On the Level and Incidence of Interchange Fees Charged by Competing Payment Networks

Robert M. Hunt (CFI, Federal Reserve Bank of Philadelphia)

Konstantinos Serfes (Drexel University)

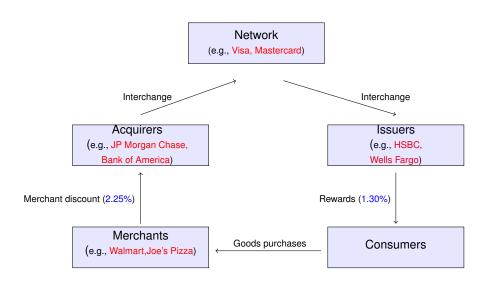
Yin Zhang (Drexel University)

EEA-ESEM 2024

Disclaimer

- The views expressed here are solely the authors, not those of the Federal Reserve Bank of Philadelphia, the Board of Governors, or the Federal Reserve System.
- None of my remarks should be treated as legal advice.

Flows in a payments network



Introduction 000

> Merchants in the US pay \$160 billion in order to accept credit, debit and pre-paid cards (Nillson report).

HUNT, SERFES, ZHANG

Introduction 000

- Merchants in the US pay \$160 billion in order to accept credit, debit and pre-paid cards (Nillson report).
- Large banks earned \$41 billion in interchange fees on credit cards in 2019 (Agarwal et al. 2023).

HUNT, SERFES, ZHANG

- Merchants in the US pay \$160 billion in order to accept credit, debit and pre-paid cards (Nillson report).
- Large banks earned \$41 billion in interchange fees on credit cards in 2019 (Agarwal et al. 2023).
- Many merchants, especially the smaller ones, complain that these fees are high.

- Merchants in the US pay \$160 billion in order to accept credit, debit and pre-paid cards (Nillson report).
- Large banks earned \$41 billion in interchange fees on credit cards in 2019 (Agarwal et al. 2023).
- Many merchants, especially the smaller ones, complain that these fees are high.
- Is it because of high network/bank market power?

- Merchants in the US pay \$160 billion in order to accept credit, debit and pre-paid cards (Nillson report).
- Large banks earned \$41 billion in interchange fees on credit cards in 2019 (Agarwal et al. 2023).
- Many merchants, especially the smaller ones, complain that these fees are high.
- Is it because of high network/bank market power?
- Is merchant market power a 'complement' or a 'substitute' to network market power?

- Merchants in the US pay \$160 billion in order to accept credit, debit and pre-paid cards (Nillson report).
- Large banks earned \$41 billion in interchange fees on credit cards in 2019 (Agarwal et al. 2023).
- Many merchants, especially the smaller ones, complain that these fees are high.
- Is it because of high network/bank market power?
- Is merchant market power a 'complement' or a 'substitute' to network market power?
- Should regulators spur network competition, impose price caps, or give merchants more routing options?

Recent regulations aiming at lowering the interchange fees

US: Durbin amendment of 2011 (Reg II): Debit card interchange fee caps.

On the Level and Incidence of Interchange Fees

- US: Durbin amendment of 2011 (Reg II): Debit card interchange fee caps.
 - ► Cap: 21¢ + 0.05% + 1¢.

- US: Durbin amendment of 2011 (Reg II): Debit card interchange fee caps.
 - ► Cap: 21¢ + 0.05% + 1¢.
 - ▶ Average fee fell from 44¢ to 24¢.

- US: Durbin amendment of 2011 (Reg II): Debit card interchange fee caps.
 - ► Cap: 21¢ + 0.05% + 1¢.
 - ► Average fee fell from 44¢ to 24¢.
- Board of Governors is revisiting these caps.

- US: Durbin amendment of 2011 (Reg II): Debit card interchange fee caps.
 - ► Cap: 21c + 0.05% + 1c.
 - Average fee fell from 44¢ to 24¢.
- Board of Governors is revisiting these caps.
- In 2023 a bill was introduced in congress that would affect the routing of credit card transactions in the hopes that this will reduce interchange fees.

- US: Durbin amendment of 2011 (Reg II): Debit card interchange fee caps.
 - ► Cap: 21c + 0.05% + 1c.
 - Average fee fell from 44¢ to 24¢.
- Board of Governors is revisiting these caps.
- In 2023 a bill was introduced in congress that would affect the routing of credit card transactions in the hopes that this will reduce interchange fees.
 - ▶ Routing rules determine who decides which network will process a transaction.

