Proximal Estimation and Inference

Alberto Quaini^a Fabio Trojani^b

^aErasmus University ^bUniversity of Geneva, University of Turin and SFI

ESEM 2024, Rotterdam

Proximal Estimation

Let $\hat{\boldsymbol{\beta}}_n^s$ be an initial estimator for a target parameter of interest $\boldsymbol{\beta}_0 \in \mathbb{R}^p$

Definition (Proximal Estimator (PE))

Given symm. pos. def. matrix W_n , convex lsc f_n and $\lambda_n > 0$:

$$\hat{\boldsymbol{\beta}}_{n} := \operatorname{prox}_{\lambda_{n}\boldsymbol{f}_{n}}^{\boldsymbol{W}_{n}}(\hat{\boldsymbol{\beta}}_{n}^{s}) := \arg\min_{\boldsymbol{\beta}} \left\{ \frac{1}{2} \left\| \hat{\boldsymbol{\beta}}_{n}^{s} - \boldsymbol{\beta} \right\|_{\boldsymbol{W}_{n}}^{2} + \lambda_{n}\boldsymbol{f}_{n}(\boldsymbol{\beta}) \right\}$$

is called a proximar estimator of eta_0

PEs are penalized minimum distance corrections defined via a (differentiable) proximal operator prox^{W_n}/_{λ_nf_n}

- Ridge: $f_n(\beta) = \frac{1}{2} \|\beta\|_2^2$
- Lasso: $f_n(\beta) = \|\beta\|_1$
- Elastic Net: $f_n(\beta) = \frac{\alpha}{2} \|\beta\|_2^2 + (1-\alpha) \|\beta\|_1$ for some $\alpha \in (0,1)$
- Adaptive Lasso: $f_n(\beta) = \sum_{k=1}^{K} \frac{|\beta_i|}{|\beta_{ni}|}$ for some consistent auxiliary estimator $\tilde{\beta}_n$
- Convex constraints: $f_n(\beta) = \begin{cases} 0 & \beta \in C \\ \infty & \beta \notin C \end{cases}$ for some convex set C

A convenient framework

- A wide class of PEs from different choices of $\hat{\beta}_n^s$, W_n and f_n
- Embeds naturally Penalized Least Squares Estimators (PLSEs):

$$\operatorname{prox}_{\lambda_{n}f_{n}}^{\mathbf{X}'\mathbf{X}/n}(\hat{\boldsymbol{\beta}}_{n}^{l_{s}}) = \arg\min_{\boldsymbol{\beta}} \left\{ \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda_{n}f_{n}(\boldsymbol{\beta}) \right\}$$

- PEs' properties derived within simple/unifying convex analysis framework:
 - Asymptotic distribution, Oracle properties,...
 - Weak/transparent assumptions on initial estimator $\hat{m{eta}}_n^{ls}$ and convex penalties f_n
 - Mainly determined by properties of penalties' subgradient
- PEs can be developed to handle irregular designs where PLSEs may be ill-behaved

Asymptotic properties of PEs

• Properties of PEs determined by triplet $(\hat{\beta}_n^s, W_n, \lambda_n f_n)$:

$$\hat{oldsymbol{eta}}_n := extsf{prox}_{\lambda_n f_n}^{\mathcal{W}_n}(\hat{oldsymbol{eta}}_n^s) := rgmin_{oldsymbol{eta}} \left\{ rac{1}{2} \left\| \hat{oldsymbol{eta}}_n^s - oldsymbol{eta}
ight\|_{\mathcal{W}_n}^2 + \lambda_n f_n(oldsymbol{eta})
ight\}$$

• Main Assumptions (Consistency, Asymptotic Distribution)

A1 $W_n \rightarrow_{\Pr} W_0$ for some positive definite matrix W_0

A2 $r_n(\hat{\beta}_n^s - \beta_0) \rightarrow_d \eta$, for some rate $r_n \rightarrow \infty$ and some random variable η

A3 $r_n \lambda_n f_n \rightarrow_{\Pr} g_0$ in epigraph, for some limit penalty g_0

• Applicable to general class of convex lsc penalties and to irregular designs

Proposition (Asymptotic distribution of PEs)

