Deconstructing debt supply shocks using Treasury auction announcements

Utso Pal Mustafi

CEMFI

EEA-ESEM 2024

August 25, 2024

Motivation

- Governments issue public debt to fund fiscal deficit
 - Sharp increase in several nations post Covid-19
 - US public debt on 4th June, 2024 at historical high = $34.67 \text{ tln} \left(\frac{Debt}{GDP} = 122\%\right)$
- Supply of debt → economy? Not obvious
 - 1. Jointly determined. US Treasury $\xrightarrow{\text{several determinants}}$ debt supply decisions
 - 2. Debt funded by bonds with different maturities. Debt supply changes \rightarrow mix of two distinct phenomena
 - Change in overall level of debt
 - Change in issuance across maturities, conditional on debt level

Separately identify shocks to debt level and maturity. Study causal effects

- 1. Level
 - Mixed evidence
- 2. Maturity
 - Less evidence. Effects? Transmission channels?

Motivation

- Governments issue public debt to fund fiscal deficit
 - Sharp increase in several nations post Covid-19
 - US public debt on 4th June, 2024 at historical high = $34.67 \text{ tln} \left(\frac{Debt}{GDP} = 122\%\right)$
- Supply of debt → economy? Not obvious
 - 1. Jointly determined. US Treasury $\xrightarrow{\text{several determinants}}$ debt supply decisions
 - 2. Debt funded by bonds with different maturities. Debt supply changes \rightarrow mix of two distinct phenomena
 - Change in overall level of debt
 - Change in issuance across maturities, conditional on debt level
- Separately identify shocks to debt level and maturity. Study causal effects
 - 1. Level
 - Mixed evidence
 - 2. Maturity
 - Less evidence. Effects? Transmission channels?

This paper

- 1. Identify exogenous changes/shocks to level and maturity structure of public debt supply
 - Combine high-frequency data and features of Treasury auction announcements
 - Key innovation
 - i. First to separate level and maturity component of debt supply shocks
 - ii. Novel identification strategy. Can be used to separate other series of structural shocks
- 2. Transmission of shocks to macroeconomy
 - Effects on asset prices and macroeconomic variables
 - Innovation: Test preferred habitat framework predictions
 - Empirical results
 - i. \uparrow debt level: \uparrow yield curve. Recession
 - ii. \uparrow debt maturity: \uparrow yield curve. Expansion
 - Increase in debt maturity leads to expansions \rightarrow inconsistent with model prediction

Quantifying shocks to debt level and maturity

Treasuries auction announcements

- Treasury issues new debt \rightarrow periodic uniform price auctions
- ▶ Volume offered at auction \rightarrow announced few days prior. Two types
 - 1. Official Financial Remarks (OFRs)
 - Quarterly
 - Few pages in length
 - Specific auctions. For example, for next 3yr, 10yr, and 30yr auctions
 - 2. Intermediate announcements (Inters)
 - More frequent
 - One page
 - Rest of the auctions in quarter
- Remove Inters that contain no new information
- 348 announcements: Aug 1995 Dec 2021
- Change in Treasury futures prices around announcements capture new information on debt supply

Intraday movement in futures price

Figure: Intraday movements in futures price on 2020-05-06

Second example

Factors driving futures price changes

Change in (log) futures prices in a narrow interval around announcements

$$f_t^m = F_{t,post}^m - F_{t,pre}^m \tag{1}$$

- $m \in \{2y, 5y, 10y, 30y, 3mo-Eud\}$
- Interval customized according to nature of the announcement. Typically 30 minutes
- Vector at time t: $D_t = [f_t^{3m} \ f_t^{2Y} \ f_t^{5Y} \ f_t^{10Y} \ f_t^{30Y}]'$

Changes in D_t mainly driven by two underlying factors. To get debt level and maturity factors

- 1. Estimate principal components F_t and loading matrix Λ in $\underbrace{D_t}_{5\times 2} = \underbrace{\Lambda'}_{5\times 2} \underbrace{F_t}_{5\times 2} + \epsilon_t$
- 2. Estimate U such that $\underbrace{\tilde{F}_t}_{true \text{ factors}} = U'F_t$. How?
 - Categorize announcements into subsets based on relative information between debt level and maturity
 - Restrictions on factor variances $V(\tilde{F}_t)$ based on subsets

Factors driving futures price changes

Change in (log) futures prices in a narrow interval around announcements

$$f_t^m = F_{t,post}^m - F_{t,pre}^m \tag{1}$$

- $m \in \{2y, 5y, 10y, 30y, 3mo-Eud\}$
- Interval customized according to nature of the announcement. Typically 30 minutes
- Vector at time t: $D_t = [f_t^{3m} \ f_t^{2Y} \ f_t^{5Y} \ f_t^{10Y} \ f_t^{30Y}]'$

