Exploring the Impact of Urban Green Spaces on the Housing Market

Layla Shiva, Ahmad Seifi

Tehran Institute for Advanced Studies

EEA Congress

August 26, 2024

Research Question

- What is the impact of urban green spaces on residential housing prices?
 - How does the size of green spaces affect housing prices?
 - Is the location of residential housing an influential factor?

Introduction

Related Literature

Hedonic Pricing Method

Model:

 $Ln P_{it} = S_{it} \beta_1 + WS_{it}\gamma + N_{it} \beta_2 + E_{it} \beta_3 + time FE \delta_1 + region FE \delta_2$ $+ (time FE.region FE) \delta_3 + u_{it}$

- P: Price per square meter
- S: House characteristics:
 - Area, Age, ...
- N: Neighborhood variables:
 - Distance to the nearest metro station and expressway
- E: Environmental variables:
 - Distance to the nearest green space

- The First Law of Geography: "everything is related to everything else, but near things are more related than distant things."
- To correct spatial autocorrelation, we use independent variables of neighborhood:

$$Ln P_{it} = S_{it} \beta_1 + WS_{it}\gamma + N_{it} \beta_2 + E_{it} + u_{it}$$

• Where *WS_{it}* represent average age and average area of the houses that are sold in the same quarter with the first 6 digits of the postal code in common.

- All the house transactions during 2010-18 in Iran are publicly shared by the Ministry of Roads and Urban Development.
- The variables are consisted of:
 - Price per square meter
 - Date of transaction
 - Age
 - Area
 - Frame type
 - District
 - 10-digit postal code
- We had access to the first six digits of the traded properties, which divide Tehran into 15016 polygons that the property is located inside them.

Variables	No. Obs.	Mean	Std. dev.	Min	Max
Price (Mil. IRT)	1099488	3.97	2.95	0.08	54.81
Price (USD)*	1099488	937.21	520.22	72.72	4567.50
AdjustedPrice** (Mil. IRT)	1099488	36.65	18.65	1.48	276.64
Age (year)	1099488	8.60	8.42	0	49
Area (m ²)	1099488	83.72	36.84	35.38	380

* USD/IRT changes in different years. In 2010 each Dollar was averagely 1100 Toomans and in 2018 it grows up to 12000 Toomans in the market.

** House prices are adjusted with housing inflation to the winter of 2022 (Statistical Center of Iran).

Average Price by Year

Adjusted House Prices: 2010-18

Data- Environmental Variables

- Parks' characteristics obtained from Tehran Parks and Green Spaces Organization.
- The shape file were created by using google earth and google map.
- Green spaces are classified based on their area:

Туре	Explanation	No. of parks- end of 2009	No. of parks- end of 2018	Average distance
1- Very small	Smaller than 2550m ²	552	801	416 m
2- Small	Between $2550m^2$ and $10200m^2$	649	824	408 m
3- Midsize	Between $10200m^2$ and $25500m^2$	258	319	709 m
4- Big	Between $25500m^2$ and $102000m^2$	127	155	1220 m
5- Very big	Greater than $102000 m^2$	38	51	2063 m
Total	All the parks	1624	2150	218 m

• Distance to the nearest park of each type, are used as the environmental variables.

Layla Shiva, Ahmad Seifi (TeIAS)

Description of Distance Calculation

Figure: Tehran Green Spaces and Houses Geographical Coordinates- 2018

Layla Shiva, Ahmad Seifi (TeIAS)

The Value of Urban Green Spaces

12/32

Greenery Distribution around the City

Figure: Share of green spaces in each urban district- 2018: The numbers within the polygons represent the name of that urban district, and Forest parks have been excluded.

Layla Shiva, Ahmad Seifi (TeIAS)

The Value of Urban Green Spaces

- Metro stations:
 - The time of the inauguration of the metro station
 - The geographic coordinates of the metro station
 - The total number of active stations in Tehran was 66 at the beginning of the study which increased to 112.
 - Classification of distance to metro:

$$Metrogroup = egin{cases} 1 & less than 400 m \ 2 & more than 400 m \end{cases}$$

- Expressways:
 - The shape file of the expressways is available on the website of OpenStreetMap that is a free map of the whole world.

Result: Distance to the Nearest Park

		Dep. Var.:	LnPrice	
	2010-18	2010-11	2012-16	2017-18
DisPark	-0.000238	-0.004080***	0.000650*	0.000636
DisMetro	-0.0127***	-0.0108**	-0.0097***	-0.0177***
MetroGroup=2	-1.70***	-0.82	-0.79	-3.22***
DisMetro.MetroGroup=2	0.0119***	0.0102**	0.0087***	0.0170***
Time FE	Yes	Yes	Yes	Yes
Region FE	Yes	Yes	Yes	Yes
Time*Region FE	Yes	Yes	Yes	Yes
FrameType FE	Yes	Yes	Yes	Yes
N	1099488	237074	610462	251952
R ²	0.773	0.463	0.630	0.792
p-va	alues: * p<0.0	05, ** p<0.01, *	*** p<0.001	

• All coefficients multiplied by 100.

