How Likely is it that Omitted Variable Bias will Overturn your Results?

Deepankar Basu

Department of Economics University of Massachusetts Amherst

> August 26–30, 2024 ESEM 2024

> > (中) (종) (종) (종) (종) (종)

Question and Outline

Main question

- Question: Can we quantify the possibility of omitted variable bias overturning reported results in a linear model?
 - Result is understood to be overturned if zero is contained in the confidence interval for the true parameter
- I provide an affirmative answer by building on Cinelli and Hazlett (2020)
- This paper connects to the literature on sensitivity analysis: Frank, 2000; Krauth, 2016; Ding and VanderWeele, 2016; VanderWeele and Ding, 2017; Oster, 2019; Cinelli and Hazlett (2020); Diegert et al., 2023,

Question and Outline

Outline of talk

- Omitted variable bias using partial R^2
- Benchmark covariate (or group of covariates) + 2 sensitivity parameters, k_D, k_Y
- Cinelli and Hazlett (2020) show how to compute bias-adjusted estimate and confidence interval for specific values of k_D , k_Y
- Easier to justify a range, rather than specific values of k_D, k_Y
- Once range of k_D, k_Y is chosen, we can compute a probability of OVB overturning result
- Discuss an example

$\mathsf{Set}\ \mathsf{Up}$

• Full model:

$$Y = \hat{\tau}D + X\hat{\beta} + \hat{\gamma}Z + \hat{\varepsilon}_{\text{full}}$$

• Restricted model:

$$Y = \hat{\tau}_{\rm res} D + X \hat{\beta}_{\rm res} + \hat{\varepsilon}_{\rm res}$$

Omitted variable bias:

$$\widehat{\mathsf{bias}} = \hat{\tau}_{\mathsf{res}} - \hat{\tau}$$

- Y: outcome variable
- D: treatment variable (scalar)
- X: vector of control variables
- Z: unobserved confounder (omitted variable)

э

イロン 不聞 とくほとう ほとう

Set Up

Using the FWL theorem and definitions of partial \mathbb{R}^2 , Cinelli and Hazlett (2020) show that

• Expression for the absolute value of the omitted variable bias:

$$\left|\widehat{\text{bias}}\right| = \widehat{\text{se}}\left(\widehat{\tau}_{\text{res}}\right) \sqrt{\frac{\text{df} \times R_{Y \sim Z|D,X}^2 \times R_{D \sim Z|X}^2}{1 - R_{D \sim Z|X}^2}}$$

• Expression for standard error of the true estimate, $\hat{\tau}$:

$$\widehat{\operatorname{se}}\left(\widehat{\tau}\right) = \widehat{\operatorname{se}}\left(\widehat{\tau}_{\operatorname{res}}\right) \sqrt{\frac{1 - R_{Y \sim Z \mid D, X}^2}{1 - R_{D \sim Z \mid X}^2} \times \frac{\mathrm{df}}{\mathrm{df} - 1}}$$

- $R^2_{Y \sim Z|D,X}$: partial R^2 of Y and Z, conditional on D, X
- $R^2_{D \sim Z|X}$: partial R^2 of D and Z, conditional on X
- se: standard error
- *df*: degrees of freedom of restricted regression

Deepankar Basu

The definition of the partial R^2 is

$$R_{Y \sim Z|X}^2 = \frac{R_{Y \sim Z+X}^2 - R_{Y \sim X}^2}{1 - R_{Y \sim X}^2}$$

- Numerator: increment in total \mathbb{R}^2 when Z is added to a regression of Y on X
- Denominator: 1 minus total R^2 in a regression of Y on X

・ 同 ト ・ ヨ ト ・ ヨ ト

- If we knew $R^2_{Y \sim Z \mid D, X}$ and $R^2_{D \sim Z \mid X}$, we could
 - compute $|\widehat{\mathrm{bias}}|$ and $\widehat{\mathrm{se}}(\hat{\tau})$
 - and use it to construct bias-adjusted treatment effect and bias-adjusted confidence intervals
- Case 1: When estimated treatment effect, $\hat{\tau}_{\text{res}}$, is positive
 - bias-adjusted estimate: $\hat{\tau} = \hat{\tau}_{\mathsf{res}} |\widehat{\mathsf{bias}}|$
 - bias-adjusted confidence interval (significance level α) for τ (true value):

$$(\hat{ au}_{ ext{res}} - |\widehat{ ext{bias}}| - |t^*_{lpha/2}|\widehat{ ext{se}}\left(\hat{ au}
ight), \hat{ au}_{ ext{res}} - |\widehat{ ext{bias}}| + |t^*_{lpha/2}|\widehat{ ext{se}}\left(\hat{ au}
ight))$$

where $|t^*_{\alpha/2}|$ is the absolute magnitude of the critical value.