Under Assumptions A1–A3:

$$r_n\left(\operatorname{prox}_{\lambda_n f_n}^{W_n}(\hat{\boldsymbol{\beta}}_n^s) - \boldsymbol{\beta}_0\right) \to_d \operatorname{prox}_{g_0'(\cdot;\boldsymbol{\beta}_0)}^{W_0}(\boldsymbol{\eta}) = \left(\operatorname{Id} - P_{\partial g_0(\boldsymbol{\beta}_0)}^{W_0}\right)(\boldsymbol{\eta})$$

with directional derivative [subgradient] $g_0'(\cdot; \beta_0)$ [$\partial g_0(\beta_0)$] of limit penalty g_0 at β_0 , and projection operator:

$$\mathsf{P}^{W_0}_{\partial_{\mathbf{g}_0}(oldsymbol{eta}_0)}(oldsymbol{\eta}) := rg\min_{oldsymbol{ heta}\in\partial_{\mathbf{g}_0}(oldsymbol{eta}_0)} \|oldsymbol{\eta} - oldsymbol{ heta}\|_{W_0}$$

- Functional characterization of PEs' asy. distribution via limit penalty subgradient $\partial g_0(\beta_0)$
- Closed-form asymptotic distributions for established penalties in the literature

Example: Adaptive Lasso

- Adaptive Lasso penalty $f_n(\beta) = \sum_{k=1}^{K} \frac{|\beta_i|}{|\tilde{\beta}_{ni}^s|}$
- If $\lambda_n r_n \to 0$ and $\lambda_n r_n^2 \to \infty$, then $\partial g_0(\beta_0) = \operatorname{span}\{e_j : j \in \mathcal{A}\}^{\perp}$:

$$r_n\left(\mathrm{prox}_{\lambda_n f_n}^{W_n}(\hat{\boldsymbol{\beta}}_n^s) - \boldsymbol{\beta}_0\right) \to_d P_{\frac{\mathsf{span}}{\mathsf{span}}\{e_j: j \in \mathcal{A}\}}^{W_0}(\boldsymbol{\eta})$$

• Regular linear regression model with spherical errors:

$$- \hat{\boldsymbol{\beta}}_n^s = \hat{\boldsymbol{\beta}}_n^{ls}$$

- $\hspace{0.1 cm} \textit{W}_n = \textit{X}'\textit{X}/n \rightarrow \textit{Q}_0 := \mathbb{E}[\textit{X}_1\textit{X}_1'] \hspace{0.1 cm} \text{and} \hspace{0.1 cm} \textit{X}'\epsilon/\sqrt{n} \rightarrow_d \textit{Z} \sim \mathcal{N}(\textit{0},\sigma_\epsilon\textit{Q}_0)$
- Adaptive Lasso PLSE's (efficient) asy. distribution:

$$\sqrt{n}\left(\operatorname{prox}_{\lambda_n f_n}^{\mathbf{Q}_n}(\hat{\boldsymbol{\beta}}_n^{ls}) - \boldsymbol{\beta}_0\right) \to_d P_{\operatorname{span}\{\boldsymbol{e}_j: \boldsymbol{j} \in \mathcal{A}\}}^{\mathbf{Q}_0}(\boldsymbol{Q}_0^{-1}\boldsymbol{Z}) = \begin{cases} [(\boldsymbol{Q}_0)_{\mathcal{A}}]^{-1}(\boldsymbol{Z})_{\mathcal{A}} & \text{in } \mathcal{A} \\ 0 & \text{in } \mathcal{A}^c \end{cases}$$

Variable selection

Definition (Variable Selection)

Given a sequence of PE's estimated active sets:

$$\hat{\mathcal{A}}_n = \left\{ j : \left(\operatorname{prox}_{\lambda_n f_n}^{\mathbf{W}_n} (\hat{\boldsymbol{\beta}}_n^s) \right)_j \neq 0 \right\} \;,$$

 $\operatorname{prox}_{\lambda_n f_n}^{W_n}(\hat{\beta}_n^s)$ is said to perform consistent variable selection (VS) if $\mathbb{P}(\hat{\mathcal{A}}_n = \mathcal{A}) \to 1$.

