

39th meeting of the European Economic Association & 76th European meeting of the Econometric Society

Zeroing in on the Zero Waste City

Rotterdam, Netherlands, August 26, 2024 Jane Torbert, in collaboration with Prof. Melanie Krause, PhD

Contents

Introduction

Data

Introduction

Selecting into Zero Waste: Machine Learning Predictions

Effects of Participating in Zero Waste: Econometric Regressions

Outlook

What is zero waste?

Zero waste refers to the conservation of resources throughout the entire life cycle of a product — from raw material sourcing to production to disposal

- · abolish incineration
- end/ minimize landfilling
- resource (re)extraction/ recover value added
- increased recycling and composting
- efficient manufacturing
- conscious energy consumption

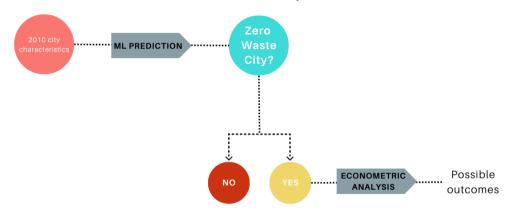
Zero Waste Europe

- Movement started in 1997 by school teacher, Rossano Ercolini (Current President of ZWE and Zero Waste Italy)
- Officially founded in 2013 as European regional branch of the Global Alliance for Incinerator Alternatives (GAIA)
- Network includes 480+ municipalities in 16 European countries
- Connects and supports 35+ national member NGOs (170+ local groups) from all around Europe

➤ Zero Waste Commitment

Research Questions

Are we able to predict which cities are likely to become zero waste, and can we identify which characteristics make a city likely to become zero waste?


Introduction

Research Ouestions

Are we able to predict which cities are likely to become zero waste, and can we identify which characteristics make a city likely to become zero waste?

Given that cities are Zero Waste, to what extent does the initiative act as a commitment device? How do overall municipal waste totals and recycling rates compare to cities who have not committed to the Zero Waste strategy?

Twofold analysis

Process Flow

Introduction 0000

Contents

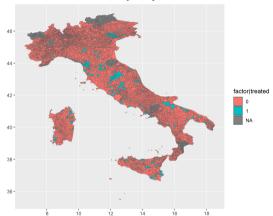
Introduction

Data

Selecting into Zero Waste: Machine Learning Predictions

Effects of Participating in Zero Waste: Econometric Regressions

Outlook


Our Novel Data

We exploit

- detailed municipal-level waste data for all of Italy
- including 310 treated cities
- between 2010 and 2020

We also consider a number of socio-economic, geographic, and institutional factors including education, age share of population, migration, GDP, hydrogeological risk, heating and cooling degree days, tourism, and waste collection type.

ZW City Spread

Italian municipalities by treatment status

Summary Statistics

		_		
Treatment Status	0		1	
Variable	N	Mean	N	Mean
GDP per cap	81382	26518.78	1992	25804.37
Population Density	81351	304.08	1992	612.34
Regional Spread	81382		1992	
CENTRAL	81382	13%	618	31%
INSULAR	81382	9%	208	10%
NORTHEAST	81382	17%	429	22%
NORTHWEST	81382	40%	224	11%
SOUTH	81382	21%	513	26%
Organic (tons)	53434	352.38	1680	672.10
Paper (tons)	76023	418.59	1958	1186.52
Glass (tons)	75374	245.27	1939	701.05
Plastic (tons)	74951	147.63	1943	465.75
Separately Collected	77815	52.49%	1971	63.58%
Waste per capita (tons)	78150	0.47	1971	0.46
MGMT cost per cap (unsorted)	34370	58.64	909	57.80
MGMT cost per cap (separated)	34370	44.03	909	62.83

Contents

Predictions •000000

Selecting into Zero Waste: Machine Learning Predictions

Predicting Zero Waste Status

Predictions _____

Machine learning applications for classification using city characteristics from 2010 for ca. 7900 municipalities

Linear

• Logistic Regression

Binary Outcome: Does city turn Zero Waste between 2010 and 2020?