- US: Durbin amendment of 2011 (Reg II): Debit card interchange fee caps.
 - ► Cap: 21c + 0.05% + 1c.
 - Average fee fell from 44¢ to 24¢.
- Board of Governors is revisiting these caps.
- In 2023 a bill was introduced in congress that would affect the routing of credit card transactions in the hopes that this will reduce interchange fees.
 - ▶ Routing rules determine who decides which network will process a transaction.
- Australia: 2008 Payment Systems Reforms

- US: Durbin amendment of 2011 (Reg II): Debit card interchange fee caps.
 - ► Cap: 21¢ + 0.05% + 1¢.
- Average fee fell from 44¢ to 24¢.
- Board of Governors is revisiting these caps.
- In 2023 a bill was introduced in congress that would affect the routing of credit card transactions in the hopes that this will reduce interchange fees.
 - ▶ Routing rules determine who decides which network will process a transaction.
- Australia: 2008 Payment Systems Reforms
 - ▶ Interchange fees for cc must not exceed 0.50% of the value of transaction.

- US: Durbin amendment of 2011 (Reg II): Debit card interchange fee caps.
 - ► Cap: 21c + 0.05% + 1c.
 - ► Average fee fell from 44¢ to 24¢.
- Board of Governors is revisiting these caps.
- In 2023 a bill was introduced in congress that would affect the routing of credit card transactions in the hopes that this will reduce interchange fees.
 - ▶ Routing rules determine who decides which network will process a transaction.
- Australia: 2008 Payment Systems Reforms
 - ▶ Interchange fees for cc must not exceed 0.50% of the value of transaction.
 - ▶ Interchange fees for Visa Debit transactions must not exceed 12 ¢ per transaction.

Merchants with market power.

HUNT, SERFES, ZHANG

- Merchants with market power.
- More general product demand.

- Merchants with market power.
- More general product demand.
- Ad valorem fees and rewards.

- · Merchants with market power.
- More general product demand.
- · Ad valorem fees and rewards.
- Benefits and costs each side experiences are directly linked through the product price.

1. How do interchange fees depend on competition between networks?

- 1. How do interchange fees depend on competition between networks?
- 2. How do they depend on competition in the product market?

- 1. How do interchange fees depend on competition between networks?
- 2. How do they depend on competition in the product market?
- 3. How does the fraction of cash users affect these fees?

- 1. How do interchange fees depend on competition between networks?
- 2. How do they depend on competition in the product market?
- 3. How does the fraction of cash users affect these fees?
- 4. Incidence: % of the fee burden paid by consumers.

- 1. How do interchange fees depend on competition between networks?
- 2. How do they depend on competition in the product market?
- 3. How does the fraction of cash users affect these fees?
- 4. Incidence: % of the fee burden paid by consumers.
- 5. What kind of 'interventions' are more likely to be effective?

Interchange fees and rewards determine the credit card tax that creates a wedge between the price consumers pay and the price merchants receive.

- Interchange fees and rewards determine the credit card tax that creates a wedge between the price consumers pay and the price merchants receive.
- More intense network competition, i.e., entry of a second network, can increase or decrease the credit card tax.

- Interchange fees and rewards determine the credit card tax that creates a wedge between the price consumers pay and the price merchants receive.
- More intense network competition, i.e., entry of a second network, can increase or decrease the credit card tax.
 - ▶ It depends on the relative strength of two effects:

- Interchange fees and rewards determine the credit card tax that creates a wedge between the price consumers pay and the price merchants receive.
- More intense network competition, i.e., entry of a second network, can increase or decrease the credit card tax.
 - ▶ It depends on the relative strength of two effects:
 - i) whether product demand becomes more or less elastic as aggregate output decreases (elasticity effect; related to demand subconvexity e.g., Mrazova and Neary (2017))

- Interchange fees and rewards determine the credit card tax that creates a wedge between the price consumers pay and the price merchants receive.
- More intense network competition, i.e., entry of a second network, can increase or decrease the credit card tax.
 - ▶ It depends on the relative strength of two effects:
 - i) whether product demand becomes more or less elastic as aggregate output decreases (elasticity effect; related to demand subconvexity e.g., Mrazova and Neary (2017))
 - ii) on the degree of network differentiation (competition effect).

- Interchange fees and rewards determine the credit card tax that creates a wedge between the price consumers pay and the price merchants receive.
- More intense network competition, i.e., entry of a second network, can increase or decrease the credit card tax.
 - ▶ It depends on the relative strength of two effects:
 - i) whether product demand becomes more or less elastic as aggregate output decreases (elasticity effect; related to demand subconvexity e.g., Mrazova and Neary (2017))
 - ii) on the degree of network differentiation (competition effect).
- As competition in the product market intensifies the tax may increase or decrease,

- Interchange fees and rewards determine the credit card tax that creates a wedge between the price consumers pay and the price merchants receive.
- More intense network competition, i.e., entry of a second network, can increase or decrease the credit card tax.
 - ▶ It depends on the relative strength of two effects:
 - i) whether product demand becomes more or less elastic as aggregate output decreases (elasticity effect; related to demand subconvexity e.g., Mrazova and Neary (2017))
 - ii) on the degree of network differentiation (competition effect).
- As competition in the product market intensifies the tax may increase or decrease,
 - ▶ depending on the elasticity effect.