Changes in D_t mainly driven by two underlying factors. To get debt level and maturity factors

- 1. Estimate principal components F_t and loading matrix Λ in $\underbrace{D_t}_{t=1} = \underbrace{\Lambda'}_{t=1} \underbrace{F_t}_{t=1} + \epsilon_t$
- 2. Estimate U such that $\underbrace{\tilde{F}_t}_{\text{true factors}} = U'F_t$. How?
 - Categorize announcements into subsets based on relative information between debt level and maturity
 - Restrictions on factor variances $V(\tilde{F}_t)$ based on subsets

6/14

Restrictions based on subsets

Subset *inter*: Inters + short OFRs. Total offered volume and auction rules (279 obs)

$$V(\tilde{F}_{inter}) = U'V(F_{inter})U, \qquad V(\tilde{F}_{inter}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(2)

Subset level: OFR. More information on debt level (18 obs)

$$V(\tilde{F}_{level}) = U'V(F_{level})U, \qquad V(\tilde{F}_{level}) = \begin{bmatrix} \sigma_{1,level}^2 & 0\\ 0 & \sigma_{2,level}^2 \end{bmatrix}$$
(3)

Subset mat: OFR. More information on debt maturity (34 obs)

$$V(\tilde{F}_{mat}) = U'V(F_{mat})U, \qquad V(\tilde{F}_{mat}) = \begin{bmatrix} \sigma_{1,mat}^2 & 0\\ 0 & \sigma_{2,mat}^2 \end{bmatrix}$$
(4)

9 restrictions on 5 free parameters $\theta_0 \in \{\theta, \sigma_{1,level}, \sigma_{2,level}, \sigma_{1,mat}, \sigma_{2,mat}\}$

Estimate using 2-step GMM

7/14

Effects on asset prices and macroeconomic variables

• OLS: $\Delta y_t \rightarrow \text{daily change in price of an asset}$

$$\Delta y_t = \alpha + \beta_1 s_{L,t} + \beta_2 s_{M,t} + \epsilon_t \tag{5}$$

- ▶ $\beta_1 \rightarrow$ effect of \uparrow debt level
- $\beta_2 \rightarrow \text{effect of} \uparrow \text{debt maturity}$
- ▶ Nominal bond market effects → test Greenwood and Vayanos (2014) predictions

Bond returns and yields

Dep variable: return $r_{t,t+1}^{ au}=p_{t+1}^{ au-1}-p_t^{ au}$, zero coupon yield $y_t^{ au}=-p_t^{ au}/ au$

- - All returns/yields (> premium for > portfolio risk)
 - Effect size \uparrow with τ for returns (long bonds riskier)
 - Size \uparrow or hump-shaped across τ for yields (yield = mean ret over τ)
 - Size larger for returns (yield = mean ret over τ)

Other asset prices

▶ Indep variable: $s_{L,t}$, $s_{M,t} \rightarrow$ price responses to supply shocks

$$\Delta y_t = \alpha + \beta_1 s_{L,t} + \beta_2 s_{M,t} + \epsilon_t \tag{6}$$

Strong correlation $\beta_i, i \in \{1, 2\}$ suggest (Droste et al, 2021)

1. Channel of propagation \rightarrow high-grade corp bond yields affected

2. Jointly determined due to information shocks \rightarrow other asset prices also affected

	Panel A: Level factor	Panel B: Maturity factor	
	Estimate	Estimate	
	(<i>p</i> -value)	(<i>p</i> -value)	
A e e l'arre de	0.001	0.01**	1995-2021
	0.004	0.01**	1995-2021
	(0.17)		
	-0.004		1996-2021

Table: Level and maturity factor on corp bond yields. Effects in percentage points.

Other asset prices

▶ Indep variable: $s_{L,t}$, $s_{M,t} \rightarrow$ price responses to supply shocks

$$\Delta y_t = \alpha + \beta_1 s_{L,t} + \beta_2 s_{M,t} + \epsilon_t \tag{6}$$

Strong correlation $\beta_i, i \in \{1, 2\}$ suggest (Droste et al, 2021)

1. Channel of propagation \rightarrow high-grade corp bond yields affected

2. Jointly determined due to information shocks \rightarrow other asset prices also affected

		Panel A: Level factor	Panel B: Maturity factor	
		Estimate	Estimate	Sample
		(<i>p</i> -value)	(<i>p</i> -value)	
Corp bond yields				
		0.001	0.01**	1995-2021
Aaa grade	(0.65)	(0.003)		
	Dee avede	0.004	0.01**	1995-2021
	Baa grade	(0.17)	(0.002)	
	Consta	-0.004	0.02	1996-2021
	C grade	(0.69)	(0.2)	

Table: Level and maturity factor on corp bond yields. Effects in percentage points.