Predicting Zero Waste Status

Machine learning applications for classification using city characteristics from 2010 for ca. 7900 municipalities

Linear

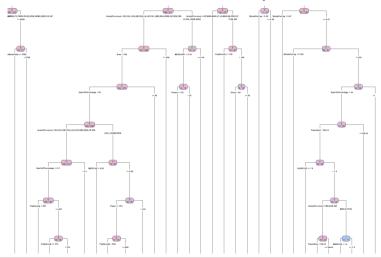
• Logistic Regression Binary Outcome: Does city turn Zero Waste between 2010 and 2020?

Non-linear

 Decision Trees Learns hierarchy of if/else auestions

Predicting Zero Waste Status

Machine learning applications for classification using city characteristics from 2010 for ca. 7900 municipalities


Linear

 Logistic Regression Binary Outcome: Does city turn Zero Waste between 2010 and 2020?

Non-linear

- Decision Trees Learns hierarchy of if/else auestions
- Random forests Creates ensemble of decision trees

Decision Tree Example

Results

Predictions

Confusion Matrices

	Logistic Reg.		Decision Tree		Ran. Forest	
	0	1	0	1	0	1
0	1324	60	1298	51	1325	59
1	1	3	27	12	0	4
N	1388		1388		1388	
Accuracy Score	95.60%		94.38%		95.75%	

Results

Predictions 0000000

Confusion Matrices

	Logistic Reg.		Decision Tree		Ran. Forest	
	0	1	0	1	0	1
0	1324	60	1298	51	1325	59
1	1	3	27	12	0	4
N	1388		1388		1388	
Accuracy Score	95.60%		94.38%		95.75%	

ML Results- Characteristic Importance

Share of Separate Collection Total Residual Waste Share of Class Share of Paper Province (and Region) Population Municipal Waste per capita

Switching Gears

So far we have tried to explain which cities become Zero Waste

Contingent on a city committing to the Zero Waste initiative, we want to examine possible effects of this treatment

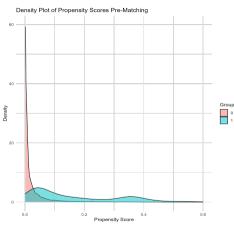
Econometric analysis

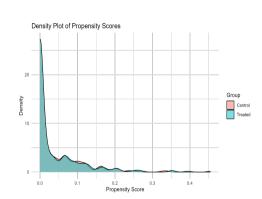
Contents

Selecting into Zero Waste: Machine Learning Predictions

Effects of Participating in Zero Waste: Econometric Regressions

Matching


Using pre-treatment data we match treated cities to control cities


- Based on the features that come out of the machine learning analysis
- Propensity score matching

Match Performance

- 294 treatment-control municipal matches
- All but 11 matches are from the same province, with the remaining 11 in the same region (insular)
- 25 control cities have been used more than once (mostly insular)

Match Performance

Density Plot Before Matching

Density Plot After Matching

Preliminary Regression Analysis

Difference-in-Differences Model Specification

$$Outcome_{i} = \beta_{0} + \beta_{1} * After_{i} + \beta_{2} * ZeroWaste_{i} + \beta_{3} (After * ZeroWaste) + \beta_{4} * Controls_{i} + \epsilon_{i},$$
(1)

for two outcomes, municipal waste per capita and separate collection rate, in municipality i before and after treatment, β_0 is the vertical intercept, After; is an indicator variable which takes the value 1 if municipality i is in the post treatment period and 0 otherwise, ZeroWaste; is indicator variable which takes the value of 1 if municipality i participates in Zero Waste Europe and 0 otherwise. and After * ZeroWaste is an interaction term taking the value 1 when both are fulfilled. Controls include both socio-economic and geographical variables.