Proposition (Variable Selection)

Let Assumptions A1–A3 be satisfied. IF VS holds then, as $n \to \infty$:

$$\mathbb{P}\left((oldsymbol{\eta})_{\mathcal{A}^c} = \left(P^{oldsymbol{\mathcal{W}}_0}_{\partial oldsymbol{g}_0(oldsymbol{eta}_0)}(oldsymbol{\eta})
ight)_{\mathcal{A}^c}
ight) = 1 \;.$$

Conversely, VS holds if optimal subgradient vectors $\mathbf{v}_n^{opt} = \mathbf{W}_n(\hat{\boldsymbol{\beta}}_n^s - \hat{\boldsymbol{\beta}}_n) \in \lambda_n \partial f_n(\hat{\boldsymbol{\beta}}_n)$ are such that: $r_n \left\| (\mathbf{v}_n^{opt})_{\mathcal{A}^c} \right\|_1 \to_{\Pr} \infty \quad \text{as } n \to \infty$ • Adaptive Lasso optimal subgradient vector implied by penalty $f_n(\beta) = \sum_{k=1}^{K} \frac{|\beta_i|}{|\beta_{ni}|}$ yields:

$$r_n \left\| (\boldsymbol{v}_n^{opt})_{\mathcal{A}^c} \right\|_1 = \lambda_n r_n \sum_{j \in \mathcal{A}^c} (1/|\tilde{\beta}_{nj}|)$$

• Whenever $\lambda_n r_n^2 \to \infty$ and $(\tilde{\beta}_n)_{\mathcal{A}^c} = O_{\mathsf{Pr}}(1/r_n)$:

$$r_n \left\| (\boldsymbol{v}_n^{opt})_{\mathcal{A}^c} \right\|_1 \to_{\mathsf{Pr}} \infty$$

i.e., VS holds.

PEs for irregular designs

Linear regression model with irregular design

- Linear model $\boldsymbol{Y} = \boldsymbol{X} \boldsymbol{\beta}_0 + \boldsymbol{\epsilon}$
- Sample design matrix $\boldsymbol{Q}_n := \boldsymbol{X}' \boldsymbol{X} / n$
- Population design matrix $oldsymbol{Q}_{0n} := \mathbb{E}[oldsymbol{Q}_n]$

Definition (Irregular design)

(i) Singular design. There exists singular matrix Q_0 such that:

$$\boldsymbol{Q}_{0n} = \boldsymbol{Q}_0, \quad ext{for all } n$$

(ii) Nearly-singular design. Q_{0n} is regular for all n and there exists singular matrix Q_0 such that:

$$oldsymbol{Q}_{0 \, n}
ightarrow oldsymbol{Q}_{0}$$
 as $n
ightarrow \infty$

Proximal estimation approach to irregular designs

- Under an irregular design, the set of limit population LS solutions is not a singleton
- Introduce a convenient identifiable parameter $eta_0 \in \mathbb{R}^p$
- Build initial estimator $\hat{\beta}_n^s$ of β_0 , which is well-behaved under both regular and irregular designs
- Build suitable proximal estimator $\operatorname{prox}_{\lambda_n f_0}^{W_n}(\hat{\beta}_n^s)$ of β_0 , which ideally satisfies the Oracle property

Ridgeless (limit) population parameter

• Let
$$\delta_0 := \lim_{n \to \infty} \mathbb{E}[\boldsymbol{X}' \boldsymbol{Y} / n]$$

Definition (Ridgeless target parameter)

Given Moore-Penrose inverse Q_0^+ , the Ridgeless population parameter is given by:

$$eta_0^+ := rg\min_{oldsymbol{eta}} \{ \|oldsymbol{eta}\|_2 : oldsymbol{Q}_0 oldsymbol{eta} = oldsymbol{\delta}_0 \} = oldsymbol{Q}_0^+ oldsymbol{\delta}_0$$

• β_0^+ is identified under both a regular and an irregular design

Ridgeless estimator

Definition (Ridgeless estimator)

$$\hat{\boldsymbol{\beta}}_n^+ := \arg\min_{\boldsymbol{\beta}} \{ \|\boldsymbol{\beta}\|_2 : \boldsymbol{Q}_n \boldsymbol{\beta} = \boldsymbol{X}' \boldsymbol{Y} / n \} = \boldsymbol{Q}_n^+ \boldsymbol{X}' \boldsymbol{Y} / n$$

