Female Employment, Marriage, and Child Care

Lena Hassani-Nezhad

City, University of London and IZA

28 August 2024

Lena Hassani-Nezhad (City University) Employment, Marriage & Child Care

Motivation Children and mothers' extensive margin of employment

328 women for whom data at least 3 years before and after birth are available, PSID (1968-1996)

Motivation Children and mothers' intensive margin of employment

M D

328 women for whom data at least 3 years before and after birth are available, PSID (1968-1996)

3/27

Motivation

Strong correlation between time child spends in day care and mother's employment

- Presence of young children is associated with lower female labour supply
- Potential reasons for lower female labour supply
 - Non-working and part-time employed mothers spend more time with their children
- Potential drawbacks of lower female labour supply and not using child care: lower future wages
 - Non workers lose attachment to labour market
 - Part-time employment helps in human capital accumulation but is associated with lower hourly wages: part-time pay penalty

w

• 3 > 1

Motivation

Labour supply of married women is different from labour supply of single women

Lena Hassani-Nezhad (City University) Employment, Marriage & Child Care

Labour supply of married women is different than labour supply of single women

- Potential reason for lower labour supply of married women compared to single women
 - Household production specialization: Women reduce their labour supply to produce household goods; i.e. a good meal or children qualities, while men specialise in the labour market M_M
- Are there any consequences for this specialization? lower future wages
 - Upon divorce women might have lower income to spend on themselves and their children

• 3 >

- In a country with ungenerous family-work policies (The US), how child care subsidies affect
 - Part-time and full-time employment decisions of married and single women?
 - **2** Work experiences and wages?
 - Marital decisions?

I develop a dynamic model:

Endogenous fertility, employment, marital, and child care decisions.

< 3 b

I develop a dynamic model:

- Endogenous fertility, employment, marital, and child care decisions.
- **2** The model is estimated using Simulated Method of Moments:
 - $\bullet~$ Using (1968-1997) waves of the PSID in the United States

I develop a dynamic model:

- Endogenous fertility, employment, marital, and child care decisions.
- **2** The model is estimated using Simulated Method of Moments:
 - Using (1968-1997) waves of the PSID in the United States
- Use the estimated model to evaluate the effect of child care subsidies on:
 - Process of human capital accumulation and wages
 - Marital decisions

Child care subsidy programs:

- Employment rates:
 - 10% ↓ in cost of child care ⇒ ↑ employment rate of married mothers by 0.8% and single (or divorced) mothers by 1.4%
 - 10% \downarrow in cost of child care $\Rightarrow\uparrow$ employment rate of single lower educated women by 3.2%
- 2 Marital decisions:

 $10\%\downarrow$ in cost of child care $\Rightarrow\downarrow$ fraction divorced of lower educated by 0.8% and that of higher educated by 0.3%

Key features of the model

- Endogenous part-time and full-time human capital accumulation
- Endogenous fertility
- Endogenous child care services
- Endogenous marriage and separation
- Collective household model in a dynamic framework with no commitment

- Finite horizon model
- Men and women start their life after completing education
- In each period, individual $j = \{w, m\}$ decides:
 - 1 How much to work
 - 2 Whether to have a child
 - **③** How many hours of formal child care services to purchase
 - Whether to stay single, get married or to divorce

$$U_t = \alpha_c \, C_t \; + \; \alpha_q \, Q_t$$

- Private good: individual consumption (C)
- Household goods:
 - Value of a meal or clean house (Q)

$$U_t = \alpha_c C_t + \alpha_q Q_t + \alpha_{qkid} Q_{kid_t}$$

• Private good: individual consumption (C)

- Household goods:
 - Value of a meal or clean house (Q)
 - Child qualities: Child's self-discipline or kindness (Qkid)

$$U_t = \alpha_c C_t + \alpha_q Q_t + \alpha_{qkid} Q_{kid_t}$$

• Private good: individual consumption (C)

- Household goods:
 - Value of a meal or clean house (Q)
 - Child qualities: Child's self-discipline or kindness (Qkid)
- Trade-off: working and household good production

$$U_t = \alpha_c \, C_t \; + \; \alpha_q \, Q_t$$

- Private good: individual consumption (C)
- Household goods:
 - Value of a meal or clean house (Q)
 - ▶ Child qualities: Child's self-discipline or kindness (*Qkid*)
- Trade-off: working and household good production
- When married: Q and Qkid become public goods

Model: Home Production

• Time constraint:

$$l_t^j + h_t^j = T$$

Labour market hours (l), Housework hours (h)