- Interchange fees and rewards determine the credit card tax that creates a wedge between the price consumers pay and the price merchants receive.
- More intense network competition, i.e., entry of a second network, can increase or decrease the credit card tax.
 - ▶ It depends on the relative strength of two effects:
 - i) whether product demand becomes more or less elastic as aggregate output decreases (elasticity effect; related to demand subconvexity e.g., Mrazova and Neary (2017))
 - ii) on the degree of network differentiation (competition effect).
- As competition in the product market intensifies the tax may increase or decrease,
 - depending on the elasticity effect.
- The credit card tax incidence also depends on the elasticity effect.

Some of the closest papers

 Rochet and Tirole (2002) and Wright (2004): No ad-valorem fees, unitary product demands. Earlier literature focused on adoption issues: the chicken and egg problem.

Some of the closest papers

- Rochet and Tirole (2002) and Wright (2004): No ad-valorem fees, unitary product demands. Earlier literature focused on adoption issues: the chicken and egg problem.
 - ▶ In a mature market, adoption is no longer an issue of first order importance.

Some of the closest papers

- Rochet and Tirole (2002) and Wright (2004): No ad-valorem fees, unitary product demands. Earlier literature focused on adoption issues: the chicken and egg problem.
 - ▶ In a mature market, adoption is no longer an issue of first order importance.
- Guthrie and Wright (2007): Network entry increases the rewards and networks to compensate increase the interchange fees. So, the 'credit card tax' may not increase. In our model it does

Some of the closest papers

- Rochet and Tirole (2002) and Wright (2004): No ad-valorem fees, unitary product demands. Earlier literature focused on adoption issues: the chicken and egg problem.
 - ▶ In a mature market, adoption is no longer an issue of first order importance.
- Guthrie and Wright (2007): Network entry increases the rewards and networks to compensate increase the interchange fees. So, the 'credit card tax' may not increase. In our model it does
- Shy and Wang (2011): Adopt a constant elasticity demand and compare "proportional" versus "fixed" transaction fees. Very specific demand: perfect tax pass-through.

- Rochet and Tirole (2002) and Wright (2004): No ad-valorem fees, unitary product demands. Earlier literature focused on adoption issues: the chicken and egg problem.
 - ▶ In a mature market, adoption is no longer an issue of first order importance.
- Guthrie and Wright (2007): Network entry increases the rewards and networks to compensate increase the interchange fees. So, the 'credit card tax' may not increase. In our model it does
- Shy and Wang (2011): Adopt a constant elasticity demand and compare "proportional" versus "fixed" transaction fees. Very specific demand: perfect tax pass-through.
- Wang and Wright (2017, 2018): Assume Bertrand competition among sellers. By assumption there is perfect pass through of any taxes to buyers.

• There are *n* identical merchants, homogeneous product.

- There are *n* identical merchants, homogeneous product.
- The output of firm j is denoted by x_j and the industry output by $X = \sum_j x_j$.

- There are *n* identical merchants, homogeneous product.
- The output of firm j is denoted by x_j and the industry output by $X = \sum_i x_j$.
- All the merchants have the same cost structure $C(x_i) = cx_i$.

- There are *n* identical merchants, homogeneous product.
- The output of firm j is denoted by x_j and the industry output by $X = \sum_i x_j$.
- All the merchants have the same cost structure $C(x_i) = cx_i$.
- Inverse demand function P(X), with elasticity $\varepsilon \equiv \frac{P}{XP_X} < 0$.

• Three payment modes: two competing networks and cash, $\ell = 1, 2$.

On the Level and Incidence of Interchange Fees

- Three payment modes: two competing networks and cash, $\ell = 1, 2$.
- Each network issues one credit card.

HUNT, SERFES, ZHANG

- Three payment modes: two competing networks and cash, $\ell=1,2$.
- Each network issues one credit card.
- In each network: N_A acquiring and N_I issuing banks that compete a la Bertrand.

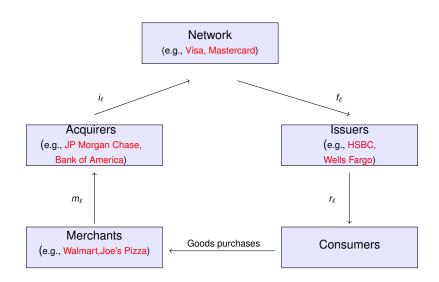
- Three payment modes: two competing networks and cash, $\ell = 1, 2$.
- · Each network issues one credit card.
- In each network: N_A acquiring and N_I issuing banks that compete a la Bertrand.
- Network sets the interchange fee i_{ℓ} acquiring banks pay the network.

- Three payment modes: two competing networks and cash, $\ell = 1, 2$.
- Each network issues one credit card.
- In each network: N_A acquiring and N_I issuing banks that compete a la Bertrand.
- Network sets the interchange fee i_ℓ acquiring banks pay the network.
- Merchants pay the merchant discount m_{ℓ} to the acquiring bank.

