Revealing Dynamics: The Impact of Minimum Wage on Inequality Within Germany's Regions

Mariya Afonina

Department of Business Administration and Economics, Bielefeld University Leibniz ScienceCampus SOEP RegioHub: RegioEcon

> August 27, 2024 EEA-ESEM Congress, Rotterdam

Minimum wage in Germany

Figure: Development of the minimum hourly wage;

Source: based on data from Destatis

Wage inequality within sex

Wage inequality: P75/P25 men in 2013, 2018, and 2021

Wage inequality: P75/P25 women in 2013, 2018, and 2021

Contribution

Scarce evidence on regional differences, gender wage differences, and inequality aspects

Inequality: Backhaus and Müller (2023) found no effects on inequality reduction in HH income; Bossler and Schank (2023) found a significant reduction in wage inequality in terms of monthly wages

Gender wage gap studies: women's wages rose directly after the reform, while men's with a some delay (Burauel et al. 2017; Bachmann et al. 2022); different effects in the different parts of distribution (Caliendo and Wittbrodt 2022)

Regional effects: Ahlfeldt, Roth, and Seidel (2018) find spatial inequality convergence; Bonin et al. (2020) studied effects on regional (un-)employment

Data & Methods

Datasets

- German Socio-Economic Panel (SOEP), v.38 up to the year 2021
- Indicators and maps of spatial and urban development (INKAR) - currently up to the year 2020/2021

Estimation strategy

Difference-in-Difference approach

- on the LLMAs level DiD-R
- on the individual level DiD-I

Note: SOEP allows to define both + different types of hours: contracted and actual

Unit of Analysis: Local Labour Market Areas

Functional vs Administrative LLMAs

Following Kropp and Schwengler (2016) (IAB):

- Maximizing commuting within regions
- Minimizing commuting between regions
- Stability of the NUTS3 attributions
- Results in 50 functional LLMAs, homogeneous in terms of population

Treatment definition: Minimum wage "bite"

Current definition (per Caliendo et al. 2023):

$$Bite_{rtg} = \frac{a_{rtg} - \bar{a}_{tg}}{\hat{\sigma}(a_{tg})}$$

where a_{rtg} is a share of respondents with gross hourly income below 8.5 Euro in a region r at time t over subgroup g

 \Rightarrow A region is considered treated, if the normalized bite is greater than 0.

Robustness checks: alternative definitions (Kaitz index as per DeStatis; three definitions used by Garloff (2019)); placebo regressions (Bite in $2012 \times \text{year}$ 2014 dummy); stability of assignments.

Treatment definition: minimum wage "bite"

Regression Equations: DiD-R I

Total effect:

$$In(Y_{rgt}) = \beta_1(Bite_{rg}^{2013} \times 1\{t = 2015 - 2021\}) + \mu \mathbf{X}_{rgt} + \gamma_t + \gamma_r + \epsilon_{rgt}, t \in [2012, 2021]$$

 \mathbf{Y}_{rt} - inequality measure for region r at time t

 β_1 - treatment coefficient

 \mathbf{X}_{rgt} - a set of time-varying control variables for demographic and labour market conditions in a region, such as average # of children below 16 years of age in a HH, average # of working adults in a HH, average years of education in a region, share of men, share of migrants, share of the full-time employees, share of small and large firms in a region; share of industries by NACE.

 γ_t is time fixed effects; γ_r is regional fixed effects and ϵ_{rgt} is an error term

Regression Equations: DiD-R II

Short-mid-long(er) term effect:

$$In(Y_{rgt}) = \beta^{2015}(Bite_{rg}^{2013} \times 1\{t = 2015\}) +$$

$$+ \beta^{2016-2018}(Bite_{rg}^{2013} \times 1\{t = 2016 - 2018\}) +$$

$$+ \beta^{2019-2021}(Bite_{rg}^{2013} \times 1\{t = 2019 - 2021\}) +$$

$$+ \mu \mathbf{X}_{rgt} + \gamma_t + \gamma_r + \epsilon_{rgt}$$

Dynamic setup:

$$In(Y_{rgt}) = \sum_{y=2015}^{2021} \beta^{y}(Bite_{rg}^{2013} \times \mathbb{1}\{t=y\}) + \mu \mathbf{X}_{rgt} + \gamma_{t} + \gamma_{r} + \epsilon_{rgt}$$

Results: Overall, hourly wages

Table: Aggregated effects of the minimum wage introduction on within-region inequality on LLMA level

