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Motivation



Motivation or when should I send my kid to school?

Figure 1: The New York Times, May 21, 1985

Figure 2: The Guardian, February 14, 2009

Figure 3: The Guardian, August 29, 2023

Figure 4: UK Department for Education, April 27, 2023

Figure 5: The Wall Street Journal, August 5, 2019

Figure 6: BBC, January 20, 2022

Figure 7: BBC, July 31, 2022
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Previous evidence & Contribution



Previous evidence & Contribution

• Extensive research with mixed findings on the relationship between school-
(kindergarten-) starting age and educational attainment, cognitive development,
and academic performance (Attar and Cohen-Zada, 2018; Balestra et al., 2020; Beatton et al., 2023; Bedard and Dhuey,

2006; Black et al., 2011; Chen and Park, 2021; Cook and Kang, 2016; Cornelissen and Dustmann, 2019; Dhuey et al., 2019; Fletcher and Kim,

2016; Görlitz et al., 2022; Herbst and Strawiński, 2016; Lubotsky and Kaestner, 2016; McEwan and Shapiro, 2008; Mühlenweg and Puhani,

2010; Mühlenweg et al., 2012; Oosterbeek et al., 2021; Peña, 2017; Ponzo and Scoppa, 2014; Puhani and Weber, 2008; Qihui, 2022;

Sprietsma, 2010; Tan, 2017; Yamaguchi et al., 2023)

• Limited research on labour market outcomes
• Mostly related to earnings (Matta et al., 2016; Black et al., 2011; Oosterbeek et al., 2021; Peña, 2017; Fredriksson

and Öckert, 2014; Larsen and Solli, 2017)

• No empirical evidence on the impact of school-starting age on educational mismatch
• One related study showing no relationship between relative age and being matched

(Fumarco et al., 2022)

This study

• first evidence on the impact of school-starting age on educational mismatch
• distinguishes over- and undereducation at the extensive and intensive margin
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Data & Empirical approach



Data & Dependent variable

• Data from the Socio-Economic Panel (v37) (DIW, 2022)

• Longitudinal household study on individuals living in Germany
• Carried out annually since 1984
• Contains detailed information on individuals life in areas such as education, work

and family relations

• Educational mismatch is assessed based on the statistical measure (MEAN) (Verdugo

and Verdugo, 1989; Clogg and Shockey, 1984)

• Required education: average education xot within a reference group o at time t
• Attained education: years of education xit of individual i at time t
• Extensive margin:

OEito = 1 if xit > xot + σot (1)
UEito = 1 if xit < xot − σot (2)

• Intensive margin:

Yearsito =
{

xit − xot − σot if OEito = 1
xit − xot + σot if UEito = 1

(3)
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Identification strategy i

First option: School-entry laws with sharp RDD (Cook and Kang, 2016; Dobkin and Ferreira, 2010)

• In Germany, all children who turn six until the predefined cut-offs should start
school in the same year; all those turning six afterward start one year later

• Variation in school-entry cut-off dates on the federal-state level across years Cut-off

• Running variable: distisy = birthmonthi − cutmonthsy

• Treatment variable: olderisy =

{
0 if distisy ≤ 0
1 if distisy > 0

• Causal effect of being treated would be identified by:

EMito = β0 + β1olderisy + β2distisy + β3X ′
i + λt + γb + δs + ϵit (4)

• if there was no manipulation around the cut-off (Huang et al., 2020; Kim, 2021) McCrary

• if there was perfect compliance with the cut-off Compliance

→ Alternative: School-starting age in months (Bahrs and Schumann, 2020)

5



Identification strategy ii

Preferred option: School-starting age in months (fuzzy RDD) (Mühlenweg and Puhani, 2010)

• SSA only provided for individuals who have taken part in the survey when they
were still in school (or other education)

• Imputed values for school-starting age in months using information on
• school-leaving degree, year degree, birth year and month and federal state (Bahrs and

Schumann, 2020) and
• the day of school start (FDR: August 1st, former GDR: September 1st)

Histogram

• Estimating the Local Average Treatment Effect (LATE) of school-starting age in
months on educational mismatch (intensive and extensive margin) using the
provided and imputed sample

monthsi = α0 + α1olderisy + α2distisy + α3X ′
it + λt + γb + δs + ϵit (5)