- Three payment modes: two competing networks and cash, $\ell = 1, 2$.
- · Each network issues one credit card.
- In each network: N_A acquiring and N_I issuing banks that compete a la Bertrand.
- Network sets the interchange fee i_ℓ acquiring banks pay the network.
- Merchants pay the merchant discount m_{ℓ} to the acquiring bank.
- Each issuing bank chooses the reward r_{ℓ} and receives f_{ℓ} from the network.

- Three payment modes: two competing networks and cash, $\ell = 1, 2$.
- Each network issues one credit card.
- In each network: N_A acquiring and N_I issuing banks that compete a la Bertrand.
- Network sets the interchange fee i_{ℓ} acquiring banks pay the network.
- Merchants pay the merchant discount m_{ℓ} to the acquiring bank.
- Each issuing bank chooses the reward r_{ℓ} and receives f_{ℓ} from the network.
- Each consumer has a more preferred card (horizontal differentiation).

Flows in a payments network



• Stage 1: Networks set their interchange fees, i_{ℓ} .

- Stage 1: Networks set their interchange fees, i_{ℓ} .
- Stage 2: The networks choose how much of the interchange fee, f_ℓ, will be given to each issuing bank.

- Stage 1: Networks set their interchange fees, i_ℓ.
- Stage 2: The networks choose how much of the interchange fee, f_{ℓ} , will be given to each issuing bank.
- Stage 3: Acquiring banks set the merchant discounts m_{ℓ} and issuing banks set the rewards, r_{ℓ} .

- Stage 1: Networks set their interchange fees, i_{ℓ} .
- Stage 2: The networks choose how much of the interchange fee, f_{ℓ} , will be given to each issuing bank.
- Stage 3: Acquiring banks set the merchant discounts m_{ℓ} and issuing banks set the rewards, r_{ℓ} .
- Stage 4: Each merchant chooses whether to accept both credit cards or only one and its product quantity.

- Stage 1: Networks set their interchange fees, i_{ℓ} .
- Stage 2: The networks choose how much of the interchange fee, f_{ℓ} , will be given to each issuing bank.
- Stage 3: Acquiring banks set the merchant discounts m_{ℓ} and issuing banks set the rewards, r_{ℓ} .
- Stage 4: Each merchant chooses whether to accept both credit cards or only one and its product quantity.
- Stage 5: Each consumer chooses whether to hold one or both credit cards and makes purchases.

Stage 5

• If merchants accept both cards, then consumers single-home.

• The price consumers pay is $P \cdot (1 - r)$.

HUNT, SERFES, ZHANG

- The price consumers pay is $P \cdot (1 r)$.
- The inverse demand is $\frac{P(X)}{1-r}$ and the price merchants receive is $\frac{P \cdot (1-i)}{1-r}$.

- The price consumers pay is $P \cdot (1 r)$.
- The inverse demand is $\frac{P(X)}{1-r}$ and the price merchants receive is $\frac{P \cdot (1-i)}{1-r}$.
- The profit function of merchant *j* is

$$\pi_j = \frac{(1-i)}{(1-r)} P(X) x_j - c x_j = \frac{P(X)}{z} x_j - c x_j.$$

- The price consumers pay is $P \cdot (1 r)$.
- The inverse demand is $\frac{P(X)}{1-r}$ and the price merchants receive is $\frac{P \cdot (1-i)}{1-r}$.
- The profit function of merchant *j* is

$$\pi_j = \frac{(1-i)}{(1-r)} P(X) x_j - c x_j = \frac{P(X)}{z} x_j - c x_j.$$

• $z \equiv \frac{(1-r)}{(1-r)} \ge 1$ is the tax due to the credit card, e.g., $\frac{1-0.013}{1-0.0225} = 1.0097 \approx 1\%$.

• In selecting its output each merchant j conjectures that other merchants' responses will be such that $\frac{dX}{dx_j} = \lambda \in [0, n]$, e.g., Seade (1980) and Bresnahan (1981).

- In selecting its output each merchant j conjectures that other merchants' responses will be such that $\frac{dX}{dx_j} = \lambda \in [0, n]$, e.g., Seade (1980) and Bresnahan (1981).
 - ▶ $\lambda = 1 \rightarrow$ Cournot outcome.

- In selecting its output each merchant j conjectures that other merchants' responses will be such that $\frac{dX}{dx_j} = \lambda \in [0, n]$, e.g., Seade (1980) and Bresnahan (1981).
 - $\lambda = 1 \rightarrow \text{Cournot outcome}.$
 - $ightharpoonup \lambda = 0
 ightharpoonup \operatorname{Bertrand}$ outcome.