Other asset prices

		Panel A: Level factor	Panel B: Maturity factor	
		Estimate	Estimate	Sample
		(<i>p</i> -value)	(<i>p</i> -value)	
Equity				
	SP.D EOO	0.002*	-7e-4	1995-2021
	3&F 500	(0.07)	(0.44)	
	Bussell 2000	0.002*	0.1e-4	1995-2021
	Russell 2000	(0.09)	(0.99)	
Exchange rates				
	Dellar Euro	0.003	5e-4	2003-2021
	Dollar-Euro	(0.2)	(0.79)	
	Delles Vez	0.002	4e-4	1996-2021
	Dollar- ren	(0.12)	(0.61)	
Commodities				
	GSCI	-5.7e-4	0.14e-4	1995-2021
	GSCI	(0.52)	(0.99)	
Uncertainty				
	\/IX	-0.006*	-5e-4	1995-2021
	VIA	(0.09)	(0.88)	

Table: Level and maturity factor on other asset prices. All effects in percent changes

SVAR-IV impulse responses for asset prices

Figure: Light and dark blue shaded regions are 68% and 90% confidence bands respectively.

SVAR-IV impulse responses for macro variables

Figure: Light and dark blue shaded regions are 68% and 90% confidence bands respectively.

 $-\uparrow$ debt level/maturity: \uparrow yield curve $\xrightarrow{\text{IS curve}}$ recession (Ray, 2019)

Concluding remarks

- Identify shocks to level and maturity structure of public debt supply
 - Novel identification strategy to separate components
 - Readily usable to look at causal effects on variables of interest.
- ► Non-trivial effects on asset prices and macroeconomy. Transmission → Preferred habitat channel
 - $-\uparrow$ debt level/maturity $\rightarrow\uparrow$ yield curve (Greenwood and Vayanos, 2014)
 - ↑ debt level $\rightarrow \downarrow$ output, employment (Ray, 2019)
 - \uparrow debt maturity $\rightarrow \uparrow$ output, employment. Alternative channel.

Thank you !

Appendix

Identification in factor model

Factor model

$$\frac{D_t}{5\times 1} = \underbrace{N'}_{5\times 2} \underbrace{F_t}_{2\times 1} + \epsilon_t \tag{7}$$

- Estimate level and maturity factors in two steps
- 1. Estimate principal components F_t and loading matrix Λ

$$D_{t=\Lambda'}\underbrace{UU'}_{\mathcal{I}_2}F_t + \epsilon_t = \tilde{\Lambda'}\tilde{F}_t + \epsilon_t \tag{8}$$

$$U$$
 is an orthogonal matrix $\begin{bmatrix} cos \theta & -sin \theta \\ sin \theta & cos \theta \end{bmatrix}$

- 2. Estimate $U \rightarrow$ narrative + heteroscedasticity restrictions
 - $\tilde{F}_t = U'F_t$
 - $V(\tilde{F}_t) = U'V(F_t)U$
 - Heteroscedasticity ightarrow restrictions on factor variances $V(ilde{F}_t)$ based on subsets
 - Narrative \rightarrow subsets categorized on relative information between debt level and maturity

Two-step GMM estimates

Estimates

	Estimates	Std Errors
θ	28.31	9.97
$\sigma_{1,inter}$	1	-
$\sigma_{2,inter}$	1	-
$\sigma_{1,level}$	0.72	0.20
$\sigma_{2,level}$	0.73	0.15
$\sigma_{1,mat}$	1.42	0.23
$\sigma_{2,mat}$	0.80	0.12
J-test stat	1.64	
p-value	0.80	
Degrees of freedom	4	

Table: Sargan-Hansen J-test. $H_0: E[g(Y_l, \theta_0)] = 0$

► U =
$$\begin{bmatrix} 0.88 & -0.47\\ 0.47 & 0.88 \end{bmatrix}$$
 Factors of interest $\tilde{F}_t = U'F_t$
► $\frac{\sigma_{1,mat}^2}{\sigma_{2,mat}^2} = 3.12 > \frac{\sigma_{1,level}^2}{\sigma_{2,level}^2} = 0.97$ First factor \rightarrow maturity

Moment condition back

Two-step GMM estimates

Estimates

	Estimates	Std Errors
θ	28.31	9.97
$\sigma_{1,inter}$	1	-
$\sigma_{2,inter}$	1	-
$\sigma_{1,level}$	0.72	0.20
$\sigma_{2,level}$	0.73	0.15
$\sigma_{1,mat}$	1.42	0.23
$\sigma_{2,mat}$	0.80	0.12
J-test stat	1.64	
p-value	0.80	
Degrees of freedom	4	