- $\hat{\boldsymbol{\beta}}_n^+ = \hat{\boldsymbol{\beta}}_n^{ls}$ if \boldsymbol{Q}_n is regular
- Using standard assumptions, $\hat{\beta}_n^+$ is \sqrt{n} -consistent for β_0^+ and asymptotically normal, both under a regular and a singular design
- $\hat{\beta}_n^+$ is not consistent under a nearly-singular design, because Q_n is not a rank-consistent estimator of Q_0

Definition (Modified Ridgeless estimator)

Modified Ridgeless estimator of parameter β_0^+ is:

$$\check{\boldsymbol{\beta}}_n^+ := \arg\min_{\boldsymbol{\beta}} \{ \|\boldsymbol{\beta}\|_2 : \check{\boldsymbol{Q}}_n \boldsymbol{\beta} = \boldsymbol{X}' \boldsymbol{Y}/n \} = \check{\boldsymbol{Q}}_n^+ \boldsymbol{X}' \boldsymbol{Y}/n \; ,$$

where $\check{\boldsymbol{Q}}_n$ is a consistent estimator of \boldsymbol{Q}_0 that is rank consistent:

$$\mathbb{P}(\mathsf{Range}(\check{\boldsymbol{Q}}_n) = \mathsf{Range}(\boldsymbol{Q}_0)) o 1, \quad \mathsf{as} \ n o \infty$$

- \check{Q}_n obtained by truncating eigenvalues of Q_n with hard threshold $\mu_n \propto n^{-\alpha}$ for suitable $\alpha > 0$
- $\check{\beta}^+_n$ is clearly a consistent estimator of β^+_0 under both a regular and an irregular design

Asymptotic distribution of modified Ridgeless estimator

- MR1 $\pmb{X}' \epsilon / \sqrt{n}
 ightarrow_d \pmb{Z} \sim \mathcal{N}(\pmb{0}, \pmb{\Omega}_0)$, with $\pmb{\Omega}_0$ symm. pos. semi definite
- MR2 $\sqrt{n}(\boldsymbol{Q}_n \boldsymbol{Q}_{0n}) \rightarrow_d \boldsymbol{\Theta}$, for some random matrix $\boldsymbol{\Theta}$

- MR3
$$oldsymbol{P}_0(oldsymbol{Q}_n-oldsymbol{Q}_{0n})oldsymbol{P}_0^\perp=o_p(1/\sqrt{n})$$

Proposition (Asymptotic distribution of modified Ridgeless estimator)

If $Q_{0n} - Q_0 = \frac{\Delta}{\tau_n} + o(1/\tau_n)$, where $\tau_n \to \infty$ as $n \to \infty$, and Assumptions MR1-MR2 hold, then:

$$\sqrt{n}(\check{oldsymbol{eta}}_n^+-eta_0^+)
ightarrow_d \eta:=oldsymbol{P}_0(\Theta+c\Delta)oldsymbol{Q}_0^+eta_0^++oldsymbol{Q}_0^+oldsymbol{eta}_0^++oldsymbol{Q}_0^+oldsymbol{Z}\;,$$

where $\sqrt{n}/\tau_n \rightarrow c \in \{0,1\}$. Thus, if Assumption MR3 also holds and c = 0, then $\eta = Q_0^+ Z$.

• $\check{\beta}_n^+$ is always asymptotically normally distributed whenever $vec(\Theta)$ is Gaussian

Squared errors $\left\|\hat{\beta}_{n}^{s} - \beta_{0}^{+}\right\|_{2}^{2}$ of Ridgeless/modified Rideless

Nearly singular: normalized squared errors $n \left\| \hat{\beta}_n^s - \beta_0^+ \right\|_2^2$ of Ridgeless/modified Rideless

• A weighting matrix satisfying Assumption A1 under Assumptions MR1-MR2:

$$\boldsymbol{W}_n = \overline{\check{\boldsymbol{Q}}}_n := \check{\boldsymbol{Q}}_n + \boldsymbol{I} - \check{\boldsymbol{Q}}_n \check{\boldsymbol{Q}}_n^+ o_{\mathtt{Pr}} \overline{\boldsymbol{Q}}_0 := \boldsymbol{Q}_0 + \boldsymbol{I} - \boldsymbol{Q}_0 \boldsymbol{Q}_0^+$$