- In selecting its output each merchant j conjectures that other merchants' responses will be such that $\frac{dX}{dx_j} = \lambda \in [0, n]$, e.g., Seade (1980) and Bresnahan (1981).
 - $\lambda = 1 \rightarrow \text{Cournot outcome}$.
 - $\lambda = 0 \rightarrow \text{Bertrand outcome}.$
 - ▶ $\lambda = n \rightarrow$ perfect collusion.

<u>00000000000000000</u>

- In selecting its output each merchant j conjectures that other merchants' responses will be such that $\frac{dX}{dx_j} = \lambda \in [0, n]$, e.g., Seade (1980) and Bresnahan (1981).
 - ▶ $\lambda = 1 \rightarrow$ Cournot outcome.
 - $\lambda = 0 \rightarrow \text{Bertrand outcome}.$
 - ▶ $\lambda = n \rightarrow \text{perfect collusion}$.
- Then, $\gamma \equiv \frac{\lambda}{n} \in [0, 1]$.

- In selecting its output each merchant j conjectures that other merchants' responses will be such that $\frac{dX}{dx_j} = \lambda \in [0, n]$, e.g., Seade (1980) and Bresnahan (1981).
 - ▶ $\lambda = 1 \rightarrow$ Cournot outcome.
 - $\lambda = 0 \rightarrow \text{Bertrand outcome}.$
 - ▶ $\lambda = n \rightarrow$ perfect collusion.
- Then, $\gamma \equiv \frac{\lambda}{n} \in [0, 1]$.
- $\uparrow \gamma \rightarrow$ higher merchant market power.

Price wedge with a monopoly network

• The equilibrium price merchants receive is

$$P^m(z) = \frac{c}{1 + rac{\gamma}{\varepsilon(X(z))}}.$$

Price wedge with a monopoly network

• The equilibrium price merchants receive is

$$P^m(z) = \frac{c}{1 + \frac{\gamma}{\varepsilon(X(z))}}.$$

• The equilibrium price consumers (buyers) pay is

$$P^b(z) = \frac{cz}{1 + \frac{\gamma}{\varepsilon(X(z))}} = zP^m(z).$$

• Price wedge due to credit card

$$P^b - P^m = (z-1)\frac{c}{1 + \frac{\gamma}{\varepsilon(X(z))}} > 0.$$

· Price wedge due to credit card

$$P^b - P^m = (z-1)\frac{c}{1 + \frac{\gamma}{\varepsilon(X(z))}} > 0.$$

• Perfect tax pass-through if $\gamma = 0$, or $\varepsilon = \text{constant}$.

· Price wedge due to credit card

$$P^{b}-P^{m}=(z-1)\frac{c}{1+\frac{\gamma}{c(X(z))}}>0.$$

- Perfect tax pass-through if $\gamma = 0$, or $\varepsilon = \text{constant}$.
- When the market becomes less competitive, the elasticity has a stronger effect.

Stage 3: Acquiring and issuing banks' decisions

 Acquiring banks compete a la Bertrand in m with marginal cost i_ℓ. Equilibrium: m_ℓ = i_ℓ. Stage 3: Acquiring and issuing banks' decisions

- Acquiring banks compete a la Bertrand in m with marginal cost i_{ℓ} . Equilibrium: $m_{\ell}=i_{\ell}$.
- Issuing banks compete a la Bertrand in r with marginal cost f_{ℓ} . Equilibrium: $r_{\ell}=f_{\ell}$.

Stage 1 & 2: Network sets interchange fee and reward

• Network ℓ chooses i_{ℓ} and r_{ℓ} , with $z \equiv \frac{1-r}{1-i}$, to max profits.

Stage 1 & 2: Network sets interchange fee and reward

- Network ℓ chooses i_{ℓ} and r_{ℓ} , with $z \equiv \frac{1-r}{1-i}$, to max profits.
- The network profit is

$$\pi_{\ell}(z) = (P^b(z) - P^m(z))X(z) = \frac{c \cdot (z-1)}{1 + \frac{\gamma}{\varepsilon(z)}}X(z).$$

Stage 1 & 2: Network sets interchange fee and reward

- Network ℓ chooses i_{ℓ} and r_{ℓ} , with $z \equiv \frac{1-r}{1-i}$, to max profits.
- The network profit is

$$\pi_{\ell}(z) = (P^b(z) - P^m(z))X(z) = \frac{c \cdot (z-1)}{1 + \frac{\gamma}{\varepsilon(z)}}X(z).$$

The subgame-perfect equilibrium tax and price buyers pay must (implicitly) satisfy

$$z^* = \frac{\gamma X \varepsilon' + \varepsilon \cdot (\varepsilon + \gamma)}{\gamma X \varepsilon' + \varepsilon \cdot (1 + \varepsilon + \gamma \cdot (2 - E))},$$

where

$$E \equiv -\frac{P_{XX}X}{P_{Y}}$$
 and $\varepsilon' = \frac{1}{X}(1 - \varepsilon(1 - E))$

is the elasticity of the slope of the inverse demand and how the slope of the elasticity depends on it.