- \bullet Case 2: When estimated treatment effect, $\hat{\tau}_{\rm res},$ is negative
 - bias-adjusted estimate: $\hat{\tau} = \hat{\tau}_{res} + |\hat{b}_{ras}|$
 - bias-adjusted confidence interval (significance level α) for τ :

$$(\hat{\tau}_{\mathrm{res}} + |\widehat{\mathrm{bias}}| - |t_{\alpha/2}^*|\widehat{\mathrm{se}}(\hat{\tau}), \hat{\tau}_{\mathrm{res}} + |\widehat{\mathrm{bias}}| + |t_{\alpha/2}^*|\widehat{\mathrm{se}}(\hat{\tau}))$$

- \bullet We do not know $R^2_{Y \sim Z \mid D, X}$ and $R^2_{D \sim Z \mid X}$ because Z is unobserved
- What do we do?
 - We choose a (group of) benchmark covariate(s) from X (set of included regressors): X_j
 - We define two sensitivity parameters, k_D, k_Y
 - k_D: captures relative strength of association of Z^{⊥X} (part of omitted variable orthogonal to covariates) with D (treatment variable) compared to benchmark covariate(s) with D
 - k_Y: captures relative strength of association of Z^{⊥X} (part of omitted variable orthogonal to covariates) with Y (outcome variable) compared to benchmark covariate(s) with Y
 - Strength of association can be measured in three ways
 - Total R²
 - Partial R^2 without conditioning on D
 - Partial R^2 with conditioning on D

• Total *R*²-based benchmarking:

$$k_D \coloneqq \frac{R_{D \sim Z^{\perp X}}^2}{R_{D \sim X_j}^2}, \quad k_Y \coloneqq \frac{R_{Y \sim Z^{\perp X}}^2}{R_{Y \sim X_j}^2}$$

• Partial *R*²-based benchmarking without conditioning on treatment variable:

$$k_D \coloneqq \frac{R_{D \sim Z^{\perp X} | X_{-j}}^2}{R_{D \sim X_j | X_{-j}}^2}, \quad k_Y \coloneqq \frac{R_{Y \sim Z^{\perp X} | X_{-j}}^2}{R_{Y \sim X_j | X_{-j}}^2}$$

• Partial R^2 -based benchmarking with conditioning on treatment variable (for k_Y):

$$k_D \coloneqq \frac{R_{D \sim Z^{\perp X} | X_{-j}}^2}{R_{D \sim X_j | X_{-j}}^2}, \quad k_Y \coloneqq \frac{R_{Y \sim Z^{\perp X} | X_{-j}, D}^2}{R_{Y \sim X_j | X_{-j}, D}^2}$$

イロト 不得 トイラト イラト 一日

For any value of k_D, k_Y, we can compute what we need
For total R²-based benchmarking, we have

$$R_{D\sim Z|X}^{2} = \frac{k_{D}R_{D\sim X_{j}}^{2}}{1-R_{D\sim X}^{2}}, \quad R_{Y\sim Z|X}^{2} = \frac{k_{Y}R_{Y\sim X_{j}}^{2}}{1-R_{Y\sim X}^{2}}.$$

• For partial *R*²-based benchmarking without conditioning on treatment variable, we have

$$R_{D\sim Z|X}^{2} = \frac{k_{D}R_{D\sim X_{j}|X_{-j}}^{2}}{1 - R_{D\sim X_{j}|X_{-j}}^{2}}, \quad R_{Y\sim Z|X}^{2} = \frac{k_{Y}R_{Y\sim X_{j}|X_{-j}}^{2}}{1 - R_{Y\sim X_{j}|X_{-j}}^{2}}$$

• In both cases, we then compute

$$R_{Y \sim Z|D, X}^{2} = \frac{\left(\left|R_{Y \sim Z|X}\right| - \left|R_{Y \sim D|X}\right| \left|R_{D \sim Z|X}\right|\right)^{2}}{\left(1 - R_{Y \sim D|X}^{2}\right) \left(1 - R_{D \sim Z|X}^{2}\right)}.$$

