Does Household Heterogeneity across Countries Matter for Optimal Monetary Policy within a Monetary Union?

Benjamin Schwanebeck¹ Luzie Thiel²

¹FernUniversität in Hagen, Germany

²University of Kassel, Germany

39th meeting of the European Economic Association, August 27, 2024

Motivation

Monetary policy and inequality

 \Rightarrow what we already know: hand-to-mouth or (financially) constrained households (λ) important for transmission of MP (e.g., Kaplan et al. 2018)

Motivation

Monetary policy and inequality

- \Rightarrow what we already know: hand-to-mouth or (financially) constrained households (λ) important for transmission of MP (e.g., Kaplan et al. 2018)
- \Rightarrow what we also know: heterogeneity *across* countries forming a monetary union regarding λ (Almgren et al. 2022, Kaplan et al. 2014)

2/22

Share of hand-to-mouth households across EA countries

Kaplan et al. (2014): Germany around 0.3, France around 0.2

Source: Own illustration. Data taken from Almgren et al. (2022), approx, values.

Motivation

Monetary policy and inequality

- \Rightarrow what we already know: hand-to-mouth or (financially) constrained households (λ) important for transmission of MP (e.g., Kaplan et al. 2018)
- \Rightarrow what we also know: heterogeneity across countries forming a monetary union regarding λ (Almgren et al. 2022, Kaplan et al. 2014)
- \Rightarrow what we want to know: implications of this asymmetry ($\lambda \neq \lambda^*$) for optimal monetary policy?

Motivation

Monetary policy and inequality

- \Rightarrow what we already know: hand-to-mouth or (financially) constrained households (λ) important for transmission of MP (e.g., Kaplan et al. 2018)
- \Rightarrow what we also know: heterogeneity across countries forming a monetary union regarding λ (Almgren et al. 2022, Kaplan et al. 2014)
- \Rightarrow what we want to know: implications of this asymmetry ($\lambda \neq \lambda^*$) for optimal monetary policy?
- \Rightarrow furthermore: role of imperfect insurance (consumption inequality, q > 1)?

The paper in a nutshell I

Methodology

Two-country monetary union model with heterogeneous households

- ⇒ based on the tractable Heterogeneous Agents New Keynesian (HANK) model with liquidity from Bilbiie & Ragot 2021
- \Rightarrow + currency union with two countries
- \Rightarrow + heterogeneous shares of financially-constrained households across countries

The paper in a nutshell I

Methodology

Two-country monetary union model with heterogeneous households

- \Rightarrow based on the tractable Heterogeneous Agents New Keynesian (HANK) model with liquidity from Bilbiie & Ragot 2021
- \Rightarrow + currency union with two countries
- \Rightarrow + heterogeneous shares of financially-constrained households across countries
- ⇒ CB can insure consumption through money (CBDC)
- ⇒ CBDC is introduced as an additional **country-specific instrument**

The paper in a nutshell I

Methodology

Two-country monetary union model with heterogeneous households

- \Rightarrow based on the tractable Heterogeneous Agents New Keynesian (HANK) model with liquidity from Bilbiie & Ragot 2021
- \Rightarrow + currency union with two countries
- \Rightarrow + heterogeneous shares of financially-constrained households across countries
- ⇒ CB can insure consumption through money (CBDC)
- ⇒ CBDC is introduced as an additional **country-specific instrument**
- ⇒ optimal monetary policy
- \Rightarrow two inequality metrics: share of constrained households λ and steady state inequality q
- ⇒ two distortions: price adjustment costs and imperfect insurance

The paper in a nutshell II

Main results

Household heterogeneity and asymmetry change the design of optimal monetary policy in a monetary union

- ⇒ trade-off between output, price and inequality changes (different welfare weights)
- \Rightarrow new objectives arise: balance out asymmetry within the union + provide consumption-insurance

The paper in a nutshell II

Main results

Household heterogeneity and asymmetry change the design of optimal monetary policy in a monetary union