Table: Sargan-Hansen J-test. $H_0: E[g(Y_l, \theta_0)] = 0$

► U =
$$\begin{bmatrix} 0.88 & -0.47\\ 0.47 & 0.88 \end{bmatrix}$$
 Factors of interest $\tilde{F}_t = U'F_t$
► $\frac{\sigma_{1,mat}^2}{\sigma_{2,mat}^2} = 3.12 > \frac{\sigma_{1,level}^2}{\sigma_{2,level}^2} = 0.97$ First factor \rightarrow maturity

Specification

- > Dynamic effect in the macroeconomy due to debt level/maturity shocks $\varepsilon_{1,t}$ (unobserved)
- Impulse responses from SVAR-IV (Mertens and Ravn, 2013; Stock and Watson, 2018)
- Estimated shocks s_t as instrument. Key assumptions
 - 1. Relevance. $E(s_t \varepsilon_{1,t}) = \alpha \neq 0$
 - 2. Exogeneity. $E(s_t \varepsilon_{j,t}) = 0, j \neq 1$

Specification

- b Dynamic effect in the macroeconomy due to debt level/maturity shocks $\varepsilon_{1,t}$ (unobserved)
- Impulse responses from SVAR-IV (Mertens and Ravn, 2013; Stock and Watson, 2018)
- Estimated shocks s_t as instrument. Key assumptions
 - 1. Relevance. $E(s_t \varepsilon_{1,t}) = \alpha \neq 0$
 - 2. Exogeneity. $E(s_t \varepsilon_{j,t}) = 0, j \neq 1$
- Variables in SVAR-IV

$$Y_{t} = \underbrace{[y_{t}^{(2)}(\%) \quad y_{t}^{(15)}(\%)}_{\text{Asset price block}} \quad \underbrace{\log(IIP_{t}) \quad \log(PCE_{t}) \quad \text{UnRate}_{t}(\%)}_{\text{Macro block}} \quad \underbrace{\text{FrMD}_{t}}_{\text{For invertibility}}]'$$
(9)

- Effect of \uparrow level/maturity shock $\varepsilon_{1,t}$ that $\uparrow y_t^{(15)}$ by 0.01 pp on impact
- Montiel Olea, Stock and Watson (2021) weak instrument robust confidence intervals

Specification

- b Dynamic effect in the macroeconomy due to debt level/maturity shocks $\varepsilon_{1,t}$ (unobserved)
- Impulse responses from SVAR-IV (Mertens and Ravn, 2013; Stock and Watson, 2018)
- Estimated shocks s_t as instrument. Key assumptions
 - 1. Relevance. $E(s_t \varepsilon_{1,t}) = \alpha \neq 0$
 - 2. Exogeneity. $E(s_t \varepsilon_{j,t}) = 0, j \neq 1$
- Variables in SVAR-IV

$$Y_{t} = \underbrace{[y_{t}^{(2)}(\%) \quad y_{t}^{(15)}(\%)}_{\text{Asset price block}} \quad \underbrace{\log(IIP_{t}) \quad \log(PCE_{t}) \quad \text{UnRate}_{t}(\%)}_{\text{Macro block}} \quad \underbrace{\text{FrMD}_{t}}_{\text{For invertibility}}]'$$
(9)

SVAR-IV details IV relevance test

- Effect of ↑ level/maturity shock ε_{1,t} that ↑ y_t⁽¹⁵⁾ by 0.01 pp on impact
- Montiel Olea, Stock and Watson (2021) weak instrument robust confidence intervals
- Ray (2019) framework predictions
 - \uparrow debt level/maturity: \uparrow yield curve $\xrightarrow{\text{IS curve}}$ recession

Model

Asset price block impulse responses

Figure: Light and dark blue shaded regions are 68% and 90% confidence bands respectively.

Macro block impulse responses - II

Figure: Maturity factor

Figure: Light and dark blue shaded regions are 68% and 90% confidence bands respectively.

Debt dynamics

$$Debt_{t} = \underbrace{\sum_{i \leq t} \text{Debt supply}_{i}}_{Inflow} - \underbrace{\sum_{i \leq t} \text{Debt matured}_{i}}_{Outflow}$$
(10)

$$Debt_{t} - Debt_{t-1} = \underbrace{(\text{Debt supply}_{t} - \text{Debt supply}_{t-1})}_{f(Y_{t})} - \underbrace{(\text{Debt matured}_{t} - \text{Debt matured}_{t-1})}_{Deterministic}$$
(11)

$$Debt_t - E_{t-1}Debt_t = (Debt \ supply_t - E_{t-1}Debt \ supply_t) - \underbrace{(Debt \ matured_t - E_{t-1}Debt \ matured_t)}_{=0} (12)$$

back

Debt dynamics

- CRSP - Total Debt (FRB) - Total marketable debt (FRB)