Specific demands

Types of demand functions	ε	Ε	ε'
Constant elasticity	_	+	0
Linear	_	0	+
Generalized Pareto	_	-, 0, +	-, 0, +

HUNT, SERFES, ZHANG

$$z^* = \frac{k}{k-1}.$$

• Tax z is constant (not a function of γ)

$$z^* = \frac{k}{k-1}.$$

 $\bullet\,$ More intense competition in the product market, i.e., lower $\gamma\,$

$$z^* = \frac{k}{k-1}.$$

- ullet More intense competition in the product market, i.e., lower γ
 - ▶ lowers merchant profits

$$z^* = \frac{k}{k-1}.$$

- More intense competition in the product market, i.e., lower γ
 - ▶ lowers merchant profits
 - increases consumer surplus and network profits.

$$z^* = \frac{k}{k-1}.$$

- More intense competition in the product market, i.e., lower γ
 - ▶ lowers merchant profits
 - ▶ increases consumer surplus and network profits.
- Consumers pay the entire burden of the tax, regardless of the intensity of competition in the product market.

Monopoly network: Linear demand, P = 1 - X

• Marginal cost c = 0.8.

	$\gamma=1$	$\gamma = 0.75$	$\gamma = 0.5$	$\gamma = 0$
Credit card tax z	1.1213	1.1218	1.122	1.125
Network profits	0.005	0.006	0.007	0.01
Merchant profits	0.00236	0.0023	0.002	0
Price consumers pay	0.948	0.94	0.932	0.9
Price merchants receive	0.846	0.84	0.83	0.8
% of the 'tax' consumers pay	47.29%	54.47%	64.23%	100%

More intense competition in the product market increases the credit card tax.

Monopoly network: Linear demand, P = 1 - X

• Marginal cost c = 0.8.

	$\gamma=1$	$\gamma = 0.75$	$\gamma = 0.5$	$\gamma = 0$
Credit card tax z	1.1213	1.1218	1.122	1.125
Network profits	0.005	0.006	0.007	0.01
Merchant profits	0.00236	0.0023	0.002	0
Price consumers pay	0.948	0.94	0.932	0.9
Price merchants receive	0.846	0.84	0.83	0.8
% of the 'tax' consumers pay	47.29%	54.47%	64.23%	100%

- More intense competition in the product market increases the credit card tax.
- It also increases the fraction of the tax consumers pay.

• When $\varepsilon' > 0$ (e.g., subconvex demand: $\log p$ is concave in $\log x$)

• When $\varepsilon' > 0$ (e.g., subconvex demand: $\log p$ is concave in $\log x$)

$$z \uparrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^m \downarrow \rightarrow \text{Network revenue} \downarrow$$

• When $\varepsilon' > 0$ (e.g., subconvex demand: $\log p$ is concave in $\log x$)

$$z \uparrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^m \downarrow \rightarrow \text{Network revenue} \downarrow$$

This effect makes the network more reluctant to increase its tax.

• When $\varepsilon' > 0$ (e.g., subconvex demand: $\log p$ is concave in $\log x$)

$$z \uparrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^m \downarrow \rightarrow \text{Network revenue} \downarrow$$

- This effect makes the network more reluctant to increase its tax.
- As γ decreases, the elasticity effect weakens: $P^m(z) = \frac{c}{1 + \frac{c}{c(X(z))}}$.

• When $\varepsilon' > 0$ (e.g., subconvex demand: $\log p$ is concave in $\log x$)

$$z \uparrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^m \downarrow \rightarrow \text{Network revenue} \downarrow$$

- This effect makes the network more reluctant to increase its tax.
- As γ decreases, the elasticity effect weakens: $P^m(z) = \frac{c}{1 + \frac{c}{\varepsilon(X(z))}}$.
- Network increases its tax.

Generalized Pareto demand

 The distribution of consumer valuations v takes on the generalized Pareto distribution

$$F(v) = 1 - (1 + \xi \cdot (E - 1)(v - 1))^{\frac{1}{1 - E}},$$

where $\xi > 0$ is the scale parameter and E < 2 is the shape parameter.

Generalized Pareto demand

 The distribution of consumer valuations v takes on the generalized Pareto distribution

$$F(v) = 1 - (1 + \xi \cdot (E - 1)(v - 1))^{\frac{1}{1 - E}},$$

where $\xi > 0$ is the scale parameter and E < 2 is the shape parameter.

 The generalized Pareto distribution implies the corresponding demand functions for merchants are defined by the class of demands

$$X(p) = 1 - F(p) = (1 + \xi \cdot (E - 1)(p - 1))^{\frac{1}{1 - E}}$$
.

