

¹University of Orléans ²HEC Paris $34MSE$

Econometric Society European Meeting (ESEM)

August 26, 2024

S. Hué , C. Hurlin , C. Pérignon , S. Saurin Valley and Valley and University of Orléans HEC Paris AMSE

[Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring](#page-28-0) 1/22 1/22

Figure: $AUC = 0.78$

What is the contribution of each feature to the AUC?

We introduce the XPER (eXplainable PERformance) methodology to measure the specific contribution of the input features to the predictive performance of a model.

This method is based on:

- A Shapley Value decomposition (Shapley, 1953).
- A Performance Metric (PM).
- **•** Predictions \hat{y} of a regression or classification model $f(.)$.

[Introduction](#page-1-0) [Framework](#page-4-0) [Theoretical Decomposition](#page-12-0) [Empirical Application](#page-22-0) [Conclusion](#page-28-0)

000000 00000000 0000000 0000000 000000

An intuitive primer on XPER

with ϕ_0 a benchmark value, and ϕ_i the XPER contribution of feature x_i to the AUC of the model.

Framework and Performance Metrics

We consider a **classification** or a **regression** problem for which:

- \bullet A dependent (target) variable denoted y takes values in \mathcal{Y} . In case of classification $\mathcal{Y} = \{0, 1\}$, and in case of regression $\mathcal{Y} \subset \mathbb{R}$.
- A q-vector $\mathbf{x} \in \mathcal{X}$ refers to input (explanatory) features, with $\mathcal{X} \subset \mathbb{R}^q$.
- \bullet We denote by $f: \mathbf{x} \to \hat{y}$ a model, where $\hat{y} \in \mathcal{Y}$ is either a classification or regression output, such as $\hat{y} = f(\mathbf{x})$.

- The econometric or machine learning model may be parametric or not, linear or not, individual or an ensemble classifier, etc.
- The model is estimated (parametric model) or trained (machine learning algorithm) once for all on an estimation or training sample $\{ \mathbf{x}_j, y_j \}_{j=1}^T.$
- The statistical performance of the model is evaluated on a test sample $S_n = {\mathbf{x}_i, y_i, \hat{f}(\mathbf{x}_i)}_{i=1}^n$ for *n* individuals.

Definition

A sample performance metric $PM_n \in \Theta \subseteq \mathbb{R}$ associated to the model $\hat{f}(.)$ and a test sample S_n is a scalar defined as:

$$
PM_n = \tilde{G}_n(y_1, ..., y_n; \hat{f}(\mathbf{x_1}), ..., \hat{f}(\mathbf{x_n})) = G_n(\mathbf{y}; \mathbf{X}),
$$

where ${\bf y} = (y_1, ..., y_n)^T$ and ${\bf X} = (x_1, ..., x_n)^T$.

Examples:

- **•** Regression model: MSE, MAE, R-squared.
- Classification model: AUC, Accuracy, Sensitivity, Specificity, Brier Score. \bullet
- \bullet Economic criteria: Profit or cost function.

Assumption 1

The sample performance metric satisfies an additive property such that:

$$
G_n(\mathbf{y}; \mathbf{X}) = \frac{1}{n} \sum_{i=1}^n G(y_i; \mathbf{x}_i; \hat{\delta}_n),
$$

where $G(y_i; \mathbf{x}_i; \delta_n)$ denotes an individual contribution to the performance metric and $\hat{\delta}_n$ is a nuisance parameter which depends on the test sample S_n .

Assumption 1

The sample performance metric satisfies an additive property such that:

$$
G_n(\mathbf{y}; \mathbf{X}) = \frac{1}{n} \sum_{i=1}^n G(y_i; \mathbf{x}_i; \hat{\delta}_n),
$$

where $G(y_i; \mathbf{x}_i; \delta_n)$ denotes an individual contribution to the performance metric and $\hat{\delta}_n$ is a nuisance parameter which depends on the test sample S_n .