EMito = β0 + β1 ˆmonthsi + β2distisy + β3X ′
it + λt + γb + δs + ϵit (6)

X′
it : migration background, number of siblings, sex, school education of father and mother; λt , γb , δs : survey year, birth year, and state fixed effects
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Results



Results

Figure 8: Main results

Sharp and fuzzy RDD results
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Sharp and fuzzy RDD results
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(b) Imputed sample

Note: Figures 8a and 8b display results from sharp and fuzzy RDD estimations for the years of educational mismatch (years) as well as the likelihood of
overeducation (over) and undereducation (under). The upper three panels present results from sharp RDD estimations, while the lower three stem from
fuzzy RDD estimations using ± 4 months range around the cut-off. The samples are based on the years 1996 to 2020 in the sharp RDD and the years

2001 to 2020 in the fuzzy RDD in the provided sample, while the estimates using the imputed sample are based on the survey years 1991 to 2020.

Sample, Descriptives & Difference in Means Robustness & Heterogeneity
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Channel



Channel: Occupational Choice i

Figure 9: Occupations and school-starting age
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(b) Imputed sample

Note: 9a and 9b display the average school-starting age in months by ISCO skill group. The skill groups cover ISCO-group 9 in “[1] low skill”,
ISCO-groups 4 to 8 in “[2] middle skill” and ISCO-groups 1 to 3 in “[3] high skill”. 90% confidence intervals plotted.

8



Channel: Occupational Choice ii

Table 1: Channel: Occupational choice
(1) (2) (3) (4) (5)

outcome high skill overeducation undereducation

Provided sample:
ˆmonths −0.003 0.012* 0.012* −0.008 −0.007

(0.008) (0.006) (0.006) (0.006) (0.006)
dist 0.006 −0.010* −0.010* 0.014** 0.013**

(0.006) (0.005) (0.005) (0.005) (0.005)
high skill −0.064*** 0.127***

(0.014) (0.015)
Num.Obs. 2831 2831 2831 2831 2831
Imputed sample:

ˆmonths −0.019*** −0.001 0.000 −0.011*** −0.009**
(0.005) (0.003) (0.003) (0.003) (0.003)

dist 0.000 0.000 0.000 0.000 0.000
(0.001) (0.001) (0.001) (0.001) (0.001)

high skill 0.023*** 0.082***
(0.005) (0.005)

Num.Obs. 36 838 36 838 36 838 36 838 36 838

The estimations are based on data from the SOEP for the years 1996 to 2020 in the provided
sample and for the years 1991 to 2020 in the imputed sample. Columns (1) to (5) contain results
from fuzzy regression discontinuity estimations using the variable older to instrument school starting
age in months. Columns (1) to (5) use linear probability models. Column (1) estimates the impact
of school starting age on the likelihood of working in a high-skill occupation (ISCO groups 1 to 3),
while columns (2) and (3) ((4) to (5)) estimate the impact of school starting age on overeducation
(undereducation). Columns (2) and (4) present the baseline specification discussed in 7. Columns
(3) and (5) contain the mediation analysis, adding working in a high-skill occupation as an additional
covariate. Controls include dummies for having a direct or indirect migration background, the
number of siblings, being female, and the level of education obtained by father and mother. Survey
year, birth month, and federal state fixed effects are included. Heteroskedasticity-robust standard
errors in parentheses. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 9



Suppressor: Educational attainment i

Figure 10: Education and school-starting age

75

76

77

78

79

80

81

82

83

84

85

[1] general [2] intermediate [3] tertiary
education

m
ea

n 
sc

ho
ol

 s
ta

rt
in

g 
ag

e

(a) Provided sample

75

76

77

78

79

80

81

82

83

84

85

[1] general [2] intermediate [3] tertiary
education

m
ea

n 
sc

ho
ol

 s
ta

rt
in

g 
ag

e

(b) Imputed sample

Note: Figures 10a and 10b display the average school-starting age in months by educational degree. The educational degrees cover “[1] general”, “[2]
intermediate” and “[3] tertiary”. 90% confidence intervals plotted.
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Suppressor: Educational attainment ii

Table 2: Channel: Educational attainment
(1) (2) (3) (4) (5)

outcome tertiary overeducation undereducation

Provided sample:
ˆmonths −0.013* 0.012* 0.017** −0.008 −0.009

(0.005) (0.006) (0.006) (0.006) (0.006)
dist 0.011** −0.010* −0.015** 0.014** 0.015**