Issuance frequency

Trea	sury Issuance Cale	endar
Nomina	al Securities	Frequency
<u> </u>	4-week bills	Weekly
	8-week bills	Weekly
	13-week bills	Weekly
	17-week bills	Weekly
	26-week bills	Weekly
÷	52-week bills	Every 4 weeks
•	2-year notes	Monthly
•	3-year notes	Monthly
•	5-year notes	Monthly
•	7-year notes	Monthly
•	10-year notes	Ouarterly, with 2 re-openings
•	20-year bonds	Quarterly, with 2 re-openings
•	30-year bonds	Quarterly, with 2 re-openings
Treasur	v Inflation-Protected Securities (TI	PS)
•	5-year TIPS	Semi-annual, with 1 re-opening
	10-year TIPS	Semi-annual, with 2 re-openings
•	30-year TIPS	Annual, with 1 re-opening
Floating	r Rate Notes (FRNs)	
•	2-year FRN	Quarterly, with 2 re-openings

10

Figure: Source: US Treasury website

Auction calendar example

Tentative Auction Schedule of U.S. Treasury Securities						
Security Type	Type Announcement Date Auction Date			Settlement Date		
3-Year NOTE		Wednesday, August 02, 2023	Tuesday, August 08, 2023	Tuesday, August 15, 2023		
10-Year NOTE		Wednesday, August 02, 2023	Wednesday, August 09, 2023	Tuesday, August 15, 2023		
30-Year BOND		Wednesday, August 02, 2023	Thursday, August 10, 2023	Tuesday, August 15, 2023		
13-Week BILL		Thursday, August 03, 2023	Monday, August 07, 2023	Thursday, August 10, 2023		
26-Week BILL		Thursday, August 03, 2023	Monday, August 07, 2023	Thursday, August 10, 2023		
52-Week BILL		Thursday, August 03, 2023	Tuesday, August 08, 2023	Thursday, August 10, 2023		
17-Week BILL		Tuesday, August 08, 2023	Wednesday, August 09, 2023	Tuesday, August 15, 2023		
4-Week BILL		Tuesday, August 08, 2023	Thursday, August 10, 2023	Tuesday, August 15, 2023		
8-Week BILL		Tuesday, August 08, 2023	Thursday, August 10, 2023	Tuesday, August 15, 2023		
13-Week BILL		Thursday, August 10, 2023	Monday, August 14, 2023	Thursday, August 17, 2023		
26-Week BILL		Thursday, August 10, 2023	Monday, August 14, 2023	Thursday, August 17, 2023		
17-Week BILL		Tuesday, August 15, 2023	Wednesday, August 16, 2023	Tuesday, August 22, 2023		
4-Week BILL		Tuesday, August 15, 2023	Thursday, August 17, 2023	Tuesday, August 22, 2023		
8-Week BILL		Tuesday, August 15, 2023	Thursday, August 17, 2023	Tuesday, August 22, 2023		
13-Week BILL		Thursday, August 17, 2023	Monday, August 21, 2023	Thursday, August 24, 2023		
26-Week BILL		Thursday, August 17, 2023	Monday, August 21, 2023	Thursday, August 24, 2023		
2-Year FRN	R	Thursday, August 17, 2023	Wednesday, August 23, 2023	Friday, August 25, 2023		
20-Year BOND		Thursday, August 17, 2023	Wednesday, August 23, 2023	Thursday, August 31, 2023		
30-Year TIPS	RT	Thursday, August 17, 2023	Thursday, August 24, 2023	Thursday, August 31, 2023		

Figure: Source: TreasuryDirect (US Treasury)

OFR example

May 6, 2015

(Archived Content)

WASHINGTON – The U.S. Department of the Treasury is offering \$64 billion of Treasury securities to refund approximately \$67 billion of Treasury notes maturing on May 15, 2015. This will result in a debt pay down of approximately \$3 billion. The securities are:

- A 3-year note in the amount of \$24 billion, maturing May 15, 2018;
- A 10-year note in the amount of \$24 billion, maturing May 15, 2025; and
- A 30-year bond in the amount of \$16 billion, maturing May 15, 2045.

The 3-year note will be auctioned on a yield basis at 1:00 p.m. ET on Tuesday, May 12, 2015. The 10year note will be auctioned on a yield basis at 1:00 p.m. ET on Wednesday, May 13, 2015. The 30-year bond will be auctioned on a yield basis at 1:00 p.m. ET on Thursday, May 14, 2015. All of these auctions will settle on Friday,May 15, 2015.

The balance of Treasury financing requirements will be met with the weekly bill auctions, cash management bills, the monthly note and bond auctions, the May 10-year Treasury Inflation Protected Security (TIPS) reopening auction, the June 30-year TIPS reopening auction, the July 10year TIPS auction, and the regular monthly 2-year Floating Rate Note (FRN) auctions.

