Success and Failure of a Zero-Interest Green Loan program: Evidence from France

Ilya Eryzhenskiy, Louis-Gaëtan Giraudet and Mariona Segú

EEA, Rotterdam, August 2024

Motivation

- ▶ Housing sector accounts for $\sim 20\%$ of global CO₂ emission
- ▶ Retrofitting housing stock crucial for mitigation
- ▶ Heavy investment: from \sim € 1,000s for new windows to several € 10,000s for complete retrofits
- ▶ It often requires a loan (40% of French households take a loan for deep retrofit)
 - \Rightarrow credit facilities as important policy tool, in addition to subsidies

Questions:

- Q1: Does access to low-cost credit for home retrofits accelerate retrofit investment?
- Q2: What are the possible barriers to implementation of low-cost credit policies?

Motivation

Study the impact of a Zero Interest Green Loan (ZIGL) in France

▶ Banks get an interest-dependent compensation from the Government in exchange for providing ZIGLs

Why a subsidized loan for home energy retrofits?

- 1. Classic Pigovian subsidy: internalizing energy-use externalities.
 - The implicit subsidy varies in time
 - Participation should increase with interest rates (demand-driven)
- 2. Solve information asymmetries excluding risky borrowers from credit markets

This paper

What we do:

- ▶ Study introduction of Zero Interest Green Loan (ZIGL) in 2009
- Use household survey from ADEME
- ▶ Difference-in-differences of renovation activity of eligible and non-eligible households

Results:

- \triangleright +3 to 4 p.p. (20-22%) of renovation probability; + € 127-175 (3-5%) to renovation spending in 2009-10, no effect in 2011-13
- ► The effect is strongest for low-income households (+11 p.p. of renovation probability).

Explaining the decline in 2011

- ▶ Lack of information about the program.
- ▶ Banks' opportunity cost: banks would rather propose their own loan products to finance the same investment.

Zero-Interest Green Loans

Related Literature

- 1. Evaluating energy efficiency subsidies: participation and energy savings
 - ▶ Review: Giraudet (2020) and Chlond et al. (2023)
 - France, tax credit program CITE: Nauleau (2014), Mauroux (2014), Risch (2020)
- 2. Subsidized Loans: effect on participation
 - ► Student loans (Cadena and Keys, 2012)
 - ▶ Housing loans (Martins and Villanueva, 2006; Gruber et al., 2021; Labonne and Welter-Nicol, 2017; Gobillon et al., 2022).
- 3. Intersection of environmental economics and household finance: the energy efficiency gap (Gerarden et al., 2017).
 - Demand-side choice experiments: debt aversion and financial illiteracy are important barriers to energy efficiency investment (Schleich et al., 2021; Schueftan et al., 2021)
 - ▶ Supply-side: high interest rates for home energy retrofits (Giraudet et al., 2021b)

Institutional Setting

The Zero-Interest Green Loan program Policy implemented in France in 2009

- Loans for energy retrofits e.g. isolation, new heating
- ► Supplied by banks: banks receive a compensation equal to the government bond rate + fixed spread
- Can be guaranteed, insured, or unsecured: up to banks

Program conditions in 2009-2013:

- ► Max amount € 30,000. Max duration 15 years
- > 2 renovation actions
- No income restriction
- ► Eligibility criterion: house built before 1990

Co-existing programmes: tax credit, energy economy certificates, energy saving obligations, VAT reductions. . . • In Numbers

Institutional Setting

Evolution of annual ZIGL provision and market interest rates.

Interest rate

Consumer loans

Government bond

Data

ADEME Panel Survey on energy characteristics of housing, energy consumption and attitudes, **retrofits**, 2000-2013.

- Subsample:
 - ► Only 2005-2013 data quality
 - ► Only homeowners (>95% of ZIGL recipients)
 - ▶ Only respondents present for > 1 period use of HH FE
- ▶ Resulting dataset: 9,657 households over 9 periods; 42,418 observations.
- Survey weights from ADEME used in all calculations

Descriptive Evidence

Evolution of renovation rates by treatment group, 2005-2013

Empirical Strategy

Event-study strategy

$$R_{i,t} = \alpha \; \mathsf{Eligible}_{i,t} + \sum_{t \neq 2008} \beta_t \; (\mathsf{Eligible}_{i,t} \times \tau_t) + \gamma X'_{i,t} + \tau_t + \mu_i + \epsilon_{i,t}$$

- $ightharpoonup R_{i,t}$ renovation decision (extensive margin) or renovation amount or number of actions (intensive) of HH i in year t
- $ightharpoonup eta_t$ are differences in differences effect of ZIGL eligibility
 - ▶ effect of access to credit ↔ intention-to-treat estimates
- $\triangleright X'_{i,t}$
 - At HH level: renovated in the past, age, occupation, income, surface area, type of heating system.
 - ▶ At aggregated level: municipality size (population) and region indicator.
- Survey weights used; standard errors clustered at HH level.