A B M A B M

• For partial *R*²-based benchmarking with conditioning on treatment variable:

$$R_{D\sim Z|X}^{2} = \frac{k_{D}R_{D\sim X_{j}|X_{-j}}^{2}}{1 - R_{D\sim X_{j}|X_{-j}}^{2}}, \quad R_{Y\sim Z|D,X}^{2} = \eta^{2}f_{Y\sim X_{j}|X_{-j},D}^{2}$$

where

$$\eta = \frac{\sqrt{k_Y} + \left| f_{k_D} \times f_{D \sim X_j | X_{-j}} \right|}{\sqrt{1 - f_{k_D}^2 \times f_{D \sim X_j | X_{-j}}^2}}$$

and

$$f_{D\sim X_j|X_{-j}}^2 = \frac{R_{D\sim X_j|X_{-j}}^2}{1 - R_{D\sim X_j|X_{-j}}^2} \qquad f_{k_D} = \frac{\sqrt{k_D R_{D\sim X_j|X_{-j}}^2}}{\sqrt{1 - k_D R_{D\sim X_j|X_{-j}}^2}}$$

æ

イロト イヨト イヨト イヨト

- Since $0 \le R_{D \sim Z|X}^2 \le 1$ and $0 \le R_{Y \sim Z|D,X}^2 \le 1$, this gives us permissible values of k_D and k_Y .
- Example: For total R^2 -based benchmarking, we have

$$R_{D\sim Z|X}^{2} = \frac{k_{D}R_{D\sim X_{j}}^{2}}{1 - R_{D\sim X}^{2}}, \quad R_{Y\sim Z|X}^{2} = \frac{k_{Y}R_{Y\sim X_{j}}^{2}}{1 - R_{Y\sim X}^{2}}$$

and so, we have

$$0 \le k_D \le \frac{1 - R_{D \sim X}^2}{R_{D \sim X_j}^2} = k_D^{\max}$$

and

$$0 \le k_Y \le \frac{1 - R_{Y \sim X}^2}{R_{Y \sim X_j}^2} = k_Y^{\max}$$

イロト 不得 トイラト イラト 一日

Main Proposal: Summary

- For any value of k_D, k_Y , we compute $R^2_{Y \sim Z|D,X}$ and $R^2_{D \sim Z|X}$
- And we get bias-adjusted estimate and confidence intervals for our choice of k_D, k_Y
- Then we compute
 - contour plots of lower (or upper) boundary of confidence interval over all permissible values of $k_D, k_Y \Rightarrow$ look at level 0
 - if estimated effect is positive, look at lower boundary
 - if estimated effect is negative, look at upper boundary
 - probability that OVB can overturn reported result
 - When estimated treatment effect is positive, this is

 $1 - \left(\frac{\text{area where lower boundary of conf int is } > 0}{\text{valid area of contour area}}\right)$

• When estimated treatment effect is negative, this is

$$1 - \left(\frac{{\rm area \ where \ lower \ boundary \ of \ conf \ int \ is \ < 0}}{{\rm valid \ area \ of \ contour \ area}}\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

 $PeaceIndex_i = \beta_0 + \beta_1 DirectHarm_i + Controls_i + \varepsilon_i,$

- *i* index for individual
- PeaceIndex (outcome, Y): index of attitude towards peace efforts
- DirectHarm (treatment, D): measures the exposure to violence
- Control variables, X: gender of the individual, age, whether the individual was a farmer, herder, merchant or trader, household size, whether or not the individual voted in the past, and village-level fixed effects.
- Omitted variable, Z: wealth
- Benchmark, X_i : gender of the individual

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Bias-adjusted estimate and confidence interval

	Pane	A: $k_D = 1$	$k_{Y} = 1$	Panel B: $k_D = 3, k_Y = 3$			
	Total	Partial 1	Partial 2	Total	Partial 1	Partial 2	
$R_{Y \sim D X}^2$	0.022	0.022	0.022	0.022	0.022	0.022	
$R_{D\sim Z X}^2$	0.003	0.009	0.009	0.008	0.027	0.027	
$R^2_{Y \sim Z \mid D, X}$	0.259	0.125	0.125	0.781	0.381	0.374	
Estimate	0.097	0.097	0.097	0.097	0.097	0.097	
Bias-Adj Estimate	0.080	0.075	0.075	0.046	0.030	0.030	
Bias-Adj Standard Error	0.020	0.022	0.022	0.011	0.019	0.019	
Lwr Bdary of Bias-Adj Conf. Int.	0.041	0.032	0.032	0.024	-0.007	-0.006	
Upr Bdary of Bias-Adj Conf. Int.	0.120	0.118	0.118	0.067	0.066	0.067	