Figure: Source: US Treasury website

Inter example

Embargoed Until 11:00 A.M. July 23, 2015

CONTACT: Treasury Securities Services 202-504-3550

TREASURY OFFERING ANNOUNCEMENT '

Term and Type of Security	2-Year Note
Offering Amount	\$26,000,000,000
Currently Outstanding	\$0
CUSIP Number	912828XP0
Auction Date	July 28, 2015
Original Issue Date	July 31, 2015
Issue Date	July 31, 2015
Maturity Date	July 31, 2017
Dated Date	July 31, 2015
Series	BD-2017
Yield	Determined at Auction
Interest Rate	Determined at Auction
Interest Payment Dates	January 31 and July 31
Accrued Interest from 07/31/2015 to 07/31/2015	None
Premium or Discount	Determined at Auction
Minimum Amount Required for STRIPS	\$100
Corpus CUSIP Number	912820W37
Additional TINT(s) Due Date(s) and	None
CUSIP Number(s)	None
Maximum Award	\$9,100,000,000
Maximum Recognized Bid at a Single Vield	\$9,100,000,000
NLP Reporting Threshold	\$9 100 000 000
NLP Exclusion Amount	\$9,100,000,000
Minimum Bid Amount and Multiples	\$100
Competitive Bid Yield Increments	0.001%
Maximum Noncompetitive Award	\$5,000,000
Eligible for Holding in TreasuryDirect _®	Yes
Estimated Amount of Maturing Coupon Securities Held by the Public	\$73,213,000,000
Maturing Date	July 31, 2015
SOMA Holdings Maturing	\$1,000,000
SOMA Amounts Included in Offering Amount	No
FIMA Amounts Included in Offering Amount '	Yes
Noncompetitive Closing Time	12:00 Noon ET
Competitive Closing Time	1:00 n.m. ET

Figure: Source: TreasuryDirect (US Treasury)

Intraday movement in futures price

Figure: Intraday movements in futures price on 2009-04-23.

Kernel density of futures price changes

- ► Announcement days → supply shocks
- ▶ No Announcement days → no major economic announcements
 - Price changes from 12:20am-12:50am (EST) for randomly chosen dates in sample

b14/14

Fatter tails on announcement days driven by major jumps in futures prices

Common factors

- ▶ Use intraday price changes D_t to estimate level and maturity shocks → factors
- Correlation matrix of D_t

	f_t^{3m}	f_t^{2Y}	f_t^{5Y}	f_t^{10Y}	f_t^{30Y}
f_t^{3m}	1				
f_t^{2Y}	0.42	1			
f_t^{5Y}	0.4	0.84	1		
f_{t}^{10Y}	0.34	0.72	0.89	1	
f_t^{30Y}	0.28	0.53	0.67	0.81	1

D_t possibly driven by few common factors

$$\frac{D_t}{5\times 1} = \frac{N'}{5\times k} \underbrace{F_t}_{k\times 1} + \epsilon_t \tag{13}$$

H_0 : No of factors (k) =	Wald stat	χ^2 crit value	p-value	degree of freedom
0	103.35	18.31	0	10
1	19.11	11.07	0.002	5
2	1.06	3.84	0.30	1

Table: Cragg and Donald (1997) test. $H_0: k_0 \text{ vs } H_1: k > k_0$.

Summary statistics of futures price changes

Futures price changes	$Mean(imes 10^{-5})$	Median	$SD(\times 10^{-4})$	Kurtosis	Ν
Panel A: Ann days					
f_t^{3m}	0.6	0	0.8	3.19	331
f_t^{2Y}	-0.2	0	2.8	3.24	331
f_t^{5Y}	-6	0	9.1	2.72	331
f_t^{10Y}	-17	0	19	3.92	331
f_t^{30Y}	-22	0	33	4.96	331
Panel B: No ann days					
f_t^{3m}	-0.3	0	0.6	3.01	331
f_t^{2Y}	0.2	0	1.9	4.33	331
f_t^{5Y}	3	0	5.7	5.79	331
f_t^{10Y}	3	0	12	4.96	331
$\tilde{f_t^{30Y}}$	-1.5	0	22	4.67	331

back

Kernel density of futures price changes

back

	PC1	PC2	PC3	PC4	PC5
Share of var explained	0.69	0.16	0.09	0.03	0.01
Cumulative share of var explained	0.69	0.85	0.95	0.99	1

Table: Share of variance explained by principal components (PCs).

	2-yr	5-yr	10-yr	30-yr	3-month Eud
PC1	-0.86	-0.94	-0.94	-0.81	-0.53
PC2	0.07	-0.08	-0.20	-0.28	0.83

Table: Matrix of factor loadings Λ' .