	P75/P25	P90/P10	P25/P10	Std. dev
Bite2013 # Post-treatment years	-0.029 (0.023)	-0.117*** (0.036)	-0.070** (0.029)	0.016 (0.023)
Observations	449	449	449	449
Parallel trends p-value	0.414	0.995	0.323	0.006
Granger causality p-value	0.416	0.981	0.319	0.006

Note: *** p < 0.01, *** p < 0.05, * p < 0.10; Control variables are included as aggregated information on the LLMA level: general hh composition, labour market conditions, average respondents' characteristics

Graphical Parallel Trends

Results: Overall, monthly indicators

Table: Aggregated effects of the minimum wage introduction on within-region inequality on LLMA level, monthly indicators

	Individual Monthly Income			HH Monthly Income			
	P75/P25	P90/P10	Gini	P75/P25	P90/P10	Gini	
Bite2013 # Post-treatment years	0.018	0.096*	0.004	-0.020	-0.086	-0.009	
	(0.033)	(0.053)	(0.007)	(0.042)	(0.074)	(0.008)	
Observations Parallel trends p-value Granger causality p-value	449	449	449	449	449	449	
	0.322	0.790	0.744	0.472	0.448	0.476	
	0.319	0.790	0.747	0.461	0.438	0.463	

Note: *** p < 0.01, ** p < 0.05, * p < 0.10; Control variables are included as aggregated information on the LLMA level; general hh composition, labour market conditions, average respondents' characteristics

P25/P10

Std. dev

Results: hourly wages disaggregated by sex

Table: Effects of the minimum wage introduction on within-region inequality on LLM level

Panel A: LLMA	effects, w	omen		
Bite2013 (women) # Post-treatment years	-0.045*	-0.059	-0.044	0.090***
	(0.023)	(0.038)	(0.032)	(0.031)
Observations	400	400	400	400
Parallel trends p-value	0.048	0.393	0.441	0.025
Granger causality p-value	0.047	0.395	0.441	0.025

P75/P25

P90/P10

Panel B: LLMA effects, men

Bite2013 (men) # Post-treatment years	-0.089***	-0.156**	-0.018	-0.039
	(0.028)	(0.072)	(0.052)	(0.029)
Observations	400	399	399	400
Parallel trends p-value	0.445	0.684	0.163	0.685
Granger causality p-value	0.419	0.709	0.166	0.708

Note: *** p < 0.01, ** p < 0.05, * p < 0.10; Control variables are included as aggregated information on the LLMA level: general hh composition, labour market conditions, average respondents' characteristics. All variables are aggregated at the subgroup level

Results: monthly income disaggregated by sex

Table: Effects of the minimum wage introduction on within-region inequality on LLM level

	Women			Men			
	P75/P25	P90/P10	Gini	P75/P25	P90/P10	Gini	
Bite2013 # Post-treatment years	0.054	-0.002	0.014*	-0.093**	-0.032	-0.007	
	(0.049)	(0.061)	(0.007)	(0.036)	(0.094)	(0.009)	
Observations Parallel trends p-value Granger causality p-value	400	400	400	400	400	400	
	0.568	0.505	0.847	0.221	0.812	0.877	
	0.576	0.501	0.839	0.214	0.806	0.875	

Note: *** p < 0.01, *** p < 0.05, * p < 0.10; Control variables are included as aggregated information on the LLMA level: general hh composition, labour market conditions, average respondents' characteristics. All variables are aggregated at the subgroup level

Time perspective: overall, gross hourly wages

Time perspective: overall, monthly indicators

Time perspective: sex, gross hourly wages

Time perspective: sex, gross monthly wages

Time perspective: Gini Coefficients

Individual level: summary

Treatment

• **DiD treatment**: $\mathbb{1}\{wage_i^{2013} \leq 8.5\} \times \mathbb{1}\{t = 2015 - 2021\}$ vs $\mathbb{1}\{wage_i^{2013} \leq 8.5\} \times \mathbb{1}\{t = 2015 - 2021\} \times \mathbb{1}\{wage_i^{2013} \leq 25pth\}$

Results summary

- Additional increase in hourly wages by about 7%, throughout the whole distribution for men and in the lowest quartile for women
- Amplitude of effect increased with time for men, but stayed the same for women
- Actual and contracted hours reduction only for women
- Robustness check: separate regressions by quantiles of wage distribution; placebo regressions (in progress)

Conclusion

With the help of the **DiD** on the **functional LLMA level** it has been established that

- Overall, the policy has reduced inequality between top and bottom deciles of the within-region wage distribution by 11%
- For men the hourly wage effects are present through the whole wage distribution, while for women these are concentrated in the lowest quartile
- Most of the effects are driven by the change of inequality for men, which aligns with the regional pattern of the inequity evolution
- No effect on inequality of monthly income

Thank you for attention!