Geographic Distribution of Housing Prices

- We divide Tehran into 2 distinct groups based on house prices.
 - Rich regions
 - Less Affluent regions

	Rich F	Regions	Less Afflue	ent Regions
	2010-11	2017-2018	2010-2011	2017-2018
DisPark	-0.0150***	-0.0118***	0.0137***	0.0181***
DisMetro	-0.0114	-0.0270***	-0.0207**	-0.0099**
MetroGroup=2	3.00	-1.10	-3.33	-1.44
DisMetro.MetroGroup=2	0.0113	0.0268***	0.0152*	0.0080*
N	116327	124541	40811	39936
R ²	0.347	0.727	0.238	0.589
p-value	es: * p<0.10,	** p<0.05, *	** p<0.01	

- Rich regions are 6 districts with the highest average housing prices and less affluent regions are 6 districts at the bottom.
- All coefficients multiplied by 100.

		Rich F	Regions	
	2010-11	2017-2018	2010-2011	2017-2018
Very small	-0.000235	-0.00277***	0.000399	0.000741
Small	-0.00150***	-0.00293**	-0.000541	-0.00235**
Midize	-0.00330***	-0.00325***	-0.00385***	-0.00225***
Big	-0.00606***	-0.00652***	-0.00585***	-0.00616***
Very big	-0.00237***	-0.00259***	-0.00231***	-0.00243***
N	519826	116327	278958	124541
R ²	0.751	0.357	0.506	0.736
		-0 OF **0	01 *** 0 00	11

p-values: * p<0.05, ** p<0.01, *** p<0.001

• All coefficients multiplied by 100.

		Less Afflue	ent Regions	
	2010-18	2010-11	2012-2016	2017-18
Very small	0.0000961	-0.00202*	0.000498	0.00217*
Small	-0.00197***	-0.00260**	-0.00290***	0.00401***
Midsize	0.00879***	0.0106***	0.0106***	0.00139
Big	0.00782***	0.00209***	0.00864***	0.0101***
Very big	0.00122***	-0.000276	0.000304	0.00800***
N	204837	40811	124090	39936
R ²	0.648	0.250	0.376	0.625
	n values * n <	0.05 ** 0.0	11 *** <u>-</u> - 0 00	11

p-values: * p<0.05, ** p<0.01, *** p<0.001

• All coefficients multiplied by 100.

Park's Distribution in Rich and Less Affluent Regions

- We only consider Midsize parks:
 - Small parks has a little economical significance
 - Big parks construction violates "no anticipation" assumption
- Treatment and post variables are defined:

 $Treatment = \begin{cases} 1 & in \ 400 \ m \ radius \\ 0 & between \ 400 \ m \ and \ 1500 \ m \end{cases}$ $Post = \begin{cases} 1 & 3 \ years \ after \ parks' \ construction \\ 0 & 3 \ years \ before \ parks' \ construction \end{cases}$

• If a park has been constructed in 2014, we use traded houses in 2012-14 as the pre_treatment, and 2014-16 as the post_treatment.

• The table shows the number of constructed midsize park in Tehran from 2011 to 2018:

Year	Tehran*	Rich	Less Affluent
2011	6	6	0
2012	10	5	3
2013	11	5	0
2014	8	5	3
2015	5	2	3
2016	2	1	1
2017	5	2	2
2018	1	1	0
Total	48	27	12

- More than 50% of midsize parks constructed in rich regions (Spatial variation)
- * Districts 19, and 20 have been excluded

Staggered Difference in Differences

Model specification:

 $\ln P_{it} = \beta_0 + \beta_X X_{it} + \beta_p post_{it} + \beta_{tr} treat_{it} + \beta_{ptr} post.treat_{it} + \epsilon_{it}$

- In P_{it}: Natural logarithm of the price P of property i in in year t ∈ {2010, ..., 2018}
- X_{it}: Control variables
- *treat_{it}*: Dummy variable equal 1 if house i has been treated in year t.
- *post_{it}*: (series of) Dummy variable(s) indicating the time period after the park opening.
- *post.treat_{it}*: The interaction term of *treat_{it}* and *post_{it}*.