(0.004) (0.005) (0.005) (0.005) (0.005)
tertiary 0.405*** −0.075***

(0.030) (0.019)
Num.Obs. 2831 2831 2831 2831 2831
Imputed sample:

ˆmonths −0.017*** −0.001 0.006+ −0.011*** −0.012***
(0.004) (0.003) (0.003) (0.003) (0.003)

dist 0.002+ 0.000 0.000 0.000 0.000
(0.001) (0.001) (0.001) (0.001) (0.001)

tertiary 0.378*** −0.114***
(0.010) (0.009)

Num.Obs. 36 838 36 838 36 838 36 838 36 838

The estimations are based on data from the SOEP for the years 1996 to 2020 in the provided
sample and for the years 1991 to 2020 in the imputed sample. Columns (1) to (5) contain results
from fuzzy regression discontinuity estimations using the variable older to instrument school starting
age in months. Columns (1) to (5) use linear probability models. Column (1) estimates the impact
of school starting age on the likelihood of having tertiary education, while columns (2) and (3) ((4)
to (5)) estimate the impact of school starting age on overeducation (undereducation). Columns
(2) and (4) present the baseline specification discussed in 7. Columns (3) and (5) contain the
mediation analysis adding tertiary education as an additional covariate. Controls include dummies
for having a direct or indirect migration background, the number of siblings, being female, and the
level of education obtained by father and mother. Survey year, birth month, and federal state fixed
effects are included. Heteroskedasticity-robust standard errors in parentheses. + p < 0.1, * p <

0.05, ** p < 0.01, *** p < 0.001 11



Summary



Summary

• First evidence on the link between school-starting age and educational mismatch
at the intensive and extensive margin

• Results reveal evidence for
1 a reduction in the likelihood of undereducation (quantitative strength similar in

both samples, precisely estimated in the larger sample)
• consistently driven by open and agreeable individuals
• partially mediated by a lower likelihood of selecting into high-skilled jobs
• suppressed by the likelihood of owning a tertiary degree

2 an increase in the likelihood of overeducation in the smaller sample
• unaffected by occupational choice
• suppressed by the likelihood of owning a tertiary degree

→ inclusion leading to a positive significant effect in both samples
3 a negative relationship between school-starting age and the likelihood of working in

a high-skill occupation and owning a tertiary degree (Tan, 2017)
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Cut-off dates Back

Figure 11: Cutoff dates by federal state
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Note: Figure ?? reports the cutoff dates by year and federal state. Data on the cutoff dates was collected by going through the respective legislation
such as the BayEUG Art. 37 for Bavaria and the SchulG §42 for Berlin.



McCrary Test Back

Figure 12: McCrary manipulation test
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Note: Figures 12a and 12b provide results from the manipulation test for the running variable dist as proposed by McCrary (2008). In Figure 12a, the
estimated bandwidth is 3.8, the log difference in heights accounts for 2.427, and the p-value is 0.000. In Figure 12b, the estimated bandwidth is 5.018,

the log difference in heights equals 1.321, and the p-value is 0.000.



Compliance with cut-off Back

Figure 13: Discontinuity in school-starting age
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Note: Figures 13a and 13b display the discontinuity in the school-starting age variable by distance to the cutoff and by birth month for the provided
sample. Plots for the imputed sample are available from the authors.



Histogram and normal distribution of school-starting age variables Back

Figure 14: School-starting age
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(b) Imputed sample

Note: Figures 14a and 14b display the distribution of the school-starting age variable in the provided and the imputed sample, respectively. The sample
is based on the survey years 1996 to 2020 in Figure 14a and 1991 to 2020 in Figure 14b.



Sample & Descriptives Back i

Sample restrictions:

• Individuals in paid employment

• Younger than their legal retirement age (65 to 67, see, §235 German Social
Security Code)

• Non-missings in all variables

Provided sample

• 3808 (2831) observations
• 721 (530) individuals
• survey waves 1996-2020 (2001-2020)