- \Rightarrow trade-off between output, price and inequality changes (different welfare weights)
- \Rightarrow new objectives arise: balance out asymmetry within the union + provide consumption-insurance
- \Rightarrow heterogeneity (within and across countries) \uparrow : consumption-insurance motive \uparrow , price stabilization \downarrow
- \Rightarrow distribution of CBDC between countries depends on their asymmetry

Literature

Our paper: Optimal MP in THANK within an asymmetric currency union

Figure 1: Other Contributions (non-exhaustive, see paper for more details)

Model framework

Model framework I

Two-country monetary union tractable HANK model (based on one-country THANK model of Bilbiie and Ragot 2021)

- ⇒ two countries: **Home** and **Foreign** (*)
- **⇒** currency union

Model framework I

Two-country monetary union tractable HANK model (based on one-country THANK model of Bilbiie and Ragot 2021)

- \Rightarrow two countries: **Home** and **Foreign** (*)
- **⇒** currency union
- ⇒ monopolistically competitive firms facing Rotemberg (1982) price adjustment costs
- \Rightarrow national governments redistributing firm profits and setting optimal subsidy

Model framework I

Two-country monetary union tractable HANK model (based on one-country THANK model of Bilbiie and Ragot 2021)

- \Rightarrow two countries: **Home** and **Foreign** (*)
- **⇒** currency union
- ⇒ monopolistically competitive firms facing Rotemberg (1982) price adjustment costs
- \Rightarrow national governments redistributing firm profits and setting optimal subsidy
- ⇒ two household types: financially-constrained households (N) and saver households (S)

Model framework II

Households:

S	N
intertemporal consumption-smoothing (bonds (i_t) , money)	hand-to-mouth consumption
labor and profit income	labor income
precautionary savings in money (idiosyncratic risk)	non-participating in financial markets
firm shares, bonds, money	money
$(1-\lambda), (1-\lambda^*)$	λ, λ^*

Model framework II

Households:

S	N
intertemporal consumption-smoothing (bonds (i_t) , money)	hand-to-mouth consumption
labor and profit income	labor income
precautionary savings in money (idiosyncratic risk)	non-participating in financial markets
firm shares, bonds, money	money
$(1-\lambda), (1-\lambda^*)$	λ,λ^*

- \Rightarrow idiosyncratic risk through switching process between states: (1 α) (switch to N), ρ (stay N)
- ⇒ share of constrained households:

$$\lambda = \frac{1 - \alpha}{2 - \alpha - \rho} \tag{1}$$

Model framework II

Households:

S	N
intertemporal consumption-smoothing (bonds (i_t) , money)	hand-to-mouth consumption
labor and profit income	labor income
precautionary savings in money (idiosyncratic risk)	non-participating in financial markets
firm shares, bonds, money	money
$(1-\lambda), (1-\lambda^*)$	λ,λ^*

- \Rightarrow idiosyncratic risk through switching process between states: (1 α) (switch to N), ρ (stay N)
- ⇒ share of constrained households:

$$\lambda = \frac{1 - \alpha}{2 - \alpha - \rho} \tag{1}$$

 \Rightarrow imperfect insurance between N and S: $q = C^S/C^N > 1$

Model framework III

Central bank: two instruments

union-wide: nominal interest rate (i_t)

country-specific: money holdings $(m_t, m_t^*, \text{stock variable})$ distributed

through CBDC at beginning of a period $(x_t, x_t^*, \text{flow variable})$

Money eq

Model framework III

Central bank: two instruments

union-wide: nominal interest rate (i_t)

country-specific: money holdings $(m_t, m_t^*, \text{stock variable})$ distributed through CBDC at beginning of a period $(x_t, x_t^*, \text{flow variable})$

- ⇒ money as a tool for self-insurance purposes
- ⇒ money as a tool to reach even non-participating households