Your questions are welcome!

mariya.afonina@uni-bielefeld.de

References I

Ahlfeldt, Gabriel M, Duncan Roth, and Tobias Seidel (2018). "The regional effects of Germany's national minimum wage". In: *Economics Letters* 172, pp. 127–130.

Bachmann, Ronald et al. (2022). Auswirkungen des gesetzlichen Mindestlohns auf Löhne und Arbeitszeiten. Tech. rep. RWI Projektberichte.

Backhaus, Teresa and Kai-Uwe Müller (2023). "Can a federal minimum wage alleviate poverty and income inequality? Ex-post and simulation evidence from Germany". In: *Journal of European Social Policy* 33.2, pp. 216–232.

Bonin, Holger et al. (2020). "The German statutory minimum wage and its effects on regional employment and unemployment". In: *Jahrbücher für Nationalökonomie und Statistik* 240.2-3, pp. 295–319.

Bossler, Mario and Thorsten Schank (2023). "Wage inequality in Germany after the minimum wage introduction". In: *Journal of Labor Economics* 41.3, pp. 000-000.

Bruttel, Oliver, Arne Baumann, and Matthias Dütsch (2018). "The new German statutory minimum wage in comparative perspective: Employment effects and other adjustment channels". In: *European Journal of Industrial Relations* 24, pp. 145 –162. DOI: 10.1177/0959680117718661.

References II

Burauel, Patrick et al. (2017). "Minimum wage not yet for everyone: on the compensation of eligible workers before and after the minimum wage reform from the perspective of employees". In: *DIW Economic Bulletin* 7.49, pp. 509–522.

Caliendo, Marco and Linda Wittbrodt (2022). "Did the minimum wage reduce the gender wage gap in Germany?" In: Labour Economics 78, p. 102228.

Caliendo, Marco, Linda Wittbrodt, and Carsten Schröder (2019). "The causal effects of the minimum wage introduction in Germany—an overview". In: *German Economic Review* 20.3, pp. 257–292.

Caliendo, Marco et al. (2023). "The short-and medium-term distributional effects of the German minimum wage reform". In: *Empirical Economics* 64.3, pp. 1149–1175.

Dustmann, Christian et al. (2022). "Reallocation effects of the minimum wage". In: *The Quarterly Journal of Economics* 137.1, pp. 267–328.

Fortin, N., T. Lemieux, and N. Lloyd (2021). "Labor Market Institutions and the Distribution of Wages: The Role of Spillover Effects". In: *Journal of Labor Economics* 39, S369 –S412, DOI: 10.1086/712923.

Friedrich, M. (2019). "Using Occupations to Evaluate the Employment Effects of the German Minimum Wage". In: *Jahrbücher für Nationalökonomie und Statistik* 240, pp. 269–294. DOI: 10.1515/jbnst-2018-0085.

References III

- Gregory, Terry and Ulrich Zierahn (2022). "When the minimum wage really bites hard: The negative spillover effect on high-skilled workers". In: *Journal of Public Economics* 206, p. 104582.
- Holtemöller, Oliver and Felix Pohle (2020). "Employment effects of introducing a minimum wage: The case of Germany". In: *Economic Modelling* 89, pp. 108–121.
- Kropp, Per and Barbara Schwengler (2016). "Three-step method for delineating functional labour market regions". In: *Regional Studies* 50.3, pp. 429–445.
 - Rattenhuber, Pia (2014). "Building the minimum wage: the distributional impact of Germany's first sectoral minimum wage on wages and hours across different wage bargaining regimes". In: *Empirical Economics* 46, pp. 1429–1446. DOI: 10.1007/S00181-013-0726-1.
- Schmitz, S. (2017). "The effects of Germany's new minimum wage on employment and welfare dependency". In: DOI: 10.17169/REFUBIUM-25282.

Parallel Trends Assumption: P75/P25 hourly wages

Figure: Developments of P75/P25 of hourly gross wages for treatment and control groups, regional level

Parallel Trends Assumption: P75/P25 hourly wages

Figure: Developments of P75/P25 of hourly gross wages for treatment and control groups of women, regional level

Parallel Trends Assumption: P75/P25 hourly wages

Figure: Developments of P75/P25 of hourly gross wages for treatment and control groups of men, regional level

Parallel Trends Assumption: individual hourly wage

Control: respondents were paid more than 8.5 euro per hour in the year 2013

Figure: Developments of hourly gross wages for treatment and control groups, individual level