Acquisition, (Mis)use and Dissemination of Information: The Blessings of Cursedness and Transparency

Franz Ostrizek & Elia Sartori Sciences Po CSEF EEA-ESEM, 29 August 2024

- Many economic situations feature
 - Fundamental and strategic uncertainty: value of a company, state of the economy, risk of infection
 - Learning based on (statistics of) others' actions: stock price, inflation, contagion
- Backing out information about the state based on statistics of actions
 - Information Dissemination: Piggybacks on information others acquire and use
 - Understand how the actions of others reflect their information
- This type of inference is challenging and agents often fail to perform it
 - Winner's curse in auctions, underinference in social learning and market games,...

Questions

- How does this bias affect the use, acquisition and dissemination of information?
 - Increases the use and acquisition of private informationDoes not decrease the informativeness of the aggregative activ
- What is the impact on welfare?
 - Mitigates the dissemination inefficiency, but introduces inefficient use.
 - •
- How does it affect the impact of transparency and other policies?
 - Fundamental information can backfire
 Transparency is always beneficial but not fully appropriated by cursed agent

Workhorse LQN game, with Private Information Acquisition and

- Aggregative Signal
 - Information generation and dissemination
 - Transparency (policy instrument): precision of the aggregative signal
- Cursedness (Eyster&Rabin '05)
 - Failure to understand the link between others' private information and actions
 - Here: updating bias enabled by transparency
 - Cursed agents assess the value of information: CEE with information acquisition
- Novel Notion of Value of Information for Biased Agents

• Use and Value of Information in LQN games

- Morris&Shin 02; Angeletos&Pavan 07; Colombo, Femminis&Pavan 14; Bayona 18; Vives 17
- Misuse of Information, Mispecified Learning, Cursed Equilibrium
 - Eyster&Rabin 05; Eyster, Rabin&Vayanos 19; Cohen&Li 23; Fong et al. 23; Bohren&Hauser 23
- Transparency in Financial Markets
 - Grossman&Stiglitz 80; Pagano&Roell 96; Vives 14

Model Primitives

• Simple beauty contest:

$$u(a_i,\overline{a},\theta) = -\left[(1-r)(a_i-\theta)^2 + r(a_i-\overline{a})^2 \right]$$

- Unit mass of players choosing action $a_i \in \mathbb{R}$ to match an average of
 - unknown state $heta \in \mathbb{R}$, prior $\mathcal{N}\left(0, au_{ heta}^{-1}
 ight)$
 - average action $\overline{a} = \int_0^1 a_i di$
 - parameter $r \in (-\infty, 1)$ parametrizes action complementarity
 - complements for r > 0, substitutes for r < 0

- Private signal about fundamental $s_i \sim \mathcal{N}(\theta, \tau_S^{-1})$, τ_S later endogenous
- Public signal about fundamental $y \sim \mathcal{N}(\theta, \tau_v^{-1})$.
- Public signal about aggregate action $p \sim \mathcal{N}\left(\overline{a}, \tau_p^{-1}\right)$
 - τ_p : transparency parameter
 - *p* is public: government statistic, news story, not private observation

- Private signal about fundamental $s_i \sim \mathcal{N}(\theta, \tau_S^{-1})$, τ_S later endogenous
- Public signal about fundamental $y \sim \mathcal{N}\left(\theta, \tau_{y}^{-1}\right)$.
- Public signal about aggregate action $p \sim \mathcal{N}\left(\overline{a}, \tau_p^{-1}\right)$
 - τ_p : transparency parameter
 - *p* is public: government statistic, news story, not private observation
- In a linear equilibrium

$$\bar{a} = \delta_0 + \delta_1 \theta + \delta_2 y + \delta_3 p$$

• The aggregative signal p: information of *endogenous precision about* θ :

$$\widehat{\mathbf{p}} = \mathsf{Linear}$$
 Combination of Signals $\sim \mathcal{N}\left(heta, rac{1}{\delta_1^2 au_{\mathsf{p}}}
ight)$

• Fully cursed agents

- perceives no connection between other agents' actions and their information
- Hence p is not informative about θ (conditional on (s_i, y)), so updates

 $\mathbb{E}[\theta] = \frac{\tau_{y} \mathbf{y} + \tau_{s} \mathbf{s}_{i}}{\tau_{\theta} + \tau_{y} + \tau_{s}}$

• Fully cursed agents

- perceives no connection between other agents' actions and their information
- Hence p is not informative about θ (conditional on (s_i, y)), so updates

$$\mathbb{E}[\theta] = \frac{\tau_{y} \mathbf{y} + \tau_{s} \mathbf{s}_{i}}{\tau_{\theta} + \tau_{y} + \tau_{s}}$$

• Partially cursed agents

- interior level of cursedness $\chi \in (0, 1)$
- convex combination of rational and fully cursed

$$\mathbb{E}_{\chi}[\theta] = (1-\chi) \frac{\tau_{y}y + \tau_{s}s_{i} + \delta_{1}^{2}\tau_{p}\hat{p}}{\tau_{\theta} + \tau_{y} + \tau_{s} + \delta_{1}^{2}\tau_{p}} + \chi \frac{\tau_{y}y + \tau_{s}s_{i}}{\tau_{\theta} + \tau_{y} + \tau_{s}}$$

Information Acquisition

- Endogenize τ_s : Agents acquire private information in the first stage.
- Key challenge: Discipline acquisition in setting with incorrect use.
 - How does a cursed agent think about his welfare as a function of τ_s ex-ante?