- Total: total R²-based covariate benchmarking
- Partial 1: partial *R*²-based covariate benchmarking without conditioning on treatment
- Partial 2: partial R^2 -based covariate benchmarking with conditioning on treatment

< 日 > < 同 > < 三 > < 三 > <

Contour plot (Total R^2)

Deepankar Basu

Omitted Variable Bias

Contour plot (Partial R^2 without conditioning)

Deepankar Basu

Omitted Variable Bias

Contour plot (Partial R^2 with conditioning)

Deepankar Basu

Omitted Variable Bias

Probability of reported result being overturned

		Total	Partial 1	Partial 2
Panel A: Full range:				
$0 \le k_D \le k_D^{\max}; 0 \le k_Y \le$	k_Y^{\max}	0.925	0.925	0.960
Panel B: Absolute upper	r bounds:			
$0 \leq k_D \leq 1; 0 \leq k_Y \leq 1$		0.000	0.000	0.000
$0 \leq k_D \leq 3; 0 \leq k_Y \leq 3$		0.000	0.021	0.019
$0 \le k_D \le 5; 0 \le k_Y \le 5$		0.000	0.336	0.335
Panel C: Relative upper	bounds:			
$0 \le k_D \le 0.1 k_D^{\max}; 0 \le k_Y$	$k \leq 0.1 k_Y^{\max}$	0.046	0.046	0.116
$0 \leq k_D \leq 0.25 \overline{k}_D^{\max}; 0 \leq k$	$\gamma \leq 0.25 k_Y^{\max}$	0.628	0.628	0.701
Memo:				
k_D^{\max}		373.134	109.119	109.119
k_{Y}^{\max}		3.839	7.643	8.155
		< □	► < @ ► < \alpha \alpha \sets	< ≣ ► ≣ • ? (
Deepankar Basu	Omitted Variable F	lias		19 /

Probability of reported result being overturned

- Important message: result depends on choice of k_D^{\max} and k_Y^{\max}
- Full permissible range of k_D , k_Y gives very conservative answer
- Can we do better?
- Can we choose upper bounds for k_D, k_Y that are lower than k_D^{\max} and k_Y^{\max} ?
- Two possibilities
 - Absolute bounds
 - Relative bounds: better because it is based on the sample (which determines k_D^{\max} and k_Y^{\max})
- Some simulation evidence for a possible answer using relative bounds

Simulation Set-up

- X^s: standardized k-dimensional multivariate Gaussian of size N with mean 0_{k×1} and covariance matrix A'A (with A coming from k² draws from uniform(0,1))
- I generate the scalar treatment variable, D, as

$$D = a_0 + X_1^s a_1 + X_2^s a_2 + \dots + X_{k-1}^s a_{k-1} + X_k^s a_k + u_D,$$

where $a = (a_0, a_1, ..., a_k)$ is a (k + 1)-vector formed by drawing k + 1 random numbers from a uniform distribution over (-1, 1) and $u_D \sim \text{i.i.d.} N(0, \sigma_{u_D}^2)$.

• I generate the scalar outcome variable, Y, as

$$Y = b_0 + X_1^s b_1 + X_2^s b_2 + \dots + X_{k-1}^s b_{k-1} + X_k^s b_k + u_Y,$$

where $b = (b_0, b_1, \dots, b_k)$ is a (k + 1)-vector formed by drawing k + 1 random numbers from a uniform distribution over (-1, 1) and $u_Y \sim \text{i.i.d.} N\left(0, \sigma_{u_Y}^2\right)$.

Simulation Set-up

- Y, D, X^s comprise the simulated data set.
- Using this data set, I estimate the following model using OLS,

$$Y = \beta_0 + D\tau + X_1^s \beta_1 + X_2^s \beta_2 + \dots + X_{k-1}^s \beta_{k-1} + \varepsilon,$$

- I treat the k-th column of X^s as the unobserved confounder (the omitted variable) and *leave it out of the estimated model*, i.e. Z = X^s_k.
- I compute k_D and k_Y and k_D^{\max} and k_Y^{\max}
- I repeat this 1000 times
- Look at the empirical distribution of k_D/k_D^{max} and k_Y/k_Y^{max}