Money eq

Results

Welfare function - Some intuition I

CB minimizes the loss function (2nd order approximation around zero-inflation steady state):

$$-\frac{1}{2}E_0\sum_{t=0}^{\infty}\beta^t\left[\underbrace{(\sigma+\varphi)(\tilde{C}_t^U)^2+\gamma\nu(\pi_{H,t})^2+(1-\gamma)\nu(\pi_{F,t})^2+\gamma(1-\gamma)(1+\varphi)(\tilde{ToT}_t)^2}_{\text{standard for }2\text{-country monetary union}}\right]$$

$$+\gamma(1-\gamma)\sigma\frac{CC^*}{(C^U)^2}(\hat{C}_t-\hat{C}_t^*)^2+...$$

lack of full insurance across countries

Variable without a time index: steady-state value Variable with " \sim ": gap between a variable and its efficient ($q=1,\pi=0$) counterpart Variable with " \wedge ": log deviation from a variable and its steady-state value

Welfare function - Some intuition II

$$\dots + \sigma \left(\gamma \lambda (1 - \lambda) \frac{C^S C^N}{CC^U} (\hat{q}_t)^2 + (1 - \gamma) \lambda^* (1 - \lambda^*) \frac{C^{S*} C^{N*}}{C^* C^U} (\hat{q}_t^*)^2 \right)$$

common in TANK models

$$-2\gamma\lambda(\mathbf{q}^{\sigma}-1)\left(\frac{C^{N}}{C^{U}}(\hat{C}_{t}^{N}+\frac{1-\sigma}{2}(\hat{C}_{t}^{N})^{2})-\hat{L}_{t}-\frac{1+\varphi}{2}(\hat{L}_{t})^{2}\right)$$

liquidity-insurance motive due to inequality distortion in steady state in Home (q>1)

$$-2(1-\gamma)\lambda^*((q^*)^{\sigma}-1)\left(\frac{C^{N*}}{C^{U}}(\hat{C}_t^{N*}+\frac{1-\sigma}{2}(\hat{C}_t^{N*})^2)-\hat{L}_t^*-\frac{1+\varphi}{2}(\hat{L}_t^*)^2\right)$$

liquidity-insurance motive due to inequality distortion in steady state in Foreign $(q^*>1)$

(2)

Long-run implications I

Importance of λ for optimal MP in a symmetric union $(\lambda = \lambda^*)$

Table 1: Implied steady-state values from optimal Ramsey policy in a symmetric union (and same country size, $\gamma=0.5$)

Model outcome

	π	m	X	i	q
$\lambda = 0.5$	-0.366%	0.627	-0.002306	0.0167	1.167
$\lambda = 0.3$	-0.297%	0.278	-0.000828	0.0174	1.174
$\lambda = 0.2$	-0.226%	0.148	-0.000335	0.0181	1.181

Long-run implications I

Importance of λ for optimal MP in a symmetric union $(\lambda = \lambda^*)$

Table 1: Implied steady-state values from optimal Ramsey policy in a symmetric union (and same country size, $\gamma=0.5$)

Model outcome

ĺ	π	m	X	i	q
$\lambda = 0.5$			-0.002306		1.167
$\lambda = 0.3$			-0.000828		
$\lambda = 0.2$	-0.226%	0.148	-0.000335	0.0181	1.181

 \Rightarrow Optimal deflation and providing liquidity through money (m)

Long-run implications I

Importance of λ for optimal MP in a symmetric union $(\lambda = \lambda^*)$

Table 1: Implied steady-state values from optimal Ramsey policy in a symmetric union (and same country size, $\gamma=0.5$)

Model outcome

	π	m	X	i	q
$\lambda = 0.5$	-0.366%	0.627	-0.002306	0.0167	1.167
$\lambda = 0.3$	-0.297%	0.278	-0.000828	0.0174	1.174
$\lambda = 0.2$	-0.226%	0.148	-0.000335	0.0181	1.181

- \Rightarrow Optimal deflation and providing liquidity through money (m)
- \Rightarrow 40% decrease in λ : money demand falls by 63.66% (non-linear relation)
- \Rightarrow For $\lambda = 0$: m = 0

Long-run implications II

Importance of $\lambda \neq \lambda^*$ for optimal MP in an asymmetric union (λ^U constant at 0.3)

Table 2: Implied steady-state values from Ramsey optimal policy in a currency union, union-wide values