< ≣⇒

Model: Home Production

• Time constraint:

$$l_t^j + h_t^j = T$$

• Single individuals:

$$\begin{split} Q^j_t &= \lambda h^j_t \\ Qkid^j_t &= \lambda [(h^j_t)^\gamma + (H^j_{CC,t})^\gamma]^{1/\gamma} \end{split}$$

Housework hours (h)Hours of formal childcare services (H_{CC})

Model: Home Production

• Time constraint:

$$l_t^j + h_t^j = T$$

• Single individuals:

$$\begin{split} Q_t^j &= \lambda h_t^j \\ Qkid_t^j &= \lambda [(h_t^j)^\gamma + (H_{CC,t}^j)^\gamma]^{1/\gamma} \end{split}$$

• Couples:

$$G_t = h_t^m + h_t^w$$
$$Q_t = \lambda G_t$$
$$Qkid_t = \lambda [G_t^\gamma + H_{CC,t}^\gamma]^{1/\gamma}$$

Lena Hassani-Nezhad (City University) Employment, Marriage & Child Care

2

< ∃ →

• Dynamics is introduced to the model through accumulation of fulland part-time human capital

• Household members make their joint decisions using Nash bargaining

- ∢ ≣ →

Imployment decisions depend on:

- Tradeoff between consumption and home production
- Returns to part-time and full-time experience
- Marginal utility from consumption and household goods
- Substitutability between market childcare hours and housework hours (γ)

Imployment decisions depend on:

- Tradeoff between consumption and home production
- Returns to part-time and full-time experience
- Marginal utility from consumption and household goods
- Substitutability between market childcare hours and housework hours (γ)

2 Gains from marriage:

- Marriage allows for specialization in home production or labour market
- Consumption of public goods (Q and Qkid)
- Larger gains from specialization when marginal utility of household goods is high
- Specialization is costly when divorce is highly likely

(2) (4) (2) (4)

Results: Parameter Estimates

2

∢ ≣⇒

Degree of substitution between child care and housework (γ)	0.623
Marginal utility from consumption (α_c) Marginal utility from household production (α_Q) Marginal utility from household production (α_{Okid})	$\begin{array}{c} 0.098 \\ 0.220 \\ 0.682 \end{array}$

- Elasticity of substitution of 2.6: Child care and housework hours are close substitutes
- One of the probability of the
- Marginal utilities from household productions relative to consumption are large, implying large gains from marriage

- I use the estimated model to evaluate how providing households with universal childcare subsidies, ranging between 5 to 95 percent of the cost of childcare, affects:
 - Child care take-up
 - 2 Extensive and intensive margins of employment
 - 3 Marital decisions

Policy Experiments: Subsidies and Child Care Take-up

- $\bullet~0\%$ is the results from benchmark model
- 10 percent decrease in price of child care is associated with 18.7 percent increase in child care take-up of single mothers and 9 percent for married mothers

Policy: Subsidies and Female Employment

- $\bullet\,$ Married mothers: A 10% subsidy increases employment by $0.8\%\,$
- Single or divorced mothers: A 10% subsidy increases employment by 1.4%
- Single lower educated: A 10% subsidy increases employment by 3.2%

Policy: Fertility and Marital Status

• 10% \downarrow in cost of child care $\Rightarrow\downarrow$ fraction divorced of higher educated by 0.3%

- I estimate a dynamic model of fertility, employment, child care, and marital decisions
 - To evaluate the effects of childcare subsidies on employment of single and married women
 - Differentiate between part-time and full-time human capital and allow for individuals to adjust their marital decisions
- The results from the policy experiments suggest that:
 - Single and lower educated women are more responsive in line with prev literature Cascio (2009); Fitzpatrick (2012)
 - Subsidies could increase the benefits of specialization within households, potentially leading to a higher proportion of married individuals

3 × 4 3 ×

Thank you! Lena.Hassani-nezhad@city.ac.uk

2

< ≣⇒

Return 10 < part-time < 35, full-time ≥ 35

Part-time Employment Around the First Birth $_{\rm Men}$

³⁸⁴ men for whom data at least 3 years before and after birth are available, PSID (1968-1996)

23/27

Child care cost by mother's employment status

Return

Lena Hassani-Nezhad (City University)

Employment, Marriage & Child Care

23/27

- Relaxing the unitary assumption: inconsistent with data Manser and Brown (1980), McElroy and Horney (1981) and Chiappori (1988)
- Incorporate outside options and considerations of women about human capital

$$ln(y_{f,t}^m) = \alpha_{0f}^m + \alpha_{1f}^m X_{f,t-1}^m + \alpha_{2f}^m (X_{f,t-1}^m)^2 + \alpha_{3f}^m S^m + \epsilon_{f,t}^m$$

Return

23/27

Э.