Extensive margin, retrofit probability

2009: +3.7 p.p. to retrofit probability with FE, +3.7 p.p. without **2010**: +3.9 p.p. to retrofit probability with FE, +2.8 p.p. without **2011-2013**: No effect

Heterogeneous effects: by income Triple Diff

Heterogeneous effects: by type of renovating action

2000

Intensive margin: renovation amount and number of renovation actions

Energy use

Do households actually reduced their energy consumption?

- ▶ Ideally, we would like to look at energy consumption data
 - While energy spending is in the survey, the quality of the data is poor...
 - Electricity consumption
- Instead, we can look at energy source switching

Heating fuel switching

► The ZIGL program may have induced the switch from relatively inefficient oil and gas heating systems to relatively more efficient electric systems.

Leverage and cost-effectiveness

Leverage: the extra euro amount of private investment induced by one euro of public spending on ZIGLs

$$\mathsf{Leverage}_t = \frac{\% \ \mathsf{extensive} \ \mathsf{margin} \ \mathsf{effect}_t + \% \ \mathsf{intensive} \ \mathsf{margin} \ \mathsf{effect}_t}{\% \ \mathsf{rate} \ \mathsf{of} \ \mathsf{public} \ \mathsf{cost}_t}$$

	Year	Extensive margin effect	Intensive margin effect	Public cost	Leverage
	2009	20.0%***	3.3%**	17.1%	1.4
▶ Diagram	2010	21.4%***	4.5%**	14.9%	1.7
	2011	9.1%	2.1%	16.0%	0.7
	2012	5.4%	1.0%	14.3%	0.5
	2013	7.1%	2.4%	12.3%	8.0

amount the bank receives on each loan as percentage of the underlying investment

Public cost:

Robustness tests

- 1. Placebo definitions of eligibility (pre-1982, pre-1975, pre-1949 houses) Placebo results
 - ► Effect mainly driven by Pre-1949 houses
- 2. Restrictive definition of treatment:
 - Excluding pre-1949 houses
 - ► T (houses built 1975-1990) C (after 1990)
- 3. Event Study with Propensity score weighting
 - Stronger effect with HH FE
- 4. Attrition test

Why the short lived effect?

Why did the ZIGL program lost its effectiveness in 2011?

- Demand-side motives
- ► Supply-side motives?

Post-2010 ZIGL failure: demand-side motives

- 1. Strategic participation? No 👀
 - ► No anticipation since parallel pre-trends
- 2. Debt aversion and financial distress? No changes in 2011 Coo
- 3. Policy interference? Overlap with tax credit forbidden in 2011 Yes

Post-2010 ZIGL failure: demand-side motives

4. Asymmetric information Yes

Table 1: Knowledge of ZIGL

Sample	All		Renovat	ors	Renovators with loan	
	Know ZIGL	N	Know ZIGL	N	Know ZIGL	N
2009	57%	5,596	67%	1,117	76%	187
2010	56%	5,139	67%	944	78%	129
2011	44%	4,646	54%	792	64%	122
2012	42%	4,708	50%	739	67%	111
2013	43%	4,295	65%	637	76%	83

Post-2010 ZIGL failure: supply-side motives

Banks face an opportunity cost of ZIGL provision

- ▶ Difference between consumption loan interest and government bond >2p.p. (compensation covers 1.35p.p.)
- ▶ Do banks with better outside options provide less ZIGL?
- ▶ Use bank branch Banque de France loan data to test the hypothesis

We measure:

Opportunity
$$cost_{b,a,t} = \frac{\sum_{i} (Interest \ rate_{i,b,a,t} \cdot Loan \ amount_{i,b,a,t})}{\sum_{i} Loan \ amount_{i,b,a,t}}$$

Then, we regress, in a Poisson model:

$$\ln\left(\mathbb{E}[\#\mathsf{ZIGL}_{b,a,t}]\right) = \beta \cdot \mathsf{Opportunity} \ \mathsf{cost}_{b,a,t} + \mathsf{X}_{a,t} + \varphi_b + \gamma_a + \tau_t$$

Post-2010 ZIGL failure: supply-side motives

Effect of banks' opportunity cost on ZIGL origination – Bank \times catchment area.