Model outcome	Union-wide			
	π^{U}	m^U	i	c^U
1) Symmetric union	-0.297%	0.278	0.0174	0.999
$(\lambda = \lambda^* = 0.3)$				
2) Asymmetric union	-0.299%	0.278	0.0174	0.999
$(\lambda = 0.35, \lambda^* = 0.25)$				
3) Asymmetric union	-0.31%	0.280	0.0173	0.999
$(\lambda = 0.4, \lambda^* = 0.2)$				

Long-run implications II

Importance of $\lambda \neq \lambda^*$ for optimal MP in an asymmetric union (λ^U constant at 0.3)

Table 2: Implied steady-state values from Ramsey optimal policy in a currency union, union-wide values

Model outcome				
	π^{U}	m^U	i	c^U
1) Symmetric union	-0.297%	0.278	0.0174	0.999
$(\lambda = \lambda^* = 0.3)$				
2) Asymmetric union	-0.299%	0.278	0.0174	0.999
$(\lambda = 0.35, \lambda^* = 0.25)$				
3) Asymmetric union	-0.31%	0.280	0.0173	0.999
$(\lambda = 0.4, \lambda^* = 0.2)$				

 \Rightarrow Optimal deflation increasing in $(\lambda - \lambda^*)$

Long-run implications III

Table 3: Implied steady-state values from Ramsey optimal policy in a currency union, country-specific values

Model outcome	Country-specific				
		С	c ^S	c^N	m
1) Symmetric union	Home	0.999	1.046	0.891	0.278
$(\lambda=\lambda^*=0.3)$	Foreign	0.999	1.046	0.891	0.278
2) Asymmetric union	Home	0.991	1.046	0.891	0.325
$(\lambda=0.35,\lambda^*=0.25)$	Foreign	1.007	1.046	0.891	0.232
3) Asymmetric union	Home	0.984	1.045	0.891	0.374
$(\lambda=0.4,\lambda^*=0.2)$	Foreign	1.015	1.045	0.891	0.186

Long-run implications III

Table 3: Implied steady-state values from Ramsey optimal policy in a currency union, country-specific values

Model outcome	Country-specific				
		С	c ^S	c^N	m
1) Symmetric union	Home	0.999	1.046	0.891	0.278
$(\lambda = \lambda^* = 0.3)$	Foreign	0.999	1.046	0.891	0.278
2) Asymmetric union	Home	0.991	1.046	0.891	0.325
$(\lambda = 0.35, \lambda^* = 0.25)$	Foreign	1.007	1.046	0.891	0.232
3) Asymmetric union	Home	0.984	1.045	0.891	0.374
$(\lambda = 0.4, \lambda^* = 0.2)$	Foreign	1.015	1.045	0.891	0.186

⇒ CB redistributes towards country with higher risk through money

Long-run implications III

Table 3: Implied steady-state values from Ramsey optimal policy in a currency union, country-specific values

Model outcome	Country-specific				
		С	c ^S	c^N	m
1) Symmetric union	Home	0.999	1.046	0.891	0.278
$(\lambda = \lambda^* = 0.3)$	Foreign	0.999	1.046	0.891	0.278
2) Asymmetric union	Home	0.991	1.046	0.891	0.325
$(\lambda=0.35,\lambda^*=0.25)$	Foreign	1.007	1.046	0.891	0.232
3) Asymmetric union	Home	0.984	1.045	0.891	0.374
$(\lambda = 0.4, \lambda^* = 0.2)$	Foreign	1.015	1.045	0.891	0.186

- ⇒ CB redistributes towards country with higher risk through money
- ⇒ Optimal MP equalizes consumption across N across countries

Short-run implications - asymmetric union I

Importance of $\lambda \neq \lambda^*$ for optimal MP (λ^U constant) in the short run -positive productivity shock ($\rho_A=0.95$)

Table 4: Five different scenarios

		Technology shock		
		Symmetric	Idiosyncratic	
Union	Symmetric	1	2	
Asymmetri	Asymmetric	3	4 and 5	

Scenario 4: country with lower λ (country F) is hit

Scenario 5: country with higher λ (country H) is hit

 \Rightarrow Does it matter for optimal MP which country is hit by a shock?