< ロ > < 四 > < 回 > < 回 > 、

• State Space - men:

$$\Omega_t^m = \{S^m, X_{f,t-1}^m, N_t^m, \epsilon_{f,t}^m, \epsilon_{ch,t}, \epsilon_{CC,t}\}$$

• State Space - women:

$$\Omega_t^w = \{S^w, X_{f,t-1}^w, X_{p,t-1}^w, N_t^w, \epsilon_{f,t}^w, \epsilon_{p,t}^w, \epsilon_{ch,t}, \epsilon_{CC,t}\}$$

• State Space - married:

$$\Omega_{t} = \{S^{m}, S^{w}, X^{m}_{f,t-1}, X^{w}_{f,t-1}, X^{w}_{p,t-1}, N_{t}, \epsilon^{m}_{f,t}, \epsilon^{w}_{f,t}, \epsilon^{w}_{p,t}, \epsilon_{ch,t}, \epsilon_{CC,t}, \epsilon_{mar,t}\}$$

< ≣ >

23/27

Return

Model Parameters	Description	Estimates
λ	Marginal productivity of housework hours	0.963
Shocks σ_f^{2m} σ_f^{2w} σ_p^{2w} σ_p^{2w} σ_p^{2m} σ_{ch}^{2} σ_{ch}^{2} σ_{ch}^{2}	Variance of full-time wage shock, men Variance of full-time wage shock, women Variance of part-time wages, women Variance in taste for marriage Variance in taste for having a child Variance of child care cost	$1.062 \\ 0.576 \\ 0.419 \\ 53.838 \\ 0.385 \\ 0.731$
$\begin{array}{c} \phi \\ \phi \\ \pi_{CC} \\ \delta \\ \theta \end{array}$	Probability of meeting a potential partner Log Hourly child care cost Discount factor (not estimated) Bargaining weight in Nash product (not estimated)	0.218 1.939 0.954 0.5

Return

Э.

・ロト ・四ト ・ヨト ・ヨト

 Degree of substitution between housework hours and market hours of child care (γ):

$$Qkid_t = \lambda [h_t^{\gamma} + H_{CC,t}^{\gamma}]^{1/\gamma}$$

- Employment rates conditional on children
- Child care conditional on employment status
- **2** Cost of childcare (π_{CC}) :

$$I_t = C_t - (\pi_{CC} + \epsilon_{CC,t}) \times H_{CC,t}$$

- Formal child care take-up conditional on employment status
- Employment rates conditional on children
- Average childcare costs

Estimated Log Hourly Wage Equations - Women			
	Type of Employment		
Parameters	Full-time	Part-time	
(α_0^w)	1.1540	1.1720	
Return to full-time experience (α_3^w)	0.0305	0.0212	
Dec/inc return to full-time experience (α_4^w)	-0.0003	-0.0009	
Return to part-time experience (α_1^w)	0.0318	0.0171	
Dec/inc return to part-time experience (α_2^w)	-0.0009	-0.0002	
Return to education (α_5^w)	0.4871	0.3915	

2

< ≣⇒

Motivation

Evidence on specialisation: Married fathers vs. Single fathers

Motivation

Part-time pay penalty: difference between hourly wages of part- and full-time employed women

back

23/27

Girsberger, Hassani-Nezhad, Karunanethy, Lalive (ML: Employment, and Fertility

Model: Human Capital and Hourly Wages

• Dynamics, laws of motion:

 $X_{f,t} = X_{f,t-1} + 1\{l_t = full\} \quad ; \quad X_{p,t} = X_{p,t-1} + 1\{l_t = part\}$

 $l_t = full, part, Not Work$

< E >

Model: Human Capital and Hourly Wages

• Dynamics, laws of motion:

$$X_{f,t} = X_{f,t-1} + 1\{l_t = full\} \quad ; \quad X_{p,t} = X_{p,t-1} + 1\{l_t = part\}$$

• Part-time wage equation:

$$ln(y_{p,t}) = \alpha_{0p} + \underbrace{\alpha_{1p}X_{p,t-1} + \alpha_{2p}(X_{p,t-1})^2}_{\text{Effect of part-time experince}} + \underbrace{\alpha_{3p}X_{f,t-1} + \alpha_{4p}(X_{f,t-1})^2}_{\text{TT} + \alpha_{4p}(X_{f,t-1})^2} + \alpha_{5p}S + \epsilon_{p,t}$$

