Local Costs and Benefits of Power Installations Hedonic Evidence from Germany

Nicolas Caballero, ¹ Manuel Frondel, ² Stephan Sommer ³ and Colin Vance ⁴

¹Eurac Research and Ruhr University Bochum

²RWI - Leibniz Institute for Economic Research and Ruhr University Bochum

³RWI - Leibniz Institute for Economic Research and Bochum University of Applied Sciences

⁴RWI - Leibniz Institute for Economic Research and Constructor University Bremen

August 29, 2024

Background and Surrounding Literature

- · Germany's energy system is undergoing a massive transformation
 - The last nuclear plants went off-line in 2023
 - Coal is slated for nixing by 2038
 - Renewable capacities have increased 10-fold over the last two decades
- Literature using hedonic price methods considers the impact of power generation plants and RES installations on surrounding house values [Davis, 2011, Dröes and Koster, 2016, Frondel et al., 2019, Brinkley and Leach, 2019].

• With few exceptions (e.g. [Eichholtz et al., 2021]), most papers focus on a single installation type.

• The present paper develops a unified framework to investigate the openings and closing of several types of facilities: nuclear, wind, coal and solar.

• We compare the overall costs of co-existing policy decisions on the local housing markets with a back-of-the-envelope estimation.

Pooled Data, 2008 - 2019

2.4 Million postings on ImmobilienScout24 are merged with georeferenced plant data.

Wey

Treatment

Treated houses are those with a plant located within in a 2km radius.

Figure: Treatment and Control Group Definition.

- Employ a spatial difference-in-differences (DID) approach, to address endogeneity.
- Unified modeling framework.
- In preferred specification we include postcode and county-year fixed effects.

$$\ln P_{it} = \beta_0 + \beta_x^T \mathbf{x}_i +$$

- Employ a spatial difference-in-differences (DID) approach, to address endogeneity.
- Unified modeling framework.
- In preferred specification we include postcode and county-year fixed effects.

$$\ln P_{it} = \beta_0 + \beta_x^T \mathbf{x}_i + \sum_{k=1}^4 \beta_{OPk} \ OP_{ki} + \sum_{k=1}^3 \beta_{CLk} \ CL_{ki} +$$

Empirical Identification Strategy

- Employ a spatial difference-in-differences (DID) approach, to address endogeneity.
- Unified modeling framework.
- In preferred specification we include postcode and county-year fixed effects.

$$n P_{it} = \beta_0 + \beta_x^T \mathbf{x}_i + \sum_{k=1}^4 \beta_{OPk} OP_{ki} + \sum_{k=1}^3 \beta_{CLk} CL_{ki}$$
$$+ \sum_{k=1}^4 \beta_{POPk} OP_{ki} * PostOP_{kit} + \sum_{k=1}^3 \beta_{PCLk} CL_{ki} * PostCL_{kit}$$
$$+$$

Empirical Identification Strategy

- Employ a spatial difference-in-differences (DID) approach, to address endogeneity.
- Unified modeling framework.
- In preferred specification we include postcode and county-year fixed effects.

$$\ln P_{it} = \beta_0 + \beta_x^T \mathbf{x}_i + \sum_{k=1}^4 \beta_{OPk} \ OP_{ki} + \sum_{k=1}^3 \beta_{CLk} \ CL_{ki}$$
$$+ \sum_{k=1}^4 \beta_{POPk} \ OP_{ki} * PostOP_{kit} + \sum_{k=1}^3 \beta_{PCLk} \ CL_{ki} * PostCL_{kit}$$
(1)
$$+ \lambda_j + \eta_{ct} + \epsilon_{cijt}$$

• β_{POPk} and β_{PCLk} , capture the average difference in the change of asking prices.

