

FACULTY OF ECONOMICS AND BUSINESS

Directed search on the marriage market EEA-ESEM 2024

Wietse Leleu 27/08/2024

Introduction Model 0000

Data

Estimation

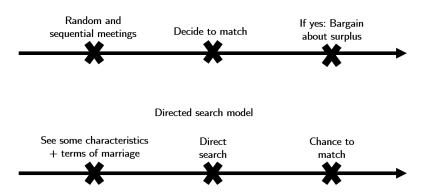
Results

Introduction

Person of your dreams \Leftrightarrow Second best option Smaller share of resources \Leftrightarrow Higher share of resources Low matching probability \Leftrightarrow High matching probability

Introduction	Model	Data	Estimation	Results	Conclusion
0000	00000000	0	000	000	0

Introduction


In general

- Static two-sided directed search model applied to marriage market
- Trade-off between
 - Partner characteristics (i.e., race and education)
 - Marriage terms (i.e., labor supply division)
 - Matching probability
- Unravel male and female preferences (given observed matches)
 - Variation in gender ratios across regions

Directed search vs. Traditional random search

Traditional (random) search model

Introduction	Model	Data	Estimation	Results	Conclusion
0000	00000000	0	000	000	0

Introduction

Contributions

- Literature applying directed search to marriage market
- Modeling advantages compared to random search model
 - NTU: individual-specific preferences separately identified
 - Modeled behavior is more efficient and realistic
 - Including market tightness
- Terms of marriage = Labor supply division
 - Individuals can commit to certain terms,
 ⇒ e.g., man works FT, woman works FT

Chade, Eeckhout and Smith (2017)

"Consider for example the market for executives. In the random search framework, executives must randomly be paired with janitor jobs, to only reject those."

Introduction	Model	Data	Estimation	Results	Conclusion
0000	●00000000	o	000	000	O
Model					

1. Individuals

- Each male (female) is characterized by several observed traits, summarized by a type m (f), where m (f) $\in \{1, 2, ..., M$ (F) $\}$
- Let im stand for the i-th member of type m
- R possibilities to specify terms of marriage, where one particular possibility will be $r \in \{1,2,...,R\}$
- Every man (woman) makes a discrete choice to search in one of the $F \times R$ ($M \times R$) markets, within his (her) own region Details
 - Terms are determined and fixed once market is chosen
 - No (re)negotiation
 - Marriage contract

Introduction	Model	Data	Estimation	Results	Conclusion
0000	⊙●○○○○○○○	o	000	000	O
Model					

1. Individuals

- Expected utility of an m-type man searching for an f-type woman with marriage terms r depends on
 - Matching probability P_m^{fr}
 - Deterministic part of utility conditional on matching μ_m^{fr}
 - Individual-specific preference term ϵ_{im}^{fr}

$$E(U_{im}^{fr}) = P_m^{fr} \cdot e^{\mu_m^{fr} + \epsilon_{im}^{fr}}$$
(1)
$$\ln(E(U_{im}^{fr})) = \mu_m^{fr} + \ln(P_m^{fr}) + \epsilon_{im}^{fr}$$
(2)

• Utility of not matching = 0

Introduction	Model	Data	Estimation	Results	Conclusion
0000	00000000	o	000	000	O
Model					

1. Individuals

• Man i of the m-type men decides to search on the $\{f,r\}$ -market when

$$\{f, r\} = \arg\max_{f', r'} \mu_m^{f'r'} + \ln(P_m^{f'r'}) + \epsilon_{im}^{f'r'}$$
(3)

• ϵ_{im}^{fr} 's are i.i.d. type I extreme value errors

$$\Pr(f, r|m) = \phi_m^{fr} = \frac{\exp\left(\mu_m^{fr} + \ln[P_m^{fr}]\right)}{\sum_{f' \ r'} \exp\left(\mu_m^{f'r'} + \ln[P_m^{f'r'}]\right)}$$
(4)

Introduction	Model	Data	Estimation	Results	Conclusion
0000	○○○●○○○○○	o	000	000	O
Model					

2. Matching

- $X_{mfr} =$ Number of matches in $\{m, f, r\}$ -market
 - Matching function
 - Inputs = Number of searching men and searching women
 - Ouput = Number of matches

