How Scary is the Risk of Automation? Evidence from a Large Scale Survey Experiment

Maria Cattaneo¹

Christian Gschwendt² Stefan C. Wolter³

¹SKBF Aarau ²University of Bern ³University of Bern, SKBF, CESifo, IZA

> EEA Conference 2024 August 29, 2024

Motivation

- Pre-Generative AI digital transformation: (Katz & Murphy, 1992; Autor et al., 2003)
 - Substitution of low-skilled and routine workers
 - Complementarity with high-skilled and non-routine cognitive workers
- Generative AI: Negative effects on high-skilled cognitive workers (e.g., Eloundou

et al., 2023; Felten et al., 2023; Hui et al., 2023)

- Workers can respond to labor demand shifts by
 - retraining & upskilling (Di Giacomo & Lerch, 2023; Golin & Rauh, 2022; Hess et al., 2023; Lergetporer et al., 2023)
 - adjusting their occupational choice (Goller et al., 2023)
- $\rightarrow\,$ What is the willingness to pay of individuals to reduce their exposure to automation risk?

Summary

Research Question: What is the willingness to pay (WTP) of individuals to reduce their exposure to automation risk?

Empirical Strategy & Data: Discrete-choice experiment as part of a large-scale survey among 5,952 Swiss residents between 25 and 60

Findings:

- On average, individuals are willing to accept a 17% lower annual gross wage to work in a job with a 10 ppt. lower automation risk
- The WTP is even higher for female, old and risk-averse individuals and those with a secondary level of education or below

Discrete Choice Experiment

Survey respondents

- 1 are asked to imagine they now had a 40-year-old child
 - ➡ Random assignment of a daughter or son
- are presented with a choice set of two *career paths* Career paths vary in 4 *attributes*: highest education, hierarchical position, annual gross wage, and job automation risk
- 3 need to choose the preferred career path for their child

Discrete Choice Experiment

Example choice set:

Imagine you had a 40-year-old daughter today.

Which of the two career paths would you prefer for her, career path A or career path B?

	Career path A	Career path B	
Highest educational	University of applied	Apprenticeship certificate	
attainment	sciences degree		
Hierarchical position	Low (without	Low (without	
Fierarchical position	management position)	management position)	
Annual gross wage (CHF)	100,000	130,000	
Job automation risk	30%	45%	

Attributes & Levels

Discrete Choice Experiment

Why ask about their hypothetical 40-year-old child?

- 1 Hypothetical: Comparability
- 2 40-year-old: Close to career peak
- 3 Their child: Parental concern
- Every respondent completes 7 varying choice sets
- Applying a mixed logit model, respondent choices are used to approximate their preferences for career path attributes

b

Results

Mixed logit estimates and willingness to pay for career path attributes

	Coefficients	WTP
Lower automation risk (10 ppt.)	0.787***	15333.1***
	(0.0243)	(366.8)
University degree	-0.560***	-10910.1***
	(0.0417)	(912.3)
UAS degree	-0.0301	-586.6
	(0.0325)	(638.6)
Top management position	0.0670**	1305.9**
	(0.0253)	(485.2)
Annual gross wage (10,000 CHF)	0.513***	
	(0.0128)	
Ν	83,328	83,328

* p < 0.05, ** p < 0.01, *** p < 0.001

Interactions

Results

	Full Sample
Male	-686.4*
Male	(333.7)
Age: 35 - 49	717.8
3	(427.7)
Age: 50+	2102.0***
	(482.1)
Below Secondary Degree	2367.7**
	(814.0)
Secondary Degree	1953.6***
	(353.3)
Parent	-433.6
	(358.1)
Trait: Risk-seeking	-989.5**
	(339.6)
Constant	15943.8***
	(527.1)
N	5948

Individual determinants of WTP for a lower automation risk

* p < 0.05, ** p < 0.01, *** p < 0.001

Subsamples: Child gender

Distribution

Gschwendt (Bern)

Results: WTP for lower automation risk with interactions

	(1)	(2)
Lower automation risk (10 ppt.)	15305.5***	13879.6***
	(371.7)	(659.5)
Lower automation risk $ imes$ University Degree		2439.8***
		(550.5)
Lower automation risk $ imes$ UAS Degree		71.91
		(467.1)
Lower automation risk \times Top Management Position		776.9*
		(302.6)
N	83,328	83,328