(Paper for more details)

Short-run implications - asymmetric union II

Yes: more expansionary nominal interest rate and higher inflation volatility Liquidity

Figure 2: Impulse response function of a positive productivity shock depicting absolute deviations from steady state ($\lambda^U = 0.3$, $\lambda = 0.35$ and $\lambda^* = 0.25$)

Scenario black (3): symmetric shock

Scenario blue (4): idiosyncratic shock, country F (lower λ) is hit

Scenario red (5): idiosyncratic shock, country H (higher λ) is hit

Short-run implications - asymmetric union III

If the more distorted country is hit:

- ⇒ CB redistributes through CBDC towards the more distorted country
- ⇒ instrument money becomes more important: more liquidity injections
- ⇒ CB tolerates more inflation volatility
- ⇒ optimal MP is more expansionary

CB sacrifices inflation stabilization in favor of consumption stabilization (i) across countries and (ii) household types

Conclusion

Key take-aways

Heterogeneity across countries ($\lambda \neq \lambda^*$) within a currency union changes the design of optimal MP

Key take-aways

Heterogeneity across countries $(\lambda \neq \lambda^*)$ within a currency union changes the design of optimal MP

- \Rightarrow affecting the trade-off inflation vs. consumption stabilization
- \Rightarrow new motives:

providing consumption-insurance in case of imperfect insurance balancing out asymmetry within a currency union

Key take-aways

Heterogeneity across countries $(\lambda \neq \lambda^*)$ within a currency union changes the design of optimal MP

- ⇒ affecting the trade-off inflation vs. consumption stabilization
- ⇒ new motives:
 - providing consumption-insurance in case of imperfect insurance balancing out asymmetry within a currency union
- \Rightarrow MP redistributes to the more distorted country (in terms of q and λ) via CBDC as it is welfare-enhancing

Key take-aways

Heterogeneity across countries $(\lambda \neq \lambda^*)$ within a currency union changes the design of optimal MP

- ⇒ affecting the trade-off inflation vs. consumption stabilization
- ⇒ new motives:
 - providing consumption-insurance in case of imperfect insurance balancing out asymmetry within a currency union
- \Rightarrow MP redistributes to the more distorted country (in terms of q and λ) via CBDC as it is welfare-enhancing
- ⇒ the higher household heterogeneity within a currency union, the more important consumption insurance through money becomes

Key take-aways

Heterogeneity across countries $(\lambda \neq \lambda^*)$ within a currency union changes the design of optimal MP

- ⇒ affecting the trade-off inflation vs. consumption stabilization
- ⇒ new motives:

providing consumption-insurance in case of imperfect insurance balancing out asymmetry within a currency union

- \Rightarrow MP redistributes to the more distorted country (in terms of q and λ) via CBDC as it is welfare-enhancing
- ⇒ the higher household heterogeneity within a currency union, the more important consumption insurance through money becomes
- ⇒ beneficial for a monetary union to have a **country-specific instrument** instrument to target heterogeneity across countries
- \Rightarrow CBDC is part of an optimal MP

Thank you!

In case of questions, comments or suggestions: thiel@wirtschaft.uni-kassel.de

References I

Almgren, M., J.-E. Gallegos, J. Kramer, and R. Lima (2022): "Monetary Policy and Liquidity Constraints: Evidence from the Euro Area," American Economic Journal: Macroeconomics, 14(4), 309–40.

Ampudia, Miguel, Dimitris Georgarakos, Jiri Slacalek, Oreste Tristani, Philip Vermeulen and Giovanni L. Violante (2018): "Monetary policy and household inequality", *ECB Working Paper Series* No. 2170: 1-36.

Areosa, W. D. and M. B. Areosa (2016): "The inequality channel of monetary transmission," Journal of Macroeconomics, 48, 214–230.

Auclert, A., M. Rognlie, M. Souchier, and L. Straub (2021): "Exchange Rates and Monetary Policy with Heterogeneous Agents: Sizing up the Real Income Channel," Working Paper May 2021.

Bayer, C., A. Kriwoluzky, G. J. Müller, and F. Seyrich (2023): "A HANK2 Model of Monetary Unions," DIW Berlin Disucssion Papers 2044.