Imputed sample

• 53562 (36838) observations
• 8954 (6227) individuals
• survey waves 1991-2020



Sample & Descriptives Back ii

Table 3: Summary statistics

Provided sample Imputed sample

Mean SD Min Max Mean SD Min Max
schoolstartingage 79.21 4.98 62.00 97.00 81.79 11.37 56.00 116.00
older 0.42 0.49 0.00 1.00 0.46 0.50 0.00 1.00
dist -0.29 2.59 -4.00 4.00 0.03 2.54 -4.00 4.00
years of mismatch 0.03 0.63 -5.94 6.34 0.07 0.69 -5.94 6.34
overeducation 0.13 0.34 0.00 1.00 0.14 0.34 0.00 1.00
undereducation 0.13 0.33 0.00 1.00 0.10 0.30 0.00 1.00
number siblings 1.36 1.19 0.00 9.00 1.51 1.35 0.00 14.00
female 0.51 0.50 0.00 1.00 0.52 0.50 0.00 1.00
birth year 1984.76 4.90 1977.00 1998.00 1970.28 11.01 1939.00 1998.00
direct 0.01 0.08 0.00 1.00 0.03 0.17 0.00 1.00
indirect 0.14 0.34 0.00 1.00 0.05 0.21 0.00 1.00
native 0.86 0.35 0.00 1.00 0.92 0.27 0.00 1.00
father rupper 0.15 0.36 0.00 1.00 0.13 0.34 0.00 1.00
father intermediate 0.32 0.47 0.00 1.00 0.20 0.40 0.00 1.00
father general 0.47 0.50 0.00 1.00 0.63 0.48 0.00 1.00
father no 0.06 0.23 0.00 1.00 0.03 0.18 0.00 1.00
mother upper 0.13 0.34 0.00 1.00 0.08 0.28 0.00 1.00
mother intermediate 0.41 0.49 0.00 1.00 0.26 0.44 0.00 1.00
mother general 0.43 0.49 0.00 1.00 0.62 0.48 0.00 1.00
mother no 0.03 0.16 0.00 1.00 0.03 0.18 0.00 1.00
Num.Obs. 2831 36838

The samples are based on those individuals whose birth month is in a ± 4-month range around the respective cutoff date, restricting
the survey waves to 2001 to 2020 for the provided sample and 1991 to 2020 for the imputed sample. SOEP weights applied.



Sample & Descriptives Back iii

Figure 15: Difference in means between those born before and after the cut-off
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Sample & Descriptives Back iv
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Note: Figures 15a and 15b display the differences in means of the dichotomous variables in the provided and the imputed sample, while Figures 15c
and 15d show the differences in the means of the continuous or count variables. The samples are based on those individuals whose birth month is in a
± 4-range around the respective cut-off date, restricting the survey years 1996 to 2020 in Figures 15a and 15c and 1991 to 2020 in Figures 15b and

15d. 90% confidence intervals plotted.



Robustness & Heterogeneity Back

Robustness Tables

• RDD design
• Second-order polynomial ✓

• Data-driven cut-off ✓(Calonico et al., 2020)

• Separate linear trends (✓)
• Assessment of EM

• Indirect self-assessment ✓

• Job analyst (✓)
• Sample composition

• Outlier (upper/lower 2.5 %) ✓

• Cross section
• Set of covariates (INKAR)

• Local unemployment ✓

• Unemployed by qualification ✓

✓Robust: + OE in provided sample, and - UE in imputed sample
(✓) Only in one sample

Heterogeneity

• Demographics Graphs

• Sex
• Birth cohort
• Migration background
• Region

• Personality Graphs

• Risk-aversion
• Openness to experience
• Agreeableness
• Extraversion
• Conscientiousness
• Neuroticism
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Table 4: Robustness: Provided sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)
quadratic cutoff 3 separate trends isa ja outlier first unempl. rate unempl. qual.

OE UE OE UE OE UE OE UE OE UE OE UE OE UE OE UE OE UE
ˆmonths 0.011+ −0.006 0.012* −0.006 0.005 −0.002 0.017** −0.018** 0.009 −0.009 0.014* −0.006 −0.002 −0.007 0.013* −0.008 0.014* −0.002

(0.006) (0.006) (0.006) (0.006) (0.004) (0.004) (0.006) (0.007) (0.006) (0.008) (0.006) (0.006) (0.011) (0.017) (0.006) (0.006) (0.006) (0.006)
dist −0.010+ 0.013* 0.001 0.007*** −0.003 0.014** −0.011* 0.010+ −0.015** 0.012* −0.002 0.023+ −0.011* 0.014** −0.013* 0.010+

