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Figure: AUC = 0.78

What is the contribution of each feature to the AUC?
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We introduce the XPER (eXplainable PERformance) methodology to measure
the specific contribution of the input features to the predictive performance of
a model.

This method is based on:

A Shapley Value decomposition (Shapley, 1953).

A Performance Metric (PM).

Predictions ŷ of a regression or classification model f (.).
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An intuitive primer on XPER

AUC ϕ0 ϕ1 ϕ2 ϕ3

Test sample 0.78 = 0.50 + 0.14 + 0.10 + 0.04

with ϕ0 a benchmark value, and ϕj the XPER contribution of feature xj to the
AUC of the model.
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Framework and Performance Metrics
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We consider a classification or a regression problem for which:

A dependent (target) variable denoted y takes values in Y. In case of
classification Y = {0, 1}, and in case of regression Y ⊂ R.

A q-vector x ∈ X refers to input (explanatory) features, with X ⊂ Rq.

We denote by f : x → ŷ a model, where ŷ ∈ Y is either a classification or
regression output, such as ŷ = f (x).
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The econometric or machine learning model may be parametric or not,
linear or not, individual or an ensemble classifier, etc.

The model is estimated (parametric model) or trained (machine learning
algorithm) once for all on an estimation or training sample {xj , yj}T

j=1.

The statistical performance of the model is evaluated on a test sample
Sn = {xi , yi , f̂ (xi )}n

i=1 for n individuals.
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Definition

A sample performance metric PMn ∈ Θ ⊆ R associated to the model f̂ (.) and
a test sample Sn is a scalar defined as:

PMn = G̃n(y1, ..., yn; f̂ (x1), ..., f̂ (xn)) = Gn(y; X),

where y = (y1, ..., yn)T and X = (x1, .., xn)T .

Examples:

Regression model: MSE, MAE, R-squared.

Classification model: AUC, Accuracy, Sensitivity, Specificity, Brier Score.

Economic criteria: Profit or cost function.
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Assumption 1
The sample performance metric satisfies an additive property such that:

Gn(y; X) = 1
n

n∑
i=1

G(yi ; xi ; δ̂n),

where G(yi ; xi ; δn) denotes an individual contribution to the performance metric
and δ̂n is a nuisance parameter which depends on the test sample Sn.

Example (Mean Squared Error (MSE))

Gn(y; X) = 1
n

n∑
i=1

G(yi ; xi ) = 1
n

n∑
i=1

(yi − f̂ (xi ))2.
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Assumption 2

The sample performance metric Gn(y; X; δ̂n) converges to the population
performance metric Ey,x(G(y ; x; δ0)), where Ey,x(.) refers to the expected value
with respect to the joint distribution of y and x, and δ0 = plim δ̂n.

Example (Mean Squared Error (MSE))

Ey,x(G(y ; x; δ0)) = Ey,x(y − f̂ (x))2.
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Theoretical Decomposition
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Intuition
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Intuition
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Intuition

12/22



Introduction Framework Theoretical Decomposition Empirical Application Conclusion

Intuition

12/22



Introduction Framework Theoretical Decomposition Empirical Application Conclusion

Intuition
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Intuition
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Intuition

13/22



Introduction Framework Theoretical Decomposition Empirical Application Conclusion

Definition (XPER value)
The contribution of feature xj to the performance metric is:

ϕj =
∑

S⊆P({x}\{xj})

wS

[
ExSEy,xj ,xS (G (y ; x; δ0)) − Exj ,xSEy,xS (G (y ; x; δ0))

]
,

with S a coalition, i.e., a subset of features, excluding the feature of interest xj ,
|S| the number of features in the coalition, and P({x} \ {xj}) the powerset of
the set {x} \ {xj}.

The XPER value ϕj associated to feature xj measures its weighted average
marginal contribution to the performance metric over all feature coalitions.
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Axiom 1. (Efficiency)
The sum of the XPER values ϕj , ∀j = 1, ..., q satisfies:

Ey,x(G(y ; x; δ0))︸ ︷︷ ︸
performance metric

= ϕ0︸︷︷︸
benchmark

+
q∑

j=1

ϕj︸︷︷︸
XPER value

,

ϕ0 = ExEy (G(y ; x; δ0))

with ϕ0 the performance metric associated to a population where the target
variable is independent from all features considered in the model.
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Definition (Individual XPER)
The individual XPER value ϕi,j associated to individual i is defined as:

ϕi,j(yi ; xi ) =
∑

S⊆P({x}\{xj})

wS

[
ExS (G (yi ; xi ; δ0)) − Exj ,xS (G (yi ; xi ; δ0))

]
.

For a given realisation (yi , xi ), the corresponding individual contribution to the
performance metric can be broken down into:

G(yi ; xi ; δ0) = ϕi,0 +
q∑

j=1

ϕi,j ,

where ϕi,j is the realisation of ϕi,j(yi ; xi ) and ϕi,0 is the realisation of
ϕi,0(yi ) = Ex(G(yi ; x; δ0)).

Example
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Empirical Application
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Database

Database of auto loans provided by an international bank:

Target variable yi :

1: Default

0: No default

7,440 consumer loans

10 features:

2 categorical features

8 continuous features
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Model

Table: XGBoost Performances

Sample Size (%) AUC Brier Score Accuracy BA Sensitivity Specificity
Training 70 0.8969 0.0958 86.98 72.43 48.18 96.69

Test 30 0.7521 0.1433 79.53 58.69 23.99 93.39
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XPER decomposition

Figure: XPER decomposition
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Using XPER to boost model performance

Figure: Two-step procedure using XPER
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Using XPER to boost model performance

Table: Model performances

Initial Clusters on XPER values Clusters on features
(1) (2) (3)

AUC 0.752 0.912 0.744
Brier score 0.143 0.080 0.151
Accuracy 79.53 89.11 79.53
Balanced Accuracy 58.69 79.74 59.11
Sensitivity 23.99 64.13 25.11
Specificity 93.39 95.35 93.11
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Conclusion

We introduce a methodology designed to measure the feature
contributions to the performance of any regression or classification
model.

Our methodology is theoretically grounded on Shapley values and is
both model-agnostic and performance metric-agnostic.

In a loan default forecasting application, XPER appears to be able to
significantly boost out-of-sample performance.
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Python package

Figure: Github link
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