Proposition (Asymptotic distribution of PEs for irregular designs)

Consider following PE:

$$\mathit{prox}_{\lambda_n f_n}^{\overline{\mathbf{Q}}_n}(\check{\boldsymbol{\beta}}_n^+) = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ rac{1}{2} \left\| \check{\boldsymbol{\beta}}_n^+ - \boldsymbol{\beta}
ight\|_{\overline{\mathbf{Q}}_n}^2 + \lambda_n f_n(\boldsymbol{\beta})
ight\}$$

If Assumptions MR1, MR2 and A3 hold, then:

$$\sqrt{n}\left(\operatorname{prox}_{\lambda_{n}f_{n}}^{\overline{\mathbf{Q}}_{n}}(\check{\boldsymbol{\beta}}_{n}^{+})-\boldsymbol{\beta}_{0}^{+}\right)\rightarrow_{d}\operatorname{prox}_{g_{0}^{\prime}(\boldsymbol{\beta}_{0}^{+};\cdot)}^{\overline{\mathbf{Q}}_{0}}(\boldsymbol{\eta})=\left(\operatorname{Id}-P_{\partial g_{0}(\boldsymbol{\beta}_{0}^{+})}^{\overline{\mathbf{Q}}_{0}}\right)(\boldsymbol{\eta})$$

Proposition (Oracle PE for irregular designs)

Given Adaptive Lasso penalty $f_n(\beta) = \sum_{i=1}^p |\beta_i| / |\check{\beta}_{in}^+|$, define PE:

$$prox_{\lambda_n f_n}^{\overline{oldsymbol{Q}}_n}(oldsymbol{\check{eta}}_n^+) = \arg\min_{oldsymbol{eta}\in\mathbb{R}^p} \left\{ rac{1}{2} \left\|oldsymbol{\check{eta}}_n^+ - oldsymbol{eta}
ight\|_{\overline{oldsymbol{Q}}_n}^2 + \lambda_n f_n(oldsymbol{eta})
ight\}$$

Let Assumptions A3 and MR1-MR3 hold with c = 0. If $\lambda_n \sqrt{n} \to 0$ and $\lambda_n n \to +\infty$ then:

$$\sqrt{n} \left(\begin{array}{c} (\operatorname{prox}_{\lambda_n f_n}^{\overline{\mathbf{Q}}_n}(\check{\beta}_n^+) - \beta_0^+)_{\mathcal{A}} \\ (\operatorname{prox}_{\lambda_n f_n}^{\overline{\mathbf{Q}}_n}(\check{\beta}_n^+) - \beta_0^+)_{\mathcal{A}^c} \end{array} \right) \rightarrow_d \left(\begin{array}{c} \mathsf{N}\left((\mathbf{0})_{\mathcal{A}}, \sigma_0^2[(\mathbf{Q}_0)_{\mathcal{A}}]^+\right) \\ (\mathbf{0})_{\mathcal{A}_c} \end{array} \right)$$

Moreover, the consistent variable selection property holds.

Squared errors
$$\left\|\hat{\beta}_{n}^{s}-\beta_{0}^{+}\right\|_{2}^{2}$$
 for RLAL and MRLAL vs. $\lambda_{n}=n^{-\alpha}$ [$\alpha\in(0.5,1)$]

Detection probabilities $\mathbb{P}(\hat{\mathcal{A}}_n = \mathcal{A})$ of RLAL and MRLAL vs. $\lambda_n = n^{-\alpha} [\alpha \in (0.5, 1)]$

Conclusions

- A convenient class of PEs built with minimum distance corrections defined through smooth proximal operators
- A unifying convex analysis framework characterizing PEs' asymptotic properties:
 - Asymptotic distribution, Oracle property,...
- Oracle PE of minimum norm parameter in linear regression models with an irregular design
- Extensions:
 - Instrumental variables proximal estimation and inference under weak instruments
 - Estimation of stochastic discount factors in economies with nearly redundant payoffs

Thank you!