Subset inter example I

Department of the Treasury . Bureau of the Fiscal Service

Embargoed Until 11:00 A.M. July 23, 2015

CONTACT: Treasury Securities Services 202-504-3550

TREASURY OFFERING ANNOUNCEMENT '

Term and Type of Security	2-Year Note
Offering Amount	\$26,000,000,000
Currently Outstanding	\$0
CUSIP Number	912828XP0
Auction Date	July 28, 2015
Original Issue Date	July 31, 2015
Issue Date	July 31, 2015
Maturity Date	July 31, 2017
Dated Date	July 31, 2015
Series	BD-2017
Yield	Determined at Auction
Interest Rate	Determined at Auction
Interest Payment Dates	January 31 and July 31
Accrued Interest from 07/31/2015 to 07/31/2015	None
Premium or Discount	Determined at Auction
Minimum Amount Required for STRIPS	\$100
Corpus CUSIP Number	912820W37
Additional TINT(s) Due Date(s) and	None
CUSIP Number(s)	None
Maximum Amard	\$9,100,000,000
Maximum Researched Bid at a finale Vield	\$9,100,000,000
Maximum Recognized Bld at a Single Tietd	\$9,100,000,000
NLP Reporting Threshold	\$9,100,000,000
NET Exclusion Amount	30
Minimum Bid Amount and Multiples	\$100
Competitive Bid Yield Increments ¹	0.001%
Maximum Noncompetitive Award	\$5,000,000
Eligible for Holding in TreasuryDirect _®	Yes
Estimated Amount of Maturing Coupon Securities Held by the Public	\$73,213,000,000
Maturing Date	July 31, 2015
SOMA Holdings Maturing	\$1,000,000
SOMA Amounts Included in Offering Amount	No
FIMA Amounts Included in Offering Amount 3	Yes
Noncompetitive Closing Time	12:00 Noon ET
Competitive Closing Time	1:00 p.m. ET

Figure: Source: TreasuryDirect (US Treasury)

Subset inter example II

OFRs with no significant information on either debt level or debt maturity.

- Release on 2007-10-31 only contains a section announcing the conversion to the TAAPS automatic system for the auctions, and another section mentioning a lowering of the minimum purchase amounts for Treasury auctions.
- Releases that mention no change in upcoming announcements.

"Based on recent forecasts, Treasury is announcing **no increase** to nominal coupon and FRN auction sizes over the upcoming quarter, and currently anticipates no further changes in issuance sizes for nominal coupon and FRNs for the remainder of the 2019 calendar year. Treasury plans to address any seasonal or unexpected variations in borrowing needs over the next quarter through changes in regular bill auction sizes and/or cash management bills."

- OFR release on 2019-07-31

Subset level example

A change in total level of debt to be issued in the near future

Buyback announcements with no information on the maturity of buying

"The fiscal year 2008 outlook, even absent the enactment of a fiscal stimulus package, **potentially calls for a higher net marketable borrowing requirement** resulting from larger base line deficit projections and potential reductions in issuance of non-marketable securities to states and local municipalities. Consequently, in addition to expected increases in bill issuance, **Treasury may raise nominal coupon issuance in the coming months** to address these larger net marketable borrowing needs"

- OFR release on 2008-01-30

back

Subset mat example

- Change in issuance as Treasury plans to change the maturity of outstanding debt
- Introduction or discontinuity of maturity points
- Change to existing auction setup frequency of auctions at a particular maturity, introducing re-openings for certain bonds, etc.

" Our first announcement concerns reductions in the issuance sizes of longer-maturity debt. This reduces our funding, takes into consideration the longer-term fiscal forecasts, and helps us manage the average maturity of our debt. In this regard, we plan to reduce the issuance of 5-year, 10-year and 30-year debt, both fixed rate and inflation-indexed securities. Consistent with the Committees recommendations, we will maintain the regular monthly auctions of our two-year notes at the present time. We plan, however, to cut modestly the size of individual auctions of two-year notes."

- OFR release on 2000-02-02

Moment condition

$$\mathbb{E}[g(Y_l, \theta_0)] = 0, \quad l \in \{inter, level, mat\}$$
(14)

where
$$g(Y_l, \theta_0) = \left[vech(V(\tilde{F}_l)) - vech(U'V(F_l)U) \right], vech \equiv vector-half$$
 (15)

back

Summary statistics of factors

Factors	Mean	Modian	SD	N	Correlations	
T actors	Wiedii	Wedian	50	IN IN	s _{M,t}	$s_{L,t}$
Maturity factor $s_{M,t}$	0	-0.05	1	331	1	
Level factor $s_{L,t}$	0	-0.06	1	331	0	1

Table: Summary statistics of factors

back

Factors aggregated to monthly

Figure: Maturity factor

Figure: Level factor

E. et euro	M	Maallan	<u> </u>	NI	Correlations	
Factors	iviean	wedian	50	IN	S_t^{mat}	S_t^{level}
Maturity factor S_t^{mat}	0	0	1.00	316	1	
Level factor S_t^{level}	0	0	1.01	316	0.09	1