* p < 0.05, ** p < 0.01, *** p < 0.001

Conclusions

- Job loss due to automation technology is considered a substantial threat
 - ightarrow Typically implies diminished opportunities to secure similar positions
- Possible manifestations of individuals' identified WTP:
 - Switching to more secure occupations with lower pay
 - Investing time and money to train for a more secure occupation
 - Saving more to allow for early retirement, thus reducing the risk of future job automation
 - Preferences for policies and regulations to protect against job automation, even if economically disadvantageous

Thank you!

Contact: christian.gschwendt@unibe.ch

How Scary is Automation Risk?

Rotterdam, August 2024

Literature

Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. The Quarterly journal of economics, 118(4), 1279-1333.

Di Giacomo, G., & Lerch, B. (2023). Automation and Human Capital Adjustment: The Effect of Robots on College Enrollment. Journal of Human Resources.

Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2023). Gpts are gpts: An early look at the labor market impact potential of large language models. arXiv preprint arXiv:2303.10130.

Felten, E. W., Raj, M., & Seamans, R. (2023). Occupational heterogeneity in exposure to generative ai. Available at SSRN 4414065.

Golin, M., & Rauh, C. (2022). The Impact of Fear of Automation.

Goller, D., Gschwendt C., & Wolter S., 2023. "This Time It's Different" – Generative Artificial Intelligence and Occupational Choice. *Discussion Paper* No. 16638. Institute of Labor Economics (IZA).

Hess, P., Janssen, S., & Leber, U. (2023). The effect of automation technology on workerså training participation. Economics of Education Review, 96, 102438.

Hui, X., Reshef, O., & Zhou, L. (2023). The Short-Term Effects of Generative Artificial Intelligence on Employment: Evidence from an Online Labor Market. Available at SSRN 4527336.

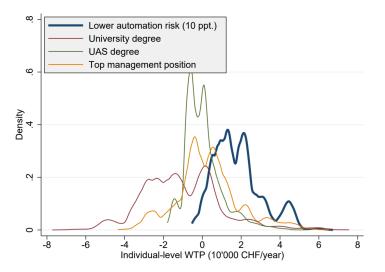
Katz, L. F., & Murphy, K. M. (1992). Changes in relative wages, 1963\u00e31987: supply and demand factors. The quarterly journal of economics, 107(1), 35-78.

DCE: Attribute-level universe Back

	Attribute	Levels
wage _a	Annual gross wage (CHF)	75'000, 100'000, 115'000, 130'000
		- University degree;
edu _a	Highest educational attainment	 university of applied sciences degree; apprenticeship certificate
posa	Hierarchical position	 Low (without management position); high (top management)
arisk _a	Job automation risk	30%, 45%, 60%
-	Job satisfaction	Satisfied
-	Weekly working time	42 hours

Results

Individual determinants of WTP for a lower automation risk


UNIVERSITÄT BERN

b

	Full sample	Daughter	Son
	i uli sample	subsample	subsample
Male	-686.4*	-457.7	-873.9
	(333.7)	(468.1)	(475.5)
35–49	717.8	1131.3	291.9
	(427.7)	(610.7)	(599.7)
50+	2102.0***	2621.3***	1641.3*
	(482.1)	(690.3)	(673.6)
Below secondary degree	2367.7**	1813.3	2860.3*
	(814.0)	(1114.0)	(1188.5)
Secondary degree	1953.6***	1858.4***	2011.5***
	(353.3)	(492.3)	(507.8)
Swiss citizen	1244.4**	370.9	2102.4***
	(384.3)	(560.0)	(530.9)
Parent	-433.6	-497.9	-435.9
	(358.1)	(512.9)	(501.4)
Trait: risk-seeking	-989.5**	-832.5	-1178.9*
	(339.6)	(481.4)	(480.6)
Constant	15943.8***	15783.0***	16160.1***
	(527.1)	(746.7)	(747.5)
Ν	5948	2975	2973

Results

Individual determinants of WTP for a lower automation risk

b

UNIVERSITÄT

BERN