Effect of full-time experience

Model: Human Capital and Hourly Wages

• Dynamics, laws of motion:

$$X_{f,t} = X_{f,t-1} + 1\{l_t = full\} \quad ; \quad X_{p,t} = X_{p,t-1} + 1\{l_t = part\}$$

• Part-time wage equation:

$$ln(y_{p,t}) = \alpha_{0p} + \underbrace{\alpha_{1p}X_{p,t-1} + \alpha_{2p}(X_{p,t-1})^2}_{\text{Effect of part-time experince}} + \underbrace{\alpha_{3p}X_{f,t-1} + \alpha_{4p}(X_{f,t-1})^2}_{\text{P}\mathcal{T} \to 0} + \alpha_{5p}S + \epsilon_{p,t}$$

Effect of full-time experience

• Full-time wage equation:

$$ln(y_{f,t}) = \alpha_{0f} + \underbrace{\alpha_{1f} X_{p,t-1} + \alpha_{2f} (X_{p,t-1})^2}_{\text{Effect of part-time experience}}$$

 $+\underbrace{\alpha_{3f}X_{f,t-1}+\alpha_{4f}(X_{f,t-1})^2}_{==}+\alpha_{5f}S+\epsilon_{f,t}$

Effect of full-time experience

Household members make their joint labour supply and fertility decisions using Nash bargaining:

$$\begin{split} W^{j}_{t}(\Omega_{t}) &= \\ \max_{c^{j}, l^{j}, n, H_{CC}} \left(U(c^{m}_{t}, Q_{t}, Qkid_{t}, \epsilon) + \delta \begin{cases} E[V^{m}_{t+1}(\Omega^{m}_{t+1})|\Omega^{m}_{t}], & \text{if single} \\ E[W^{m}_{t+1}(\Omega_{t+1})|\Omega_{t}], & \text{if married} \end{cases} - V^{m}_{t}(\Omega^{m}_{t}) \right)^{\theta} \\ & \left((U(c^{w}_{t}, Q_{t}, Qkid_{t}, \epsilon) + \delta \begin{cases} E[V^{w}_{t+1}(\Omega^{w}_{t+1})|\Omega^{w}_{t}], & \text{if single} \\ E[W^{w}_{t+1}(\Omega_{t+1})|\Omega_{t}], & \text{if married} \end{cases} \right\} - V^{w}_{t}(\Omega^{w}_{t}) \right)^{(1-\theta)} \end{split}$$

- ∢ ≣ →

Household members make their joint labour supply and fertility decisions using Nash bargaining:

$$\begin{split} W^{j}_{t}(\Omega_{t}) &= \\ \max_{c^{j}, l^{j}, n, H_{CC}} \left(U(c^{m}_{t}, Q_{t}, Qkid_{t}, \epsilon) + \delta \begin{cases} E[V^{m}_{t+1}(\Omega^{m}_{t+1})|\Omega^{m}_{t}], & \text{if single} \\ E[W^{m}_{t+1}(\Omega_{t+1})|\Omega_{t}], & \text{if married} \end{cases} - V^{m}_{t}(\Omega^{m}_{t}) \right)^{\theta} \\ \left((U(c^{w}_{t}, Q_{t}, Qkid_{t}, \epsilon) + \delta \begin{cases} E[V^{w}_{t+1}(\Omega^{w}_{t+1})|\Omega^{w}_{t}], & \text{if single} \\ E[W^{w}_{t+1}(\Omega_{t+1})|\Omega_{t}], & \text{if married} \end{cases} \right\} - V^{w}_{t}(\Omega^{w}_{t}) \right)^{(1-\theta)} \end{split}$$

Stay single or get married?

 $W_t^m(\Omega_t) > V_t^m(\Omega_t) \qquad \& \qquad W_t^w(\Omega_t) > V_t^w(\Omega_t)$

Policy: Fertility and Marital Status

• 10% \downarrow in cost of child care $\Rightarrow\downarrow$ fraction divorced of lower educated by 0.8%

LTI

25/27

(a) Below-college educated

(b) College-graduates

- Subsidising more than 25% of child care cost increases employment and earnings of lower educated women
- Subsidies increase part-time employment and reduce life-time earnings of higher educated women

Results: Return to Full-time and Part-time Experiences

- **1** No evidence that wage levels are different
- 2) The return to both experiences are larger when working full-time
- Sevidence on state dependence: the return to FT exper is larger than PT exper when FT employed and vice versa