Simulation results

	k = 10		<i>k</i> = 25		<i>k</i> =	= 50	k = 100		
Ν	$\frac{k_d}{k_d^{max}}$	$\frac{k_y}{k_y^{max}}$	$\frac{k_d}{k_d^{max}}$	$\frac{k_y}{k_y^{max}}$	$\frac{k_d}{k_d^{max}}$	$\frac{k_y}{k_y^{max}}$	$\frac{k_d}{k_d^{max}}$	$\frac{k_y}{k_y^{max}}$	
250	0.408	0.398	0.206	0.213	0.126	0.106	0.074	0.067	
500	0.433	0.435	0.212	0.210	0.115	0.109	0.061	0.057	
1000	0.424	0.413	0.222	0.214	0.125	0.119	0.062	0.059	
2500	0.385	0.413	0.190	0.179	0.107	0.113	0.057	0.053	
5000	0.421	0.419	0.204	0.200	0.094	0.094	0.064	0.056	
10000	0.422	0.417	0.202	0.190	0.119	0.115	0.056	0.064	

Table: 90-th percentile of the empirical distribution of k_d/k_d^{max} and k_y/k_y^{max}

• I have used $\sigma_{u_Y} = \sigma_{u_D} = 1$

Main takeaways:

- result depends on k but not on N
- k_d/k_d^{max} and k_y/k_y^{max} fall as k increases

イロト イヨト イヨト イヨト 二日

Simulation results

Tabl	e: 90	-th	percentil	e of	the	empirical	distribu	ution	of	<i>k</i> _ <i>d</i> /	k _d ^{max}	and	$k_y/$	k_y^{max}
------	-------	-----	-----------	------	-----	-----------	----------	-------	----	-----------------------	-------------------------------	-----	--------	-------------

	k = 10		k = 25		k = 50		k = 100	
	$\frac{k_d}{k_d^{max}}$	$\frac{k_y}{k_y^{max}}$	$rac{k_d}{k_d^{max}}$	$\frac{k_y}{k_y^{max}}$	$\frac{k_d}{k_d^{max}}$	$\frac{k_y}{k_y^{max}}$	$\frac{k_d}{k_d^{max}}$	$\frac{k_y}{k_y^{max}}$
$\sigma_{u_Y} = \sigma_{u_D}$	0.42	0.44	0.20	0.21	0.11	0.11	0.06	0.06
$\sigma_{u_Y} = 3\sigma_{u_D}$	0.43	0.08	0.21	0.03	0.10	0.02	0.06	0.01
$3\sigma_{u_Y} = \sigma_{u_D}$	0.07	0.42	0.03	0.19	0.02	0.12	0.01	0.06
$\sigma_{u_Y} = 5\sigma_{u_D}$	0.42	0.03	0.20	0.01	0.11	0.01	0.06	0.01
$5\sigma_{u_Y} = \sigma_{u_D}$	0.03	0.41	0.01	0.20	0.01	0.11	0.01	0.05

- Benchmark case with $\sigma_{u_Y} = \sigma_{u_D}$ is most conservative
- When $\sigma_{u_Y} > \sigma_{u_D}$: same k_D/k_D^{max} but lower k_Y/k_Y^{max} than in benchmark case
- When $\sigma_{u_Y} < \sigma_{u_D}$, same k_Y/k_Y^{max} but lower k_D/k_D^{max} than in benchmark case

Deepankar Basu

Probability of reported result being overturned

		Total	Partial 1	Partial 2
Panel A: Full range:				
$0 \leq k_D \leq k_D^{\max}; 0 \leq k_Y$	$\leq k_Y^{\max}$	0.925	0.925	0.960
Panel B: Absolute upp	er bounds:			
$0 \leq k_D \leq 1; 0 \leq k_Y \leq 1$		0.000	0.000	0.000
$0 \leq k_D \leq 3; 0 \leq k_Y \leq 3$		0.000	0.021	0.019
$0 \le k_D \le 5; 0 \le k_Y \le 5$		0.000	0.336	0.335
Panel C: Relative uppe	er bounds:			
$0 \leq k_D \leq 0.1 k_D^{\text{max}}; 0 \leq k_D$	$k_{Y} \leq 0.1 k_{Y}^{\text{max}}$	0.046	0.046	0.116
$0 \leq k_D \leq 0.25 k_D^{\max}; 0 \leq$	$k_Y \leq 0.25 k_Y^{\max}$	0.628	0.628	0.701
Memo:				
k_D^{\max}		373.134	109.119	109.119
k_Y^{\max}		3.839	7.643	8.155
		۹ 🗆		<≣> ≣ १
Deepankar Basu	Omitted Variable B	lias		25 /