Bilbiie, F. O. (2021): "Monetary Policy and Heterogeneity: An Analytical Framework," Mimeo, August 2021.

References II

- Bilbiie, F. O. and X. Ragot (2021): "Optimal Monetary Policy and Liquidity with Heterogeneous Households," *Review of Economic Dynamics*, 41, 71–95.
- Brissimis, S. N. and I. Skotida (2008): "Optimal monetary policy in the euro area in the presence of heterogeneity," Journal of International Money and Finance, 27, 209–226.
- Hansen, N.-J. H., A. Lin, and R. C. Mano (2023): "Should inequality factor into central banks' decisions?" Banca D'Italia Working Papers No. 1410.
- Ida, D. (2023): "Liquidity-constrained consumers and optimal monetary policy in a currency union," Journal of International Money and Finance, 131.
- Kaplan, G., B. Moll, and G. L. Violante (2018): "Monetary Policy According to HANK," American Economic Review, 108(3), 697–743.
- Kaplan, G., G. L. Violante, and J. Weidner (2014): "The Wealthy Hand-to-Mouth," Brookings Papers on Economic Activity, 1, 77–138.
- Levine, P., S. McKnight, A. Mihailov, and J. Swarbrick (2023): "Limited Asset Marktet Participation and Monetary Policy in a Small Open Economy," Mimeo August 2023.

Back-up slides

Supplement to the literature classification

Positive

(How does household heterogeneity affect MP?)

VS.

normative

(Should MP care about inequality?) questions

Calibration I

For most of the parameters, we follow Bilbiie and Ragot (2021):

Parameters	Values	Description			
φ	0.25	Inverse Frisch elasticity			
χ	1	Weight on disutility of labor			
σ	1	Intertemporal subsitution elasticity			
β	0.98	Discount factor			
ϵ	6	Substitution elasticity between goods			
ν	100	Rotemberg price adjustment cost			
ρ_{A}	0.95	Persistence of technology shock			

Table 5: Baseline calibration

The time interval is a quarter. We assume the countries to be of equal size, thus $\gamma=0.5$.

Calibration II

Targeting the share of constrained households.

Symmetric union

$$\Rightarrow \lambda^U = 0.3 = \lambda = \lambda^*$$

Asymmetric union

$$\Rightarrow \lambda^U = 0.3$$

$$\Rightarrow \lambda = 0.35$$

$$\Rightarrow \lambda^* = 0.25$$

Calibration III

Table summarizes the calibration of α, α^*, ρ and ρ^* , implying λ, λ^* and λ^U , used for the analysis of an asymmetric union.

Union	Country H			Country F			Cons. ineq.
λ^U	λ	α	ρ	λ^*	α^*	ρ^*	$q^U = q = q^*$
0.3	0.3	0.9	0.7667	0.3	0.9	0.7667	1.174
0.3	0.35	0.9	0.8143	0.25	0.9	0.7	1.174
0.3	0.4	0.9	0.85	0.2	0.9	0.6	1.173

Table 6: Calibration of λ,λ^* and λ^U with fixed α and α^* and varying ρ and ρ^* in an asymmetric union

Model framework

Share of constrained households

$$\lambda = \frac{1 - \alpha}{2 - \alpha - \rho} \tag{3}$$

- \Rightarrow idiosyncratic risk: (1α) , ρ
- $\Rightarrow \alpha$: probability of staying unconstrained as S
- $\Rightarrow \rho$: probability of staying constrained as N

Steady state inequality

steady-state consumption inequality:

$$q = \left(\frac{1+i-\alpha}{1-\alpha}\right)^{1/\sigma}.$$
 (4)

i > 0: return on bonds > return on money (0)

Optimal inflation rate

Optimal inflation lies between **Friedman rule** (i = 0, thus $1 + \pi = \beta$ and q = 1) and **zero-inflation** ($i = (1 - \beta)/\beta$):

$$\beta - 1 \le \pi^{optimal} \le 0 \tag{5}$$

At Friedman rule:

- \Rightarrow difference between the household types vanishes, i.e. q=1, as the returns on bonds and money are the same
- ⇒ money as a "perfect" means for insurance
- ⇒ however: this will not be an efficient steady state due to price adjustment costs

At zero-inflation steady state:

- ⇒ eliminates the steady-state distortion of price adjustment costs
- \Rightarrow lack of insurance as the return on money relative to the one on bonds shrinks (q>1)

Money creation

Money eq

CB provides money via CBDC, with x_t denoting newly created or destroyed money in period t. (Real) Money in circulation at the end of each period evolves according to

$$m_{t+1} = \frac{1}{1+\pi_t} m_t + x_t \tag{6}$$

Labor supply and wages

Assumptions:

- ⇒ labor is determined by firms' demand
- ⇒ union pools hours worked
- \rightarrow all households work the same amount: $L_t^S = L_t^N = L_t$, independent of the state. The aggregate amount is determined by

$$\chi(L_t)^{\varphi}((1-\lambda)(C_t^{\mathsf{S}})^{-\sigma} + \lambda(C_t^{\mathsf{N}})^{-\sigma})^{-1} = w_t \operatorname{To} T_t^{\gamma-1}. \tag{7}$$

Optimal MP

CB maximizes the weighted aggregate of households' utility functions:

$$\gamma U(C_t^S, C_t^N, L_t) + (1 - \gamma) U(C_t^{S*}, C_t^{N*}, L_t^*)$$
(8)

or

$$\gamma \left[(1-\lambda) \frac{(C_t^S)^{1-\sigma}}{1-\sigma} + \lambda \frac{(C_t^N)^{1-\sigma}}{1-\sigma} - \chi \frac{L_t^{1+\varphi}}{1+\varphi} \right] + (1-\gamma) \left[(1-\lambda^*) \frac{(C_t^{S*})^{1-\sigma}}{1-\sigma} + \lambda^* \frac{(C_t^{N*})^{1-\sigma}}{1-\sigma} - \chi \frac{L_t^{*1+\varphi}}{1+\varphi} \right]$$
(9)

Short-run implications - asymmetric union I

Suppose a positive productivity shock:

```
symmetric shock (both countries are hit): 1\% increase idiosyncratic shock (only one country is hit): 2\% increase
```

Three different scenarios:

```
Scenario 3: symmetric shock
```

```
Scenario 4: idiosyncratic shock, country F (lower \lambda) is hit
```

Scenario 5: idiosyncratic shock, country H (higher λ) is hit

- → Optimal MP in face of a symmetric shock in an asymmetric union?
- ightarrow Does it matter for optimal MP which country is hit by a shock?

Short-run implications - asymmetric union II

Redistribution through money (CBDC) Liquidity

Figure 3: Impulse response functions of a positive productivity shock depicting absolute deviations from steady state

Scenario 3: symmetric shock

Scenario 4: idiosyncratic shock, country F (lower λ) is hit

Scenario 5: idiosyncratic shock, country H (higher λ) is hit

Short-run implications - asymmetric union III

More expansive nominal interest rate and higher inflation volatility

Figure 4: Impulse response function of a positive productivity shock depicting absolute deviations from steady state.

scenario 3: symmetric shock

scenario 4: idiosyncratic shock, country F (lower λ) is hit

scenario 5: idiosyncratic shock, country H (higher λ) is hit

Short-run implications - asymmetric union IV

Stabilizing consumption of N

Figure 5: Impulse response functions of a positive productivity shock depicting absolute deviations from steady state.

scenario 3: symmetric shock

scenario 4: idiosyncratic shock, country F (lower λ) is hit

scenario 5: idiosyncratic shock, country H (higher λ) is hit

Short-run implications - asymmetric union V

Importance of $\lambda \neq \lambda^*$ for optimal MP (λ^U constant)

If the more distorted country is hit:

- ⇒ Instrument liquidity becomes more important: more liquidity injections
- ⇒ CB tolerates more inflation volatility
- ⇒ optimal MP is more expansionary

CB sacrifices inflation stabilization in favor of consumption stabilization (i) across countries and (ii) household types