with σuY = σuD is most conservative

When σuY > σuD : same kD/k
max
D but lower kY /k

max
Y than in

benchmark case

When σuY < σuD , same kY /k
max
Y but lower kD/k

max
D than in

benchmark case
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Probability of reported result being overturned

Total Partial 1 Partial 2

Panel A: Full range:
0 ≤ kD ≤ kmax

D ; 0 ≤ kY ≤ kmax
Y 0.925 0.925 0.960

Panel B: Absolute upper bounds:
0 ≤ kD ≤ 1; 0 ≤ kY ≤ 1 0.000 0.000 0.000
0 ≤ kD ≤ 3; 0 ≤ kY ≤ 3 0.000 0.021 0.019
0 ≤ kD ≤ 5; 0 ≤ kY ≤ 5 0.000 0.336 0.335

Panel C: Relative upper bounds:
0 ≤ kD ≤ 0.1kmax

D ; 0 ≤ kY ≤ 0.1kmax
Y 0.046 0.046 0.116

0 ≤ kD ≤ 0.25kmax
D ; 0 ≤ kY ≤ 0.25kmax

Y 0.628 0.628 0.701

Memo:
kmax
D 373.134 109.119 109.119
kmax
Y 3.839 7.643 8.155
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