Table: Summary statistics of monthly aggregated factors

Autocorrelation function

Figure: Auto-correlation function for maturity and level factor. Red lines are critical values at 5% level of significance given by $\pm 2/\sqrt{N}$

Granger causality test

Granger causality test (lag order=12, differenced wherever needed)

- H₀ : Lagged values of X are **not** useful to predict shocks
- H_A : Lagged values of X are useful to predict shocks

Variable (X)	p-value			
	Level	Maturity		
Output growth	0.99	0.70		
PCE inflation	0.44	0.27		
Unemployment rate	0.99	0.99		
Fed Funds rate	0.01	0.01		
S&P 500 diff	0.19	0.87		

back

Correlation with other proxies

(Pearson) correlation coefficient with other proxies

$$- H_0: \rho = 0$$
$$- H_A: \rho \neq 0$$

Shock	Source	Level		Maturity	
		ρ	p-value	ρ	p-value
Monetary policy	JK (2021)	0.14	0.02	0.17	0.01
Information	JK (2021)	0.12	0.07	-0.04	0.52
Oil supply	Kanzig (2021)	0.001	0.98	0.04	0.47
Oil supply news	Kanzig (2021)	-0.05	0.40	-0.05	0.35
Uncertainty	Baker, Bloom and Davies (2016)	0.07	0.21	0.04	0.43
Govt exp	Ramey (2011)	0.03	0.81	-0.14	0.22
Productivity news	Barsky and Sims (2011)	0.14	0.32	-0.11	0.46

Factor properties

State dependence on risk aversion

- Dep variable: y^τ_t
- ▶ High RA $\rightarrow RA_t >$ median (RA_t). RA_t from Bekaert, Engstrom and Xu (2022).
- Split sample into two based on RA_t. Run for each subsample

Figure: Level factor

Figure: Maturity factor

State dependence on risk aversion

- Dep variable: p_t^{τ}
- ▶ High RA $\rightarrow RA_t$ > median (RA_t). RA_t from Bekaert, Engstrom and Xu (2022).
- Split sample into two based on RA_t. Run for each subsample

State dependence on risk aversion

- Dep variable: $r_{t,t+1}^{\tau}$
- ▶ High RA $\rightarrow RA_t$ > median (RA_t). RA_t from Bekaert, Engstrom and Xu (2022).
- Split sample into two based on RA_t. Run for each subsample

SVAR-IV details

Reduced form VAR(p)

$$Y_{t} = A_{1}Y_{t-1} + A_{2}Y_{t-2} + \dots + A_{p}Y_{t-p} + \eta_{t}, \quad Var(\eta_{t}) = \Sigma$$
(16)

$$\eta_t = \Theta_0 \varepsilon_t, \quad V(\varepsilon_t) = diag(\sigma_1^2, \sigma_2^2, ..., \sigma_n^2)$$
(17)

MA representation in terms of structural shocks

$$Y_t = \sum_{k=0}^{\infty} C_k(A) \Theta_0 \varepsilon_{t-k}$$
(18)

Impulse response to a variable i at horizon t + k due to a unit change in $\varepsilon_{1,t}$

$$\lambda_{k,i} = \partial Y_{i,t+k} / \partial \varepsilon_{1,t} = e_i' C_k(A) \Theta_{0,1}$$
⁽¹⁹⁾

To estimate $\Theta_{0,1}$, use factor s_t and relevance and exogeneity conditions to write

$$E(s_t\eta_t) = \alpha \Theta_{0,1}, \quad E(s_t\eta_{1,t}) = \alpha \Theta_{0,11}$$
(20)

Under the normalisation $\Theta_{0,11} = x$.

$$\Theta_{0,1} = [x; \tilde{\phi}_{0}.x]', \text{ where } \tilde{\phi}_{0} = \frac{E(s_{t}\eta_{t})}{E(s_{t}\eta_{1,t})}$$
(21)

I set x = 0.01 (pp)

First-stage tests for instrument relevance

Test type	Test statistic		Critical value
	Level	Maturity	
Robust F-test	2.72	1.70	23.10 ($lpha = 5\%, au = 10\%$)
MSW Wald test	5.57	3.95	$0.99\;(\chi^2_{1,1-0.68}) 2.71\;(\chi^2_{1,1-0.90})$

Table: Tests for instrument relevance.

- Null hypothesis for the robust F -test (Olea and Pflueger, 2013) is the Nagar bias exceeds $\tau = 10\%$ of a worst case benchmark, which corresponds to presence of weak instruments
- MSW Wald test (Montiel Olea, Stock and Watson, 2021) tests the null hypothesis that $E(s_t\eta_{1,t}) = 0$, that is, the instrument relevance condition does not hold

back