Results

	Year	FE	County-Year FE		
Openings:					
Wind Turbine $< 2 \text{ km}$	-0.067***	(0.011)	-0.018*	(0.008)	
Solar Park $<$ 2 km	0.013	(0.010)	0.009	(0.006)	
Coal Power Plant $< 2 \text{ km}$	-0.126*	(0.052)	-0.135**	(0.049)	
Gas Power Plant $<$ 2 km	0.027	(0.033)	0.003	(0.018)	
Closings:					
Coal Power Plant $< 2 \text{ km}$	-0.175***	(0.035)	-0.081**	(0.031)	
Gas Power Plant $<$ 2 km	0.085	(0.055)	-0.033	(0.036)	
Nuclear Power Plant $< 2 \text{ km}$	0.001	(0.094)	-0.052	(0.103)	
Fixed Effects	post code $+$ year		post code + county-year		
adjusted R^2	0.712		0.727		
# Observations	2399949		2399949		

Table: Spatial DiD Estimation Results on the Asking Prices of Houses.

Notes: *** p < 0.001; ** p < 0.01; * p < 0.05. SE, in parentheses, clustered at the county-level.

Results

	Year	FE	County-Year FE		
Openings:					
Wind Turbine $< 2 \text{ km}$	-0.067***	(0.011)	-0.018*	(0.008)	
Solar Park $<$ 2 km	0.013	(0.010)	0.009	(0.006)	
Coal Power Plant $< 2 \text{ km}$	-0.126*	(0.052)	-0.135**	(0.049)	
Gas Power Plant $< 2 \text{ km}$	0.027	(0.033)	0.003	(0.018)	
Closings:					
Coal Power Plant $< 2 \text{ km}$	-0.175***	(0.035)	-0.081**	(0.031)	
Gas Power Plant $< 2 \text{ km}$	0.085	(0.055)	-0.033	(0.036)	
Nuclear Power Plant $<$ 2 km	0.001	(0.094)	-0.052	(0.103)	
Fixed Effects	post code $+$ year		post code + county-year		
adjusted R^2	0.712		0.727		
# Observations	2399949		2399949		

Table: Spatial DiD Estimation Results on the Asking Prices of Houses.

Notes: *** p < 0.001; ** p < 0.01; * p < 0.05. SE, in parentheses, clustered at the county-level.

Results

	Year	FE	County-Year FE		
Openings:					
Wind Turbine $< 2 \text{ km}$	-0.067***	(0.011)	-0.018*	(0.008)	
Solar Park $<$ 2 km	0.013	(0.010)	0.009	(0.006)	
Coal Power Plant $< 2 \text{ km}$	-0.126*	(0.052)	-0.135**	(0.049)	
Gas Power Plant $< 2 \text{ km}$	0.027	(0.033)	0.003	(0.018)	
Closings:					
Coal Power Plant $< 2 \text{ km}$	-0.175***	(0.035)	-0.081**	(0.031)	
Gas Power Plant $< 2 \text{ km}$	0.085	(0.055)	-0.033	(0.036)	
Nuclear Power Plant $<$ 2 km	0.001	(0.094)	-0.052	(0.103)	
Fixed Effects	post code $+$ year		post code + county-year		
adjusted R^2	0.712		0.727		
# Observations	2399949		2399949		

Table: Spatial DiD Estimation Results on the Asking Prices of Houses.

Notes: *** p < 0.001; ** p < 0.01; * p < 0.05. SE, in parentheses, clustered at the county-level.

• Parallel trends \checkmark

• Anticipation effects \checkmark

• Different buffer sizes \checkmark

Accounting for staggered treatment

- The data straddles a turbulent period in Germany's real estate market.
 - Global financial crisis in 2008, followed by
 - Rock bottom interest rates, followed by
 - Exploding house prices
- This turbulence, coupled with the staggered nature of the treatment, may call for an estimator that accounts for heterogeneous treatment effects such as the Group-Time Estimator of [Callaway and Sant'Anna, 2021].

	Wind Opening	Coal Closure		
$ATT < 2 \ km$	-0.09** (0.038)	-0.13 (0.17)		
Fixed Effects	postal code $+$ county-year			

Table: Group-Time Aggregated ATT for Wind Openings and Coal Closures

Table: Back-of-the-envelope Estimates of the Costs related to Future Coal Power Plant Closures and Wind Turbine Openings

	Point	# Affected	Average	Per-property	Total Cost
	Estimate	Houses	Price in €	Cost in €	in Billion €
Coal Power Plant Closure	-0.081	80465	463064	-37508	-3.0
Wind Turbine Installations	-0.018	1020600	290369	-5227	-5.3

- Wind and coal openings are associated with reductions in the value of surrounding houses:
- Coal closures also associated with depressed prices, likely owing to employment effects and regional economic spillovers.
- Magnitude of the costs amount to about €8.3 Billion in back-of-the-envelope calculation for future wind installations and coal plant closures.
- Policy action:
 - Individual compensation?
 - Regional investment in coal-closure areas?