Initial Results

Difference-in-Differences Results- Municipal Waste Per Capita

	Dependent variable:
	MWPC (kg)
ZeroWaste	-3.549
	(9.607)
After	-7.641
	(25.615)
ZeroWaste*After	19.913
	(27.044)
Constant	150.517
	(139.474)
Controls Included?	Yes
Observations	995
Adjusted R ²	0.450
Note:	*p<0.1; **p<0.05; ***p<

Initial Results

Difference-in-Differences Results- Rate of Separate Collection

	Dependent variable:
	Separate Collection
ZeroWaste	4.128**
	(1.665)
After	-5.998
	(4.439)
ZeroWaste*After	10.179**
	(4.687)
Constant	3.129
	(24.170)
Controls Included?	Yes
Observations	995
Adjusted R ²	0.548
Note:	*p<0.1; **p<0.05; ***p<0.01

Contents

Selecting into Zero Waste: Machine Learning Predictions

Outlook

Up Next

- Staggered Treatment DiD
- Dealing with endogeneity

1. Predicted which Italian cities opt in to the Zero Waste initiative

- 1. Predicted which Italian cities opt in to the Zero Waste initiative
- 2. Find that local factors/ neighboring effects play a role and that already waste-conscious municipalities seem to be among the first adopters

- 1. Predicted which Italian cities opt in to the Zero Waste initiative
- 2. Find that local factors/ neighboring effects play a role and that already waste-conscious municipalities seem to be among the first adopters
- 3. The classification algorithms are conservative and only predict cities to be zero waste when very certain

- 1. Predicted which Italian cities opt in to the Zero Waste initiative
- 2. Find that local factors/ neighboring effects play a role and that already waste-conscious municipalities seem to be among the first adopters
- 3. The classification algorithms are conservative and only predict cities to be zero waste when very certain
- 4. Matched treated cities to control cities based on the important characteristics that came out of ML

- 1. Predicted which Italian cities opt in to the Zero Waste initiative
- 2. Find that local factors/ neighboring effects play a role and that already waste-conscious municipalities seem to be among the first adopters
- 3. The classification algorithms are conservative and only predict cities to be zero waste when very certain
- 4. Matched treated cities to control cities based on the important characteristics that came out of ML
- 5. Compared those which opt in to those who do not in preliminary analysis

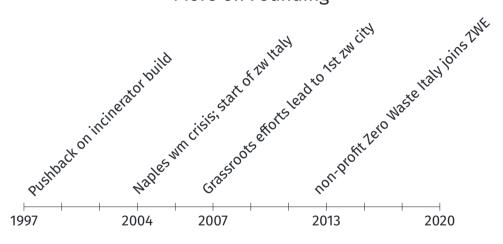
- 1. Predicted which Italian cities opt in to the Zero Waste initiative
- 2. Find that local factors/ neighboring effects play a role and that already waste-conscious municipalities seem to be among the first adopters
- 3. The classification algorithms are conservative and only predict cities to be zero waste when very certain
- 4. Matched treated cities to control cities based on the important characteristics that came out of MI
- 5. Compared those which opt in to those who do not in preliminary analysis
- 6. Find that waste is not reduced in absolute terms, but see rates of separation increase for participating cities

THANK YOU!

Jane Torbert, in collaboration with Prof. Melanie Krause, PhD Institute for Infrastructure and Resource Management

Grimmaische Straße 12, 04109 Leipzig +49 341 97-33745

jane.torbert@uni-leipzig.de www.uni-leipzig.de


Global Alliance for Incinerator Alternatives, Zero Waste Europe, Mission Zero Academy

Objectives

- GAIA: global alliance of 800+ grassroots groups, NGOs, and individuals in 90+ countries envision just, incinerator-free world
- ZWE: foster transition to zero waste through establishing legislative, financial, and cooperative groundwork necessary
 - → Joint work with GAIA on plastic pollution, waste trade, climate, zero waste best practices, and incineration alternatives, etc.
- MiZA: subsidiary of ZWE, local liaise sharing up- and downstream zero waste solutions, resources, and information
 - → Joint work with ZWE to create two-fold fee-based certification for zero waste candidate cities (est. 2021)

More on Founding

UNIVERSITÄT LEIPZIG

The Zero Waste Commitment

Submit commitment letter

1

Adopt and implement collection program

,

Publicly report progress

1

Establish Zero Waste Advisory Board

Audit discarded materials

Continually improve

→ back