Generalized Pareto demand

 The distribution of consumer valuations v takes on the generalized Pareto distribution

$$F(v) = 1 - (1 + \xi \cdot (E - 1)(v - 1))^{\frac{1}{1 - E}},$$

where $\xi > 0$ is the scale parameter and E < 2 is the shape parameter.

 The generalized Pareto distribution implies the corresponding demand functions for merchants are defined by the class of demands

$$X(p) = 1 - F(p) = (1 + \xi \cdot (E - 1)(p - 1))^{\frac{1}{1 - E}}$$
.

The effect of aggregate output on the elasticity is given by

$$\varepsilon' = \frac{1 - \xi \cdot (E - 1)}{X^{2 - E}},$$

which is negative if and only if $E > 1 + \frac{1}{\xi}$ (superconvex demand).

Generalized Pareto with ε' < 0 (superconvex demand)

Generalized Pareto with $\varepsilon' < 0$ (superconvex demand)

	$\gamma=1$	$\gamma = 0.75$	$\gamma = 0.5$	$\gamma = 0$
Credit card tax	1.0315	1.03142	1.03136	1.03125
Network profits	0.00348	0.00466	0.00615	0.01024
Merchant profits	0.004	0.0023	0.003248	0
Price consumers pay	1.07062	1.0590	1.0487	1.03125
Price merchants receive	1.038	1.0268	1.0168	1
% of the 'tax' consumers pay	120.4%	114.6%	109.3%	100%

More intense competition in the product market decreases the credit card tax.

Generalized Pareto with $\varepsilon' < 0$ (superconvex demand)

	$\gamma=1$	$\gamma = 0.75$	$\gamma = 0.5$	$\gamma = 0$
Credit card tax	1.0315	1.03142	1.03136	1.03125
Network profits	0.00348	0.00466	0.00615	0.01024
Merchant profits	0.004	0.0023	0.003248	0
Price consumers pay	1.07062	1.0590	1.0487	1.03125
Price merchants receive	1.038	1.0268	1.0168	1
% of the 'tax' consumers pay	120.4%	114.6%	109.3%	100%

- More intense competition in the product market decreases the credit card tax.
- It also decreases the fraction of the tax consumers pay.

Network entry increases the credit card tax

Market initially is occupied by a monopoly incumbent network, $\varepsilon' > 0$ and $\gamma > 0$.

HUNT, SERFES, ZHANG

Network entry increases the credit card tax

- Market initially is occupied by a monopoly incumbent network, $\varepsilon' > 0$ and $\gamma > 0$.
- Entry of a second network, with an infinitesimally small and fixed number of users that is poached from the incumbent, induces the incumbent to increase its equilibrium tax.

Linear demand: Two competing networks with $\mu=50\%$

	$\gamma=1$	$\gamma = 0.75$	$\gamma = 0.5$	$\gamma = 0$
Tax $z_1 = z_2$	1.1231 (1.1213)	1.1234 (1.1218)	1.1237 (1.1222)	1.125
$\pi_1 = \pi_2$	0.0026	0.003	0.0034	0.005
Merchant profits	0.0023	0.0022	0.002	0
P^b	0.949 (0.948)	0.942 (0.94)	0.933 (0.932)	0.9
P^m	0.845	0.839	0.83	0.8
Incidence	47.32%	54.51%	64.26%	100%

- Network competition increases the tax and the price consumers pay.
- Welfare decreases.

• When there is only one network (and $\varepsilon' > 0$)

$$z \uparrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^m \downarrow \rightarrow \text{Network revenue} \downarrow$$

• When there is only one network (and $\varepsilon' > 0$)

$$z \uparrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^m \downarrow \rightarrow \text{Network revenue} \downarrow$$

· With two networks

$$z_{\ell} \uparrow \rightarrow x_{\ell} \downarrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^{m} \downarrow \rightarrow \text{Network revenue} \downarrow$$

• When there is only one network (and $\varepsilon' > 0$)

$$z \uparrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^m \downarrow \rightarrow \text{Network revenue} \downarrow$$

With two networks

$$z_{\ell} \uparrow \rightarrow x_{\ell} \downarrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^{m} \downarrow \rightarrow \text{Network revenue} \downarrow$$

• The effect of z_{ℓ} on X is weaker when there are two networks than with one.

• When there is only one network (and $\varepsilon' > 0$)

$$z \uparrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^m \downarrow \rightarrow \text{Network revenue} \downarrow$$

With two networks

$$z_{\ell} \uparrow \rightarrow x_{\ell} \downarrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^{m} \downarrow \rightarrow \text{Network revenue} \downarrow$$

- The effect of z_{ℓ} on X is weaker when there are two networks than with one.
- Hence, a network is less reluctant to increase its tax when it has a lower market share.