(0.006) (0.006) (0.002) (0.002) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.009) (0.012) (0.005) (0.005) (0.006) (0.005)
poly(dist, 2)1 −1.325* 1.794**

(0.636) (0.637)
poly(dist, 2)2 0.227 −0.403

(0.331) (0.346)
unemployment rate −0.013* 0.002

(0.005) (0.004)
share specialist 0.057 −0.080*

(0.049) (0.037)
share trained 0.012 0.003

(0.008) (0.006)
share experts 0.007 0.045+

(0.031) (0.023)
First stage:
older 4.667*** 4.937*** 5.637*** 4.386*** 4.386*** 4.347*** 4.102*** 4.388*** 5.497***

(0.393) (0.444) (0.313) (0.390) (0.390) (0.360) (0.997) (0.390) (0.642)
F-stat. (1st stage) 156.7 134.3 131.4 148.5 148.5 225.8 20.6 148.2 152.3
Num.Obs. 2831 2831 2227 2227 3808 3808 2831 2831 2831 2831 2641 2641 530 530 2831 2831 1800 1800

Komplett anpassen Heteroskedasticity-robust standard errors in parentheses. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 5: Robustness: Imputed sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)
quadratic cutoff2 separate trends isa ja outlier first unempl. rate unempl. qual.

OE UE OE UE OE UE OE UE OE UE OE UE OE UE OE UE OE UE
ˆmonths 0.000 −0.012*** 0.015+ −0.013+ −0.002 −0.008*** 0.005 −0.012*** 0.012*** −0.011** −0.003 −0.004* 0.001 −0.008 −0.001 −0.012*** 0.009* −0.012***

(0.003) (0.003) (0.008) (0.007) (0.002) (0.002) (0.004) (0.003) (0.004) (0.004) (0.002) (0.002) (0.007) (0.007) (0.003) (0.003) (0.004) (0.004)
dist −0.010* 0.001 0.001* −0.002*** 0.004*** 0.000 0.001 0.001 0.001 0.001 0.000 0.003+ 0.000 0.000 0.000 0.002

(0.005) (0.004) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)
poly(dist, 2)1 0.109 0.105

(0.374) (0.365)
poly(dist, 2)2 −0.368 0.535

(0.345) (0.329)
unemployment rate 0.001 −0.002+

(0.001) (0.001)
share specialist 0.060** −0.010

(0.022) (0.018)
share trained 0.000 −0.002

(0.004) (0.003)
share experts −0.011 −0.005

(0.013) (0.011)
First stage:
older 2.241*** 1.313*** 3.015*** 2.201*** 2.201*** 3.464*** 2.580*** 2.157*** 2.362***

(0.238) (0.316) (0.178) (0.234) (0.234) (0.205) (0.575) (0.237) (0.300)
F-stat. (1st stage) 87.4 17.2 96.2 89.1 89.1 282.8 20.4 83.4 62.6
Num.Obs. 36 838 36 838 20 985 20 985 53 562 53 562 36 838 36 838 36 838 36 838 34 917 34 917 6195 6195 35 989 35 989 22 374 22 374

Komplett anpassen Heteroskedasticity-robust standard errors in parentheses. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Figure 16: Heterogeneity by demographics
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(b) Overeducation: Imputed sample
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Estimate and 90% Conf. Int.
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(c) Undereducation: Provided sample
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(d) Undereducation: Imputed sample

Note: 16a, 16c, 16b and 16d display regression results for the likelihood of over- and undereducation from fuzzy RDD estimations for different
subsamples, respectively. 16a and 16c rely on the provided sample, while 16b and 16d use the imputed sample. The subsamples distinguish individuals

based on sex, cohort, migration background, and region.
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Figure 17: Heterogeneity by personality traits
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(b) Overeducation: Imputed sample
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Estimate and 90% Conf. Int.
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(c) Undereducation: Provided sample
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(d) Undereducation: Imputed sample

Note: 17a, 17c, 17b and 17d display regression results for the likelihood of over- and undereducation from fuzzy RDD estimations for different
subsamples, respectively. 17a and 17c rely on the provided sample, while 17b and 17d use the imputed sample. The subsamples distinguish individuals

based on their risk-aversion, openness to experience, agreeableness, extraversion, conscientiousness, and neuroticism.


	Motivation
	Previous evidence & Contribution
	Data & Empirical approach
	Results
	Channel
	Summary
	Appendix
	Appendix