• $\phi_m^{fr}N_m$ and $\phi_f^{mr}N_f$ = Number of searching men and women

- ϕ_m^{fr} and ϕ_f^{mr} = Searching probabilities
- N_m and $ec{N}_f =$ Number of m-type men and f-type women

$$X_{mfr}(\phi_m^{fr}N_m, \phi_f^{mr}N_f) = A[(\phi_m^{fr}N_m)^{\rho} + (\phi_f^{mr}N_f)^{\rho}]^{1/\rho}$$
(5)

- A = Matching efficiency/Search frictions
- $\rho =$ Substitution parameter

Introduction	Model	Data	Estimation	Results	Conclusion
0000	00000000	0	000	000	0

Substitution parameter ρ

- $\rho \le 1 \Rightarrow \rho < 0$
- If $0 < \rho \leq 1$

Model

- "Too many" matches (i.e., more matches than available partners)
- Not possible
- If $\rho \rightarrow 0$, CES function = Cobb-Douglas
 - Gender ratio drops out of matching prob.
 - Not desirable

Introduction	Model	Data	Estimation	Results	Conclusion
0000	ooooo●ooo	o	000	000	O
Model					

2. Matching

• By assuming that all m-type men searching in the same market have the same matching probabilities, P_m^{fr} can be written as

$$P_{m}^{fr} = \frac{X_{mfr}}{\phi_{m}^{fr}N_{m}} = \frac{A[(\phi_{m}^{fr}N_{m})^{\rho} + (\phi_{f}^{mr}N_{f})^{\rho}]^{1/\rho}}{\phi_{m}^{fr}N_{m}} = A\left[1 + \left(\frac{\phi_{f}^{mr}N_{f}}{\phi_{m}^{fr}N_{m}}\right)^{\rho}\right]^{1/\rho}$$
(6)

• $\ln[P_m^{fr}]$ enters $\phi_m^{fr} =$ Influence of gender ratio on search decisions

Introduction	Model	Data	Estimation	Results	Conclusion
0000	oooooo●oo	O	000	000	O
Model					

3. Equilibrium

- Whether or not searching on a market \Rightarrow Matching probabilities
- Matching probabilities \Rightarrow Search probabilities
 - Amount of competitors on particular market
 - Amount of potential partners on particular market
- Search probabilities become

$$\phi_m^{fr} = \frac{\exp\left(\mu_m^{fr} + \ln[P_m^{fr}(\phi_m^{fr}, \phi_f^{mr})]\right)}{\sum_{f' \ r'} \exp\left(\mu_m^{f'r'} + \ln\left[P_m^{f'r'}(\phi_m^{f'r'}, \phi_f^{m'r'})\right]\right)}$$
(7)

• Equilibrium obtained by solving for the fixed point defined by Equation 7

Introduction	Model	Data	Estimation	Results	Conclusion
0000	000000000	0	000	000	0

4. Identification

• Two marriage markets: $\{m, f, r\}$ and $\{m, f, r'\}$

Theorem

Take $G_{mf} = N_m/N_f$. If $\rho < 0$ and $\mu_f^{mr'} - \mu_f^{mr} > \mu_m^{fr'} - \mu_m^{fr}$, it holds that:

$$\begin{array}{ll} i) & \displaystyle \frac{\phi_{f}^{mr}}{\phi_{m}^{fr}} < \displaystyle \frac{\phi_{f}^{mr'}}{\phi_{m}^{fr'}}, \\ ii) & \displaystyle P_{f}^{mr} > P_{f}^{mr'} \text{ and } P_{m}^{fr} < P_{m}^{fr'}, \text{ and} \\ iii) & \displaystyle \frac{\partial(\phi_{f}^{mr'}/\phi_{f}^{mr})}{\partial G_{mf}} > 0 \text{ and } \displaystyle \frac{\partial(\phi_{m}^{fr'}/\phi_{m}^{fr})}{\partial G_{mf}} > 0. \end{array}$$

Introduction	Model	Data	Estimation	Results	Conclusion
0000	oooooooo●	o	000	000	O
Model					

4. Identification

Elasticity of the probability of matching wrt the gender ratio:

•
$$G_{mf} = 1$$
, $\phi_m^{fr} = \phi_f^{mr} = \phi_m^{fr'} = 0.5$, $\phi_f^{mr'} = 0.6$, $\rho = -2$

$