- Understand equilibrium: Hold aggregate variables fixed, no magical thinking
 - rules out quasi-Bayesian approach
- Systematic mistake: Correct beliefs about your future actions
 - rules out naive approach
- No meta-rationality: Do not fix your bias via information acquisition
 - rules out sophisticated approach

Subjective Envelope Condition

- True ex-ante welfare buying precision au_s , playing lpha against equilibrium δ is

$$W(\boldsymbol{\alpha},\boldsymbol{\delta},\tau_{s}) = \mathbb{E}_{\boldsymbol{\alpha},\boldsymbol{\delta},\tau_{s}}\left[-(1-r)(a_{i}-\theta)^{2}-r(a_{i}-\bar{a})^{2}\right]-c\tau_{s}$$

- Holding fixed equilibrium loading δ (and the precision of public signals): (1)
- Using the actual action rule α : (2)

Subjective Envelope Condition

• True ex-ante welfare buying precision au_s , playing lpha against equilibrium δ is

$$W(\boldsymbol{\alpha},\boldsymbol{\delta},\tau_{s}) = \mathbb{E}_{\boldsymbol{\alpha},\boldsymbol{\delta},\tau_{s}}\left[-(1-r)(a_{i}-\theta)^{2}-r(a_{i}-\bar{a})^{2}\right]-c\tau_{s}$$

- Holding fixed equilibrium loading δ (and the precision of public signals): (1)
- Using the actual action rule α : (2)
- What about (3)?
 - In the rational case, we have the envelope theorem

$$\frac{d}{d\tau_s}W(\boldsymbol{\alpha}(\tau_s),\boldsymbol{\delta},\tau_s)=\frac{\partial}{\partial\tau_s}W(\boldsymbol{\alpha}(\tau_s),\boldsymbol{\delta},\tau_s)$$

- LHS: includes the influence of information acquisition on information use, which is negligible because information is used optimally
- Operationalize (3) by using

$$\frac{\partial}{\partial \tau_s} W(\boldsymbol{\alpha}(\tau_s), \boldsymbol{\delta}, \tau_s) = 0 \tag{SE}$$

• Consider a decision maker trying to learn the optimal τ_s by an iterative process

- Consider a decision maker trying to learn the optimal τ_s by an iterative process
- Infinitely many periods (discrete): $t \in \mathbb{N}$
 - agent picks a target precision $\bar{\tau}_t$
 - realized level of precision is given by $\tau_t = \bar{\tau}_t + \sigma \epsilon_t$
 - implementation errors $\epsilon_t \sim F([-1,1])$, symmetric, iid
- Gradient ascent towards optimal $\bar{\tau}$ using the realizations of welfare and precision

• By varying the assumptions about how the agent reacts to trembles and records welfare, we also get the classic notions

	reoptimize: $a^*(\cdot au_t)$	don't reoptimize: $a^*(\cdot ar{ au}_t)$
interim expected payoff	quasi-Bayesian	quasi-Bayesian
realized payoff	sophisticated	subjective envelope

- Our notion is arguably the simplest
 - Doesn't require recalculating the action rule
 - Doesn't even require a well-specified interim belief
- Generalizes to situations where action rule comes from black-box algorithm
 - Assumption: Agent believes that it is approximately optimal

Definition (χ -Cursed Expectations Equilibrium with Information Acquisition) A tuple (δ , τ_s) constitutes a χ -CEE-IA if

- 1. δ is a best response under expectations \mathbb{E}_{χ} given δ , and
- 2. (δ, δ, τ_s) satisfy (SE).

Definition (χ -Cursed Expectations Equilibrium with Information Acquisition) A tuple (δ , τ_s) constitutes a χ -CEE-IA if

- 1. δ is a best response under expectations \mathbb{E}_{χ} given δ , and
- 2. (δ, δ, τ_s) satisfy (SE).

Theorem

For all χ , a χ -CEE-IA exists and is unique; non-degeneracy requires $\sqrt{c} < \frac{1-r}{\tau_0 + \tau_v}$.