Test individual-treatment models with leads 2 years before the treatment, 3 years, and 4 or more.

Figure: Wind Opening.

Figure: Coal Opening.

Figure: Coal Closure.

	2-km i	radius	3-km i	radius	4-km i	radius
Openings:						
Wind Turbine $< 2 \text{ km}$	-0.018*	(0.008)	-0.018**	(0.006)	-0.016**	(0.006)
Solar Park $<$ 2 km	0.009	(0.006)	0.007	(0.005)	0.006	(0.004)
Coal Power Plant $<$ 2 km	-0.135**	(0.049)	-0.019	(0.083)	-0.044	(0.041)
Gas Power Plant $<$ 2 km	0.003	(0.018)	0.018	(0.016)	0.025	(0.020)
Closings:						
Coal Power Plant $< 2 \text{ km}$	-0.081**	(0.031)	-0.043	(0.045)	-0.017	(0.021)
Gas Power Plant $<$ 2 km	-0.033	(0.036)	-0.016	(0.032)	-0.020	(0.021)
Nuclear Power Plant $< 2 \text{ km}$	-0.052	(0.103)	-0.045	(0.075)	-0.044	(0.064)
Fixed Effects	postal code $+$ county-year					
adjusted R^2	0.7	27	0.7	29	0.7	30
# Observations	2399	949	2072	471	1806	583

Table: Spatial DiD Estimations Results for Equation 1 under various Distance Definitions.

Notes: *** p < 0.001; ** p < 0.01; * p < 0.05. Standard errors, reported in parentheses, are clustered at the county-level.

Table: Spatial DiD Estimation Results of Equation 1 when Ruling-out Anticipation Effects.

	Baseline Results	Ruling-out anticipation		
Openings:				
Wind Turbine $< 2 \text{ km}$	-0.018* (0.008)	-0.023* (0.010)		
Solar Park <2 km	0.009 (0.006)	0.012 (0.007)		
Coal Power Plant $< 2 \text{ km}$	-0.135** (0.049)	-0.235*** (0.069)		
Gas Power Plant $<$ 2 km	0.003 (0.018)	0.019 (0.021)		
Closings:				
Coal Power Plant $< 2 \text{ km}$	-0.081** (0.031)	-0.099*** (0.027)		
Gas Power Plant <2 km	-0.033 (0.036)	-0.055 (0.057)		
Nuclear Power Plant $< 2 \text{ km}$	-0.052 (0.103)	0.025 (0.133)		
Fixed Effects	postal code + county-year			
adjusted R^2	0.727	0.728		
# Observations	2399949	2279865		

Note: *** p < 0.001; ** p < 0.01; * p < 0.05. Standard errors, reported in parentheses, are clustered at the county-level.

References I

```
Brinkley, C. and Leach, A. (2019).
```

Energy next door: a meta-analysis of energy infrastructure impact on housing value. Energy Research & Social Science, 50:51–65.

Callaway, B. and Sant'Anna, P. H. C. (2021).

Difference-in-differences with Multiple Time Periods. *Journal of Econometrics*, 2:200–230.

Davis, L. W. (2011).

The Effect of Power Plants on Local Housing Values and Rents. *Review of Economics and Statistics*, 93(4):1391–1402.

Dröes, M. I. and Koster, H. R. A. (2016).

Renewable Energy and Negative Externalities: The Effect of Wind Turbines on House Prices. Journal of Urban Economics, 96:121–141.

Eichholtz, P., Kok, N., Langen, M., and van Vulpen, D. (2021). Clean Electricity, Dirty Electricity: The Effect on Local House Prices. Journal of Real Estate Finance and Economics, 66:743–777.

Frondel, M., Kussel, G., Sommer, S., and Vance, C. (2019). Local Cost for Global Benefit: The Case of Wind Turbines. *Ruhr Economic Papers*, 791.

Thank you for your attention! Any questions / feedback?

vance@rwi-essen.de