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Proximal Estimation

Let β̂s
n be an initial estimator for a target parameter of interest β0 ∈ Rp

Definition (Proximal Estimator (PE))

Given symm. pos. def. matrix Wn, convex lsc fn and λn > 0:

β̂n := proxWn

λnfn
(β̂s

n) := arg min
β

{
1

2

∥∥∥β̂s
n − β

∥∥∥2

Wn

+ λnfn(β)

}
is called a proximar estimator of β0

• PEs are penalized minimum distance corrections defined via a (differentiable) proximal
operator proxWn

λnfn
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Well-known convex lsc penalties of class Γ(Rp)

• Ridge: fn(β) = 1
2 ‖β‖

2
2

• Lasso: fn(β) = ‖β‖1

• Elastic Net: fn(β) = α
2 ‖β‖

2
2 + (1− α) ‖β‖1 for some α ∈ (0, 1)

• Adaptive Lasso: fn(β) =
∑K

k=1
|βi |
|β̃ni |

for some consistent auxiliary estimator β̃n

• Convex constraints: fn(β) =

{
0 β ∈ C

∞ β /∈ C
for some convex set C
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A convenient framework

• A wide class of PEs from different choices of β̂s
n, Wn and fn

• Embeds naturally Penalized Least Squares Estimators (PLSEs):

prox
X ′X/n
λnfn

(β̂ls
n ) = arg min

β

{
1

2
‖Y − Xβ‖2

2 + λnfn(β)

}

• PEs’ properties derived within simple/unifying convex analysis framework:

– Asymptotic distribution, Oracle properties,...

– Weak/transparent assumptions on initial estimator β̂ls
n and convex penalties fn

– Mainly determined by properties of penalties’ subgradient

• PEs can be developed to handle irregular designs where PLSEs may be ill-behaved
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Asymptotic properties of PEs
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Main high-level assumptions

• Properties of PEs determined by triplet (β̂s
n,Wn, λnfn):

β̂n := proxWn

λnfn
(β̂s

n) := arg min
β

{
1

2

∥∥∥β̂s
n − β

∥∥∥2

Wn

+ λnfn(β)

}

• Main Assumptions (Consistency, Asymptotic Distribution)

A1 Wn →Pr W0 for some positive definite matrix W0

A2 rn(β̂s
n − β0)→d η, for some rate rn →∞ and some random variable η

A3 rnλnfn →Pr g0 in epigraph, for some limit penalty g0

• Applicable to general class of convex lsc penalties and to irregular designs
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Asymptotic distribution

Proposition (Asymptotic distribution of PEs)

Under Assumptions A1–A3:

rn
(

proxWn

λnfn
(β̂s

n)− β0

)
→d proxW0

g0
′(·;β0)(η) =

(
Id − PW0

∂g0(β0)

)
(η)

with directional derivative [subgradient] g0
′(·;β0) [∂g0(β0)] of limit penalty g0 at β0, and

projection operator:

PW0

∂g0(β0)(η) := arg min
θ∈∂g0(β0)

‖η − θ‖W0

• Functional characterization of PEs’ asy. distribution via limit penalty subgradient ∂g0(β0)

• Closed-form asymptotic distributions for established penalties in the literature
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Example: Adaptive Lasso

• Adaptive Lasso penalty fn(β) =
∑K

k=1
|βi |
|β̃s

ni |

• If λnrn → 0 and λnr
2
n →∞, then ∂g0(β0) = span{ej : j ∈ A}⊥:

rn
(

proxWn

λnfn
(β̂s

n)− β0

)
→d PW0

span{ej :j∈A}(η)

• Regular linear regression model with spherical errors:

– β̂s
n = β̂ls

n

– Wn = X ′X/n→ Q0 := E[X1X ′
1] and X ′ε/

√
n→d Z ∼ N (0, σεQ0)

• Adaptive Lasso PLSE’s (efficient) asy. distribution:

√
n
(

proxQn

λnfn
(β̂ls

n )− β0

)
→d PQ0

span{ej :j∈A}(Q0
−1Z ) =

{
[(Q0)A]−1(Z )A in A
0 in Ac
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Variable selection

Definition (Variable Selection)

Given a sequence of PE’s estimated active sets:

Ân =

{
j :
(

proxWn

λnfn
(β̂s

n)
)
j
6= 0

}
,

proxWn

λnfn
(β̂s

n) is said to perform consistent variable selection (VS) if P(Ân = A)→ 1.

Proposition (Variable Selection)

Let Assumptions A1–A3 be satisfied. IF VS holds then, as n→∞:

P
(

(η)Ac =
(
PW0

∂g0(β0)(η)
)
Ac

)
= 1 .

Conversely, VS holds if optimal subgradient vectors v opt
n = Wn(β̂s

n− β̂n) ∈ λn∂fn(β̂n) are such that:

rn
∥∥(v opt

n )Ac

∥∥
1
→Pr ∞ as n→∞
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Example: Adaptive Lasso

• Adaptive Lasso optimal subgradient vector implied by penalty fn(β) =
∑K

k=1
|βi |
|β̃ni |

yields:

rn
∥∥(v opt

n )Ac

∥∥
1

= λnrn
∑
j∈Ac

(1/|β̃nj |)

• Whenever λnr
2
n →∞ and (β̃n)Ac = OPr(1/rn):

rn
∥∥(v opt

n )Ac

∥∥
1
→Pr ∞

i.e., VS holds.
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PEs for irregular designs
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Linear regression model with irregular design

• Linear model Y = Xβ0 + ε

• Sample design matrix Qn := X ′X/n

• Population design matrix Q0n := E[Qn]

Definition (Irregular design)

(i) Singular design. There exists singular matrix Q0 such that:

Q0n = Q0, for all n

(ii) Nearly-singular design. Q0n is regular for all n and there exists singular matrix Q0 such that:

Q0n → Q0 as n→∞
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Proximal estimation approach to irregular designs

• Under an irregular design, the set of limit population LS solutions is not a singleton

• Introduce a convenient identifiable parameter β0 ∈ Rp

• Build initial estimator β̂s
n of β0, which is well-behaved under both regular and irregular designs

• Build suitable proximal estimator proxWn

λnfn
(β̂s

n) of β0, which ideally satisfies the Oracle property
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Ridgeless (limit) population parameter

• Let δ0 := limn→∞ E[X ′Y /n]

Definition (Ridgeless target parameter)

Given Moore-Penrose inverse Q+
0 , the Ridgeless population parameter is given by:

β+
0 := arg min

β
{‖β‖2 : Q0β = δ0} = Q+

0 δ0

• β+
0 is identified under both a regular and an irregular design
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Ridgeless estimator

Definition (Ridgeless estimator)

β̂+
n := arg min

β
{‖β‖2 : Qnβ = X ′Y /n} = Q+

n X ′Y /n

• β̂+
n = β̂ls

n if Qn is regular

• Using standard assumptions, β̂+
n is
√
n−consistent for β+

0 and asymptotically normal, both
under a regular and a singular design

• β̂+
n is not consistent under a nearly-singular design, because Qn is not a rank-consistent

estimator of Q0
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Consistent modified Ridgeless estimation of β+
0

Definition (Modified Ridgeless estimator)

Modified Ridgeless estimator of parameter β+
0 is:

β̌+
n := arg min

β
{‖β‖2 : Q̌nβ = X ′Y /n} = Q̌+

n X ′Y /n ,

where Q̌n is a consistent estimator of Q0 that is rank consistent:

P(Range(Q̌n) = Range(Q0))→ 1, as n→∞

• Q̌n obtained by truncating eigenvalues of Qn with hard threshold µn ∝ n−α for suitable α > 0

• β̌+
n is clearly a consistent estimator of β+

0 under both a regular and an irregular design
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Asymptotic distribution of modified Ridgeless estimator

– MR1 X ′ε/
√
n→d Z ∼ N (0,Ω0), with Ω0 symm. pos. semi definite

– MR2
√
n(Qn −Q0n)→d Θ, for some random matrix Θ

– MR3 P0(Qn −Q0n)P⊥0 = op(1/
√
n)

Proposition (Asymptotic distribution of modified Ridgeless estimator)

If Q0n −Q0 = ∆
τn

+ o(1/τn), where τn →∞ as n→∞, and Assumptions MR1-MR2 hold, then:

√
n(β̌+

n − β+
0 )→d η := P0(Θ + c∆)Q+

0 β+
0 + Q+

0 Z ,

where
√
n/τn → c ∈ {0, 1}. Thus, if Assumption MR3 also holds and c = 0, then η = Q+

0 Z .

• β̌+
n is always asymptotically normally distributed whenever vec(Θ) is Gaussian
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Squared errors
∥∥∥β̂s

n − β+
0

∥∥∥2

2
of Ridgeless/modified Rideless
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Nearly singular: normalized squared errors n
∥∥∥β̂s

n − β+
0

∥∥∥2

2
of Ridgeless/modified Rideless
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PEs for irregular designs

• A weighting matrix satisfying Assumption A1 under Assumptions MR1-MR2:

Wn = Q̌n := Q̌n + I − Q̌nQ̌+
n →Pr Q0 := Q0 + I −Q0Q+

0

Proposition (Asymptotic distribution of PEs for irregular designs)

Consider following PE:

proxQ̌n

λnfn
(β̌+

n ) = arg min
β∈Rp

{
1

2

∥∥β̌+
n − β

∥∥2

Q̌n
+ λnfn(β)

}
If Assumptions MR1, MR2 and A3 hold, then:

√
n

(
proxQ̌n

λnfn
(β̌+

n )− β+
0

)
→d proxQ0

g ′
0 (β+

0 ;·)(η) =
(
Id − PQ0

∂g0(β+
0 )

)
(η)
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Oracle PEs for irregular designs

Proposition (Oracle PE for irregular designs)

Given Adaptive Lasso penalty fn(β) =
∑p

i=1 |βi |/|β̌
+
in |, define PE:

proxQ̌n

λnfn
(β̌+

n ) = arg min
β∈Rp

{
1

2

∥∥β̌+
n − β

∥∥2

Q̌n
+ λnfn(β)

}
Let Assumptions A3 and MR1-MR3 hold with c = 0. If λn

√
n→ 0 and λnn→ +∞ then:

√
n

(
(proxQ̌n

λnfn
(β̌+

n )− β+
0 )A

(proxQ̌n

λnfn
(β̌+

n )− β+
0 )Ac

)
→d

(
N
(
(0)A, σ

2
0[(Q0)A]+

)
(0)Ac

)
.

Moreover, the consistent variable selection property holds.
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Squared errors
∥∥∥β̂s

n − β+
0

∥∥∥2

2
for RLAL and MRLAL vs. λn = n−α [α ∈ (0.5, 1)]
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Detection probabilities P(Ân = A) of RLAL and MRLAL vs. λn = n−α [α ∈ (0.5, 1)]
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Conclusions

• A convenient class of PEs built with minimum distance corrections defined through smooth
proximal operators

• A unifying convex analysis framework characterizing PEs’ asymptotic properties:

– Asymptotic distribution, Oracle property,...

• Oracle PE of minimum norm parameter in linear regression models with an irregular design

• Extensions:

– Instrumental variables proximal estimation and inference under weak instruments

– Estimation of stochastic discount factors in economies with nearly redundant payoffs
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Thank you!
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