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Proximal Estimation

Let Bi be an initial estimator for a target parameter of interest 3y € RP

Definition (Proximal Estimator (PE))

Given symm. pos. def. matrix W,,, convex Isc f, and A\, > O:
A W, [ As . 1 As 2
Bn = proxy ; (B;) == arg mﬁlln 3 Hﬂn — ,BHwn + Anfa(B)

is called a proximar estimator of G

® PEs are penalized minimum distance corrections defined via a (differentiable) proximal
operator proxK'n/}n



Well-known convex Isc penalties of class (RP)

Ridge: £,(8) = 1|8
Lasso: 1,(8) = |I1B]|;
Elastic Net: f,(8) = % ||ﬁ\|§ +

Adaptive Lasso: f,(3) = Eszl

Convex constraints: 7,(8) = {

(I1—a)||B|l; for some a € (0,1)

|8l
|ﬁni‘

for some consistent auxiliary estimator 3,

0 pBecC
o B¢cC

for some convex set C



A convenient framework

® A wide class of PEs from different choices of Bf,, W, and f,

® Embeds naturally Penalized Least Squares Estimators (PLSEs):

’ A 1
proc X/ "(85) = ngmin { 3 1¥ — X613+ A0 (6)

® PEs' properties derived within simple/unifying convex analysis framework:

— Asymptotic distribution, Oracle properties,...
— Weak/transparent assumptions on initial estimator ,@f,s and convex penalties f,

— Mainly determined by properties of penalties’ subgradient

® PEs can be developed to handle irregular designs where PLSEs may be ill-behaved



Asymptotic properties of PEs



Main high-level assumptions

® Properties of PEs determined by triplet ( A,s,, W,,, Anfp):

R R N 2
Br = proc (B7) = arg min {; |3 -5, + Anfn(ﬁ)}

® Main Assumptions (Consistency, Asymptotic Distribution)

Al W, —p, W, for some positive definite matrix Wo
A2 rn(ﬁf, — Bo) —d M, for some rate r, — 0o and some random variable n

A3 raAnf, —pr go in epigraph, for some limit penalty go

® Applicable to general class of convex Isc penalties and to irregular designs



Asymptotic distribution

Proposition (Asymptotic distribution of PEs)
Under Assumptions A1-A3:

1o (proxls (B7) = Bo) s proxtf o (m) = (1d = Piia,)) (n)

with directional derivative [subgradient] go'(-; Bo) [0g0(B0)] of limit penalty gy at By, and
projection operator:

Posan(1) = 218 , min I = Ol

® Functional characterization of PEs’ asy. distribution via limit penalty subgradient dgo(3o)

® Closed-form asymptotic distributions for established penalties in the literature



Example: Adaptive Lasso

Adaptive Lasso penalty 1,(3) = Zszl ||§;_|\
If \orn — 0 and A\,r2 — oo, then dgo(Bo) = span{e; : j € A}L:

W, (A
I'n (prox)\nfn(ﬂi) o ﬂO) —d P pan{e/JeA}( )
Regular linear regression model with spherical errors:

_Bs_ s

- W, = X’X/n — Qo = IE[X1X1’] and X/E/\/E 4 NN(O,JEQ())
Adaptive Lasso PLSE's (efficient) asy. distribution:

-1
Vn (proxf\:’"f 8r) - 50) —d Ppan{e JeA}(Qoflz) = {g(QO)A] (2)a

in A
in A€



Variable selection

Definition (Variable Selection)

Given a sequence of PE's estimated active sets:

Ao = {75 (ot (80)), # 0}
J
proxg'n/}n(,é,s,) is said to perform consistent variable selection (VS) if P(A, = A) — 1.

Proposition (Variable Selection)
Let Assumptions A1-A3 be satisfied. IF VS holds then, as n — oco:

P ((n)as = (PhRigy(m) ) =1-

Conversely, V'S holds if optimal subgradient vectors voP* = W, (85 — B,) € AnOf,(B,) are such that:

rn H(V:pt)Ac

L Pr00 asn— 00



Example: Adaptive Lasso

® Adaptive Lasso optimal subgradient vector implied by penalty 7,(8) = Zle ‘gi-‘l yields:

i [[(vP) e[|y = Aarn D (1/151])
jeAe
® Whenever \,r2 — oo and (8,).4c = Op,(1/r,):
In H(v,?”t)Ac | P 00

i.e., VS holds.