• When there is only one network (and $\varepsilon' > 0$)

$$z \uparrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^m \downarrow \rightarrow \text{Network revenue} \downarrow$$

With two networks

$$z_{\ell} \uparrow \rightarrow x_{\ell} \downarrow \rightarrow X \downarrow \rightarrow \varepsilon \downarrow \rightarrow P^{m} \downarrow \rightarrow \text{Network revenue} \downarrow$$

- The effect of z_{ℓ} on X is weaker when there are two networks than with one.
- Hence, a network is less reluctant to increase its tax when it has a lower market share.
- $z \uparrow$ after entry of a second network.

Network shares are endogenous

• Each user is located on the Hotelling line and has a more preferred credit card.

Network shares are endogenous

- Each user is located on the Hotelling line and has a more preferred credit card.
- Network shares, μ , is a function of z_1 and z_2 .

Network shares are endogenous

- Each user is located on the Hotelling line and has a more preferred credit card.
- Network shares, μ , is a function of z_1 and z_2 .
- Competition effect: Entry intensifies competition and lowers the tax z_ℓ.

Analysis 00000000000000000

Result

 Networks are not differentiated enough: Competition effect dominates the elasticity effect. Entry lowers equilibrium taxes and increases welfare.

Result

- Networks are not differentiated enough: Competition effect dominates the elasticity effect. Entry lowers equilibrium taxes and increases welfare.
- Networks are sufficiently differentiated: Elasticity effect dominates the competition effect. Entry increases equilibrium taxes and decreases welfare.

One network and cash, with $\gamma={\bf 0}$ and linear demand

• IF and reward are uniquely determined.

One network and cash, with $\gamma = 0$ and linear demand

- IF and reward are uniquely determined.
- As the fraction of consumers with no availability to credit increases, the credit card taxes increase.

One network and cash, with $\gamma = \mathbf{0}$ and linear demand

- IF and reward are uniquely determined.
- As the fraction of consumers with no availability to credit increases, the credit card taxes increase.
- An IF cap lowers the reward, but also lowers the credit card taxes-> consumers become better off.

One network and cash, with $\gamma = 0$ and linear demand

- IF and reward are uniquely determined.
- As the fraction of consumers with no availability to credit increases, the credit card taxes increase.
- An IF cap lowers the reward, but also lowers the credit card taxes-> consumers become better off.
- More to come with $\gamma > 0$ and non-linear demand.

Inducing more competition between networks can produce undesired results.

- Inducing more competition between networks can produce undesired results.
- Inducing more competition in the product market may not reduce final goods prices much.

- Inducing more competition between networks can produce undesired results.
- Inducing more competition in the product market may not reduce final goods prices much.
- Interchange fee caps would be somewhat undermined, but make consumers better off.

- Inducing more competition between networks can produce undesired results.
- Inducing more competition in the product market may not reduce final goods prices much.
- Interchange fee caps would be somewhat undermined, but make consumers better off.
- Initiatives that would limit network differentiation, i.e., better interoperability, should be effective.

Main Findings & Literature The model Analysis Policy implications Conclusion

Conclusion

2SM model featuring: Merchants, networks/banks and consumers.

- 2SM model featuring: Merchants, networks/banks and consumers.
- Interchange fee and rewards determine the credit card tax.

- 2SM model featuring: Merchants, networks/banks and consumers.
- Interchange fee and rewards determine the credit card tax.
- Competition between networks.

- 2SM model featuring: Merchants, networks/banks and consumers.
- Interchange fee and rewards determine the credit card tax.
- Competition between networks.
- Competition among merchants in the product market with 'more' general demand.

- 2SM model featuring: Merchants, networks/banks and consumers.
- Interchange fee and rewards determine the credit card tax.
- Competition between networks.
- Competition among merchants in the product market with 'more' general demand.
- Stronger competition in the product market can increase or decrease the credit card tax, depending on the shape of product demand.

- 2SM model featuring: Merchants, networks/banks and consumers.
- Interchange fee and rewards determine the credit card tax.
- Competition between networks.
- Competition among merchants in the product market with 'more' general demand.
- Stronger competition in the product market can increase or decrease the credit card tax, depending on the shape of product demand.
- Stronger competition in the network market can increase the credit card tax and lower welfare

- 2SM model featuring: Merchants, networks/banks and consumers.
- Interchange fee and rewards determine the credit card tax.
- Competition between networks.
- Competition among merchants in the product market with 'more' general demand.
- Stronger competition in the product market can increase or decrease the credit card tax, depending on the shape of product demand.
- Stronger competition in the network market can increase the credit card tax and lower welfare
 - depending on the shape of the product demand and

- 2SM model featuring: Merchants, networks/banks and consumers.
- Interchange fee and rewards determine the credit card tax.
- Competition between networks.
- Competition among merchants in the product market with 'more' general demand.
- Stronger competition in the product market can increase or decrease the credit card tax, depending on the shape of product demand.
- Stronger competition in the network market can increase the credit card tax and lower welfare
 - depending on the shape of the product demand and
 - the degree of network differentiation.