	Rich F	Regions	Less Afflue	ent Regions
	400 m	500 m	400 m	500 m
1.post	0.0521***	0.0568***	-0.0568***	0.0528***
	(0.000)	(0.000)	(0.000)	(0.000)
1.Treat	-0.0529*** (0.000)	-0.0419*** (0.000)	-0.0142*** (0.009)	-0.0138*** (0.002)
1.post#1.Treat	0.0289*** (0.000)	0.0190*** (0.001)	-0.0357*** (0.000)	-0.0279*** (0.000)
Ν	110376	110258	62959	62959
R^2	0.663	0.663	0.618	0.618
p-values in p	arentheses *p	< 0.05, * * <i>p</i>	< 0.01, * * * p	0 < 0.001

• Midsize parks have positive impacts in rich regions, while its impacts are reversed in less affluent regions.

Parallel Trend: Pre-Treatment Effect

Figure: Rich Regions

Figure: Less Affluent Regions

• The coefficients of treatment group before the construction of the parks are insignificant

- Like the previous method, the treatment is defined based on proximity to the parks' boundaries.
- For the post variable, we use following methods:

the value of			
post variable	2 years	all years	
0	2 years before treat	all years before treat	=
1	2 years after treat	all years after treat	

		Rich F	Regions			Less Afflue	nt Regions	
	2 ye	ears	all y	/ears	2 ye	ears	all y	ears
	400 m	500 m						
1.post	0.0325***	0.0344***	0.0323***	0.0314***	-0.0109*	-0.00857	-0.164***	-0.161***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.085)	(0.169)	(0.000)	(0.000)
1.Treat	-0.0394*** (0.000)	-0.0270*** (0.000)	-0.0764*** (0.000)	-0.0592*** (0.000)	-0.0259*** (0.000)	-0.0189*** (0.000)	0.0102** (0.024)	-0.00681* (0.070)
1.post # 1.Treat	0.0190*** (0.014)	0.00661 (0.318)	0.0373*** (0.000)	0.0153*** (0.002)	-0.0224*** (0.008)	-0.0144*** (0.037)	-0.0598*** (0.000)	-0.0391*** (0.000)
N	85411	85409	181219	180765	48340	48340	94008	94005
R ²	0.678	0.678	0.741	0.741	0.630	0.630	0.642	0.642
		p-values in p	arentheses *p	< 0.05, * * <i>p</i>	< 0.01, * * * p	< 0.001		

• To measure dynamic impacts of the parks' construction, we conduct another method for post variable definition.

n = time of trade - time of treat

$$post = egin{cases} 0 & n < 0 \ n+1 & n \geq 0 \end{cases}$$

• For instance, if a house has been traded 2 years after the park's construction, the post variable equals to 3.

Dynamic Effects

	Rich R	Regions	Less Affluent Regions			
	400 m	500 m	400 m	500 m		
1.Treat	-0.0737***	-0.0543***	0.00962**	-0.00653*		
	(0.000)	(0.000)	(0.032)	(0.081)		
1.post#1.Treat	0.0206**	0.0176**	-0.0774***	-0.0466***		
	(0.021)	(0.023)	(0.000)	(0.000)		
2.post#1.Treat	0.0596***	0.0366***	-0.0790***	-0.0571***		
	(0.000)	(0.000)	(0.000)	(0.000)		
3.post#1.Treat	0.0260***	0.00566	-0.0477***	-0.0498***		
	(0.003)	(0.484)	(0.000)	(0.000)		
4.post#1.Treat	0.0319***	0.00884	-0.0762***	-0.0522***		
	(0.000)	(0.208)	(0.000)	(0.000)		
5.post#1.Treat	0.0373***	0.00147	-0.0747***	-0.0503***		
	(0.000)	(0.844)	(0.000)	(0.000)		
6.post#1.Treat	0.0610***	0.0194***	-0.113***	-0.110***		
	(0.000)	(0.006)	(0.000)	(0.000)		
7.post#1.Treat	0.0722***	0.0438***	-0.125***	-0.105***		
	(0.000)	(0.000)	(0.000)	(0.000)		
N	172924	172859	94008	94005		
D ²	0 726	0 727	0.651	0.651		

Layla Shiva, Ahmad Seifi (TeIAS)

The Value of Urban Green Spaces

Dynamic Effects- coefficients

• The magnitude of treatment go through an increasing trend in positive and negative amount, respectively in rich and Less Affluent regions.

- Green spaces have different effects on houses regarding their area and location.
- People who live in rich regions, spend more money for being close to the park.
- Housing market inflation reduce peoples' willingness to pay for environmental amenities.
- Opening of midsize parks in rich regions, on average, increased 2% 4% price of its neighboring houses.
- In less affluent regions, construction of a park can lower house prices by 2.5% 6%.

Thanks

- Laylashiva@gmail.com
- Ahmadseifi1997@gmail.com