PEs for irregular designs



Linear regression model with irregular design

® Linear model Y = X3y + €
® Sample design matrix Q, := X'X/n

® Population design matrix Q. := E[Q)]

Definition (Irregular design)

(i) Singular design. There exists singular matrix Qg such that:
Qon, = Qu, forall n
(i) Nearly-singular design. Qq, is regular for all n and there exists singular matrix Qp such that:

Qo — Qg as n — o



Proximal estimation approach to irregular designs

Under an irregular design, the set of limit population LS solutions is not a singleton
Introduce a convenient identifiable parameter 3y € R”
Build initial estimator ,@i of By, which is well-behaved under both regular and irregular designs

Build suitable proximal estimator proxK'n/}n(@,s,) of Bg, which ideally satisfies the Oracle property



Ridgeless (limit) population parameter

® Let §p = limy 00 E[X'Y /1]

Definition (Ridgeless target parameter)

Given Moore-Penrose inverse Qa“, the Ridgeless population parameter is given by:

B = argmin{||B]l, : QoB = 6o} = Q5 éo

® (3¢ is identified under both a regular and an irregular design



Ridgeless estimator

Definition (Ridgeless estimator)

B; = argmin{[Bll, : @ = X'Y /n} = QI X'Y /n

o B =35 if Q, is regular

® Using standard assumptions, ,é’,f is v/n—consistent for ﬁar and asymptotically normal, both

under a regular and a singular design

® 3} is not consistent under a nearly-singular design, because @, is not a rank-consistent

estimator of Qg



Consistent modified Ridgeless estimation of 37

Definition (Modified Ridgeless estimator)

Modified Ridgeless estimator of parameter 3 is:

By = arg min{1B]l, : Q.8=X'Y/ny=Q;X'Y/n,
where Q, is a consistent estimator of Qp that is rank consistent:
P(Range(@,) = Range(@)) — 1, asn— oo
* @, obtained by truncating eigenvalues of @, with hard threshold 1, &x n=® for suitable o > 0

° ﬁvf; is clearly a consistent estimator of 53 under both a regular and an irregular design



Asymptotic distribution of modified Ridgeless estimator

- MR1 X’e/\/n =4 Z ~ N(0,€0), with 2 symm. pos. semi definite
- MR2 /n(Q, — Qo) —4 O, for some random matrix ©

— MR3 Po(Q, — Qon)Py- = 0p(1/\/n)

Proposition (Asymptotic distribution of modified Ridgeless estimator)

If Qo, — Qo = TAH + o(1/1,), where T, — 0o as n — oo, and Assumptions MR1-MR2 hold, then:

V(B —B) —ami=Po(®+cA)Qy By +Qf Z ,

where \/n/1, — c € {0,1}. Thus, if Assumption MR3 also holds and ¢ = 0, thenn = QF Z.

° B,J{ is always asymptotically normally distributed whenever vec(®) is Gaussian
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PEs for irregular designs

® A weighting matrix satisfying Assumption A1l under Assumptions MR1-MR2:

anan = én‘f'l_éné: —p Qo = Qo-i-l—QoQa_

Proposition (Asymptotic distribution of PEs for irregular designs)

Consider following PE:
proxa” (B ) = arg min —1 ||,5Jr — ,BH*2 + Anfa(B)
Aol Bere | 2177 Q, mn

If Assumptions MR1, MR2 and A3 hold, then:

Qv (A+) _ 3+ Q _ _ pQ
vn (prox nfn('B”) B ) —d proxgéo(ﬁé:-)(n) o (Id PB;&%)) ()



Oracle PEs for irregular designs

Proposition (Oracle PE for irregular designs)

Given Adaptive Lasso penalty ,(8) = >, |ﬂ,|/|B;§ , define PE:

G, (3 1 2
proxy. (By) = arg min {5 18y - 8ll5, + Anfn(ﬁ)}
Let Assumptions A3 and MR1-MR3 hold with ¢ = 0. If \,n/n — 0 and \,n — +occ then:

_ (" (pror, (1) - B3 N ((0).4, 031(Q0).al*)
v ( (prox?n"fn([é',f) — By ) ac ) 7 ( (0).a. ) .

Moreover, the consistent variable selection property holds.



n

R 2
Squared errors ||35 — B ’2 for RLAL and MRLAL vs. A\, = n~® [a € (0.5,1)]

n=100 | regular setting

n=200 | regular setting

0.5 0.6 0.7 0.8 0.9 1.0 0.5
a

n=100 | singular setting

0.6 0.7 0.8 0.9 1.0
a

Squared errors quantiles for n=200

0.5 06 0.7 08 0.9 1.0 05
a

n=100 | near-singular setting

0.6 0.7 08 09 1.0
a



Detection probabilities P(A, = A) of RLAL and MRLAL vs. A, = n~* [a € (0.5,1)]
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Conclusions

A convenient class of PEs built with minimum distance corrections defined through smooth
proximal operators

A unifying convex analysis framework characterizing PEs’ asymptotic properties:

— Asymptotic distribution, Oracle property,...
Oracle PE of minimum norm parameter in linear regression models with an irregular design

Extensions:

— Instrumental variables proximal estimation and inference under weak instruments

— Estimation of stochastic discount factors in economies with nearly redundant payoffs



Thank youl!
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