Example (Mean Squared Error (MSE))

$$
G_n(\mathbf{y}; \mathbf{X}) = \frac{1}{n} \sum_{i=1}^n G(y_i; \mathbf{x}_i) = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{f}(\mathbf{x}_i))^2.
$$

Assumption 2

The sample performance metric $G_n(\mathbf{y}; \mathbf{X}; \hat{\delta}_n)$ converges to the population performance metric $\mathbb{E}_{\gamma, \mathbf{x}}(G(\gamma; \mathbf{x}; \delta_0))$, where $\mathbb{E}_{\gamma, \mathbf{x}}(.)$ refers to the expected value with respect to the joint distribution of y and **x**, and $\delta_0 = \text{plim } \hat{\delta}_n$.

Example (Mean Squared Error (MSE))

$$
\mathbb{E}_{y,\mathbf{x}}(G(y;\mathbf{x};\delta_0))=\mathbb{E}_{y,\mathbf{x}}(y-\hat{f}(\mathbf{x}))^2.
$$

Theoretical Decomposition

Definition (XPER value)

The contribution of feature x_i to the performance metric is:

$$
\phi_j = \sum_{S \subseteq \mathcal{P}(\{x\} \setminus \{x_j\})} w_S \left[\mathbb{E}_{\mathbf{x}^{\overline{S}}} \mathbb{E}_{y, x_j, \mathbf{x}^S} \left(G \left(y; \mathbf{x}; \delta_0 \right) \right) - \mathbb{E}_{x_j, \mathbf{x}^{\overline{S}}} \mathbb{E}_{y, \mathbf{x}^S} \left(G \left(y; \mathbf{x}; \delta_0 \right) \right) \right],
$$

with S a coalition, i.e., a subset of features, excluding the feature of interest x_i , |S| the number of features in the coalition, and $\mathcal{P}(\{\mathbf{x}\}\setminus\{x_i\})$ the powerset of the set $\{x\} \setminus \{x_i\}$.

The XPER value ϕ_i associated to feature x_i measures its weighted average marginal contribution to the performance metric over all feature coalitions.

Axiom 1. (Efficiency)

The sum of the XPER values ϕ_i , $\forall j = 1, ..., q$ satisfies:

with *ϕ*⁰ the performance metric associated to a population where the target variable is independent from all features considered in the model.

Definition (Individual XPER)

The individual XPER value *ϕ*i*,*^j associated to individual i is defined as:

$$
\phi_{i,j}(y_i; \mathbf{x}_i) = \sum_{S \subseteq \mathcal{P}(\{\mathbf{x}\} \setminus \{x_j\})} w_S \left[\mathbb{E}_{\mathbf{x}^{\overline{S}}} \left(G \left(y_i; \mathbf{x}_i; \delta_0 \right) \right) - \mathbb{E}_{x_j, \mathbf{x}^{\overline{S}}} \left(G \left(y_i; \mathbf{x}_i; \delta_0 \right) \right) \right].
$$

For a given realisation (y_i, x_i) , the corresponding individual contribution to the performance metric can be broken down into:

$$
G(y_i; \mathbf{x}_i; \delta_0) = \phi_{i,0} + \sum_{j=1}^q \phi_{i,j},
$$

where $\phi_{i,j}$ is the realisation of $\phi_{i,j}(y_i; \mathbf{x}_i)$ and $\phi_{i,0}$ is the realisation of $\phi_{i,0}(y_i) = \mathbb{E}_{\mathbf{x}}(G(y_i; \mathbf{x}; \delta_0)).$

Empirical Application

Database of auto loans provided by an international bank:

- \bullet Target variable y_i :
	- 1: Default
	- 0: No default
- 7,440 consumer loans
- 10 features:
	- 2 categorical features
	- 8 continuous features

Table: XGBoost Performances

XPER decomposition

Figure: XPER decomposition

Using XPER to boost model performance

Figure: Two-step procedure using XPER

Using XPER to boost model performance

Table: Model performances

Conclusion

- We introduce a methodology designed to **measure the feature contributions to the performance** of any regression or classification model.
- **Our methodology is theoretically grounded** on Shapley values and is both model-agnostic and performance metric-agnostic.
- In a loan default forecasting application, XPER appears to be able to significantly **boost out-of-sample performance**.

Python package

Figure: Github link