Positive Results

• **Increased cursedness:** use more private and public fundamental information and less aggregative information.

$$\frac{\partial \delta_1}{\partial \chi} > \mathbf{0}, \qquad \frac{\partial \delta_2}{\partial \chi} > 0, \qquad \frac{\partial \delta_3}{\partial \chi} < 0, \qquad \frac{\partial \tau_s}{\partial \chi} > 0$$

• **Increased cursedness:** use more private and public fundamental information and less aggregative information.

$$rac{\partial \delta_1}{\partial \chi} > \mathbf{0}, \qquad rac{\partial \delta_2}{\partial \chi} > 0, \qquad rac{\partial \delta_3}{\partial \chi} < 0, \qquad rac{\partial au_s}{\partial \chi} > 0$$

• Endogenous precision of aggregative signal: increasing in χ and τ_p

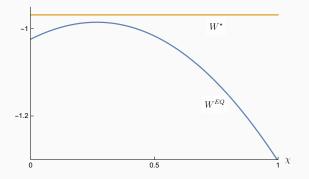
$$\frac{\partial \delta_1^2 \tau_p}{\partial \tau_p} > 0, \qquad \frac{\partial \delta_1^2 \tau_p}{\partial \chi} > 0.$$

• Comovement of aggregate action and the state

$$\operatorname{Cov}(\theta, \overline{a}) = 1 - \frac{\sqrt{c}\tau_{\theta}}{1-r}$$

- Invariant in χ and τ_p : Processing bias doesn't reduce informational efficiency
- "Naive" traders don't just inject noise, they also inject private information!

Welfare



- EQ never efficient: too little dissemination ($\chi = 0$), inefficient use ($\chi > 0$)
- Local to the rational equilibrium, an increase in cursedness means
 - More (efficient) information dissemination (first order gain at $\chi = 0$)
 - Less efficient information use (second order loss at $\chi = 0$)
- (Individual) Cursedness is a (collective) blessing

- Lower acquisition costs and more precise fundamental information can backfire!
- Higher public fundamental information $(\tau_y \uparrow)$ means
 - 1. Environment is more informative: beneficial
 - 2. Substitution away from *p*: loss for cursed agents (already underused).
- Second effect can dominate at interior χ (for *r* sufficiently large)
 - "Paradoxical" policy comparative statics emerge because of **partial cursedness**

The Impact of Information Policies: Transparency

- Cursed agents undervalue the aggregative signal, yet only unambiguously positive welfare effect
- Higher transparency $(\tau_p \uparrow)$ means
 - 1. Environment is more informative: beneficial
 - 2. Substitution towards *p*: gain for cursed agents (underused).
- Reason: $\delta_1^2 \tau_p$ increases in τ_p (while it decreases in c, τ_y)

- Cursed agents undervalue the aggregative signal, yet only unambiguously positive welfare effect
- Higher transparency $(\tau_p \uparrow)$ means
 - 1. Environment is more informative: beneficial
 - 2. **Substitution towards** *p*: gain for cursed agents (underused).
- Reason: $\delta_1^2 \tau_p$ increases in τ_p (while it decreases in c, τ_y)
- If agents **undervalue** (but not completely disregard) a **source of information**, the **only unambigously beneficial policy** is **increasing the informativeness** of this very source
 - otherwise, problematic substitution effects
 - safe vs effective policy?

Conclusion

- How does this bias affect the use, acquisition and dissemination of information?
 - Increases the use and acquisition of private information
 - Does not decrease the informativeness of the aggregative action
- What is the impact on welfare?
 - Mitigates the dissemination inefficiency, but introduces inefficient use
 - Cursedness is bliss
- How does it affect the impact of transparency and other policies?
 - Fundamental information can backfire
 - Transparency is always beneficial but not fully appropriated by cursed agents

- Subjective Envelope
 - reasonable
 - tractable
 - and it doesn't matter
- We also consider the quasi-Bayesian setting
 - (= integrating interim subjective welfare with true signal distribution)
 - only numerical
 - same qualitative results on welfare and policy

Thank You!

- Can embed our game to the setting of Cohen&Li '23
 - choose τ_s , observe s_i , y, submit a demand function $a_i = \alpha_0 + \alpha_3 p$
- Fully cursed sequential equilibrium:
 - ex-ante: $\bar{a} = 0$ deterministically!
 - acquire information according to this belief
 - ex-interim: $\bar{a} = \alpha_1 \mathbb{E}[\theta | s_i, y] + \alpha_2 y$ deterministically!

- Can embed our game to the setting of Cohen&Li '23
 - choose τ_s , observe s_i , y, submit a demand function $a_i = \alpha_0 + \alpha_3 p$
- Fully cursed sequential equilibrium:
 - ex-ante: $\bar{a} = 0$ deterministically!
 - acquire information according to this belief
 - ex-interim: $\bar{a} = \alpha_1 \mathbb{E}[\theta | s_i, y] + \alpha_2 y$ deterministically!
- This is how it has to be
 - cannot expect that others will react to their signals
 - cannot expect that I will believe so based on my future information
 - otherwise, we could just add a superfluos stage at the end to break cursedness
- Still, I don't think it fits our applications well