Dependent Variable:	Nb of ZIGL				
Model:	(1)	(2)	(3)		
Variables					
Opportunity cost	-0.2177***	-0.0463*	-0.0458*		
	(0.0461)	(0.0251)	(0.0268)		
Controls	Yes	Yes	Yes		
Fixed-effects					
Time	Yes	Yes			
Bank		Yes			
Catchment Area		Yes	Yes		
$Bank \times time$			Yes		
Fit statistics					
Observations	14,726	14,726	14,726		
Squared Correlation	0.244	0.74	0.79		
Pseudo R ²	0.206	0.475	0.496		

Conclusion

Success 2009-2010

We find a short-lived but significant effect of the zero-interest green loan eligibility on retrofitting activity of homeowners in France:

- ho + \sim 3 p.p. to probability of retrofit in first years
- lacktriangle Highest effect (+ \sim 11 p.p.) for low-income households
- ► $+ \sim$ € 175 to retrofit amount
- Energy consumption might have decreased for low-income hhds

Failure 2011-now

- Banks seem reluctant to sell ZIGLs
- Consumers less and less informed: no effort from banks; short info campaign from state
- Administrative complexity

Thank you

Institutional Setting

ZIGL Program - in numbers

	2009	2010	2011	2012	2013
Descriptive statistics					
N loans	68,225	79,508	42,324	33,936	32,448
N lenders	99	104	101	102	99
N municipalities	15,823	17,497	12,633	11,238	11,330
Average amount, euros	16,318	16,798	17,020	17,119	17,297
Average retrofit, euros	18,518	19,091	19,383	19,556	20,003
Average duration, months	107	109	110	116	122
Effective interest, p.p.	0.43	0.58	0.69	0.35	0.31
Secured, share	0.30	0.32	0.31	0.30	0.31
Amount financed	0.89	0.87	0.87	0.86	0.85

Initial government target — 400,000 loans annually. Pack

Household Characteristics

Variable	# categories	Most frequent
House year of constr.	6	1949 to 1973
Age of HH head	6	\geq 65 years old
Occupation (PCS)	7	Non-employed
Income	6	€ 27k to 32k
Dwelling type	2	House
Surface	6	100 to 149 m2
Heating main energy	4	Gas
Heating type	4	Individual non-elec.
Agglomeration	5	population > 100k
Region	22	Ile-de-France

4% of income and 3% of surface data are missing \rightarrow imputation with ordered logit

Descriptive statistics Back

		2	2008	2	2013
Variable	Category	Mean	Std.Dev.	Mean	Std. Dev.
Renovate	Yes/No	0.17	0.38	0.15	0.36
Eligible	Yes/No	0.81	0.40	0.77	0.42
Construction	Before 1949	0.28	0.45	0.26	0.44
period	1949 to 1974	0.29	0.45	0.29	0.45
	1975 to 1981	0.14	0.34	0.13	0.34
	1982 to 1988	0.10	0.30	0.09	0.29
	After 1988	0.19	0.40	0.23	0.42
Appartment	Yes/No	0.25	0.43	0.26	0.44
Income	< 19k €	0.22	0.42	0.20	0.40
	19k to 22.8k €	0.13	0.34	0.13	0.34
	22.8k to 27.6k €	0.15	0.36	0.12	0.33
	27.2k to 36.6k €	0.20	0.40	0.23	0.42
	36.6k to 45.6k €	0.15	0.36	0.13	0.33
	> 45.6k €	0.14	0.34	0.18	0.38

Balancing test

		Eligible (T)		Non-Eligible (C)					
Variable	Category	Mean	SD	Mean	SD	Diff	T-stat	p-valu	
Multi-family unit	Yes/No	0.27	0.44	0.19	0.39	0.07	4.99	0***	
Agglomeration	Paris Area	0.14	0.35	0.08	0.28	0.06	5.15	0***	
	Pop. > 100k	0.27	0.45	0.21	0.41	0.07	4.36	0***	
	Pop. 20k to 100k	0.13	0.34	0.10	0.30	0.04	3.08	0.002	
	Pop. < 2k	0.17	0.38	0.22	0.41	-0.04	-3.23	0.001	
	Rural	0.28	0.45	0.39	0.49	-0.12	-7.54	0***	
Age	< 25 y.o.	0.01	0.08	0.00	0.04	0.00	1.61	0.107	
	25 to 34 y.o.	0.07	0.26	0.17	0.37	-0.10	-9.77	0***	
	35 to 44 y.o.	0.13	0.34	0.34	0.48	-0.21	-16.88	0***	
	45 to 54 y.o.	0.18	0.39	0.22	0.41	-0.03	-2.28	0.022	
	55 to 64 y.o.	0.21	0.41	0.13	0.34	0.08	6.16	0***	
	> 65 y.o.	0.39	0.49	0.14	0.35	0.25	15.80	0***	
Occupation	Agriculture	0.02	0.13	0.03	0.16	-0.01	-1.84	0.065	
	Blue-col. worker	0.12	0.33	0.26	0.44	-0.14	-11.79	0***	
	Indep./Mngmnt	0.11	0.31	0.15	0.36	-0.05	-4.21	0***	
	Intermediary	0.13	0.33	0.20	0.40	-0.08	-6.55	0***	
	Non-employed	0.52	0.50	0.22	0.42	0.30	17.79	0***	
	Trade/Entrepr.	0.04	0.19	0.04	0.19	-0.00	-0.16	0.869	
	White-col. worker	0.07	0.26	0.09	0.29	-0.02	-2.13	0.034	
Income	< 19k €	0.25	0.43	0.12	0.32	0.13	9.35	0***	
	19k to 22.8k €	0.14	0.35	0.10	0.31	0.04	3.01	0.003	
	22.8k to 27.6k €	0.14	0.35	0.16	0.37	-0.02	-1.61	0.106	
	27.2k to 36.6k €	0.19	0.40	0.23	0.42	-0.04	-2.97	0.003	
	36.6k to 45.6k €	0.14	0.35	0.20	0.40	-0.06	-5.18	0***	
	> 45.6k €	0.13	0.34	0.17	0.38	-0.04	-3.71	0***	
Surface area	< 50 sq.m.	0.04	0.19	0.03	0.17	0.01	0.97	0.332	
	50 to 74 sq.m.	0.15	0.36	0.08	0.28	0.07	5.75	0***	
	100 to 149 sq.m.	0.37	0.48	0.49	0.50	-0.12	-7.33	0***	
	> 150 sq.m.	0.18	0.38	0.17	0.38	0.01	0.70	0.484	
Main heating fuel	Electricity	0.26	0.44	0.51	0.50	-0.26	-16.56	0***	
	Fuel Oil	0.23	0.42	0.10	0.30	0.13	9.63	0***	

Eligible and non-eligible groups very different.

Solutions:

- 1. Regressions with controls
- 2. Propensity score weighting

Effects of eligibility on renovation decision, extended

Heterogeneity of extensive margin effect: Triple Difference and exclude old houses

Dependent Variable:	Renovation this year					
	All ho		No pre-1945 houses			
Model:	(1)	(2)	(3)	(4)		
Variables						
Eligible	0.1083*** (0.0142)	0.0095 (0.0240)	0.0924*** (0.0149)	0.0378 (0.0258)		
Eligible \times Post	0.0191 (0.0226)	0.0435* (0.0238)	0.0255 (0.0242)	0.0368 (0.0255)		
$Eligible\timesPost\timesIncome<19k$	0.0704**	0.0616*	0.0750**	0.0773**		
Eligible \times Post \times Income [27.2k, 36.6k)	(0.0330) 0.0042	(0.0348)	(0.0355) -0.0117	(0.0381) -0.0181		
Eligible \times Post \times Income \geq 36.6k	(0.0318) 0.0114	(0.0316) 0.0063	(0.0341) 0.0127	(0.0346) 0.0222		
Controls	(0.0294) Yes	(0.0317) Yes	(0.0316) Yes	(0.0339) Yes		
Fixed-effects						
Year Household	Yes	Yes Yes	Yes	Yes Yes		
Fit statistics						
Observations	28,767	28,767	21,374	21,374		
R^2	0.04440	0.50804	0.04187	0.50074		
Within R ²	0.04249	0.13159	0.03986	0.11830		

Heterogeneous effects by income of professional renovations Back

Intensive margin: costly actions

Energy consumption data

- 1. Survey question: yearly spending (€) on a given energy source
- 2. Convert € to kWh with Pegase&Enerdata energy price data

Issues:

- ▶ Data quality: many obs with 0 spending
- ► Worst quality in 2007 (especially

Eligible

Impact on self-reported electricity consumption

No significant effect. Why?

- ▶ Low statistical power: Half the sample
- ▶ Only 31% of households use electricity for heating

Income heterogeneity on electricity consumption Pack

Leverage Diagram Back

Increase due to intense margin

Increase due **Total Renovation** to extensive Spending Baseline (=1) margin

additional spending €

baseline spending 2008 €

$$=\frac{125}{3800}=3.3\%$$

$$\frac{\text{increase in proba to renovate (pp)}}{\text{baseline proba to renovate}} = \frac{3pp}{15} = 20\%$$

(c) Threshold 1949

Subsample without pre-1949 houses

Effects of eligibility on renovation decision, excluding oldest houses

Probability to renovate - Event Study with PS weighting

Attrition Test Back

- ▶ Following Wooldrige (2010), we focus on 2008 cohort and identify Xs that explain probability to remain in sample to build a propensity score
- ► We weight regressions by this PS

Strategic Participation

Back

Survey questions to ZIGL users on their motivations

- ► Acceleration of already planned renovations? Yes (second lightest blue)
- ▶ Newly created demand for renovations? Yes (darkest blue)

Response

Debt aversion and financial distress Back

Survey questions on reasons why not to take a ZIGL and financial distress

▶ No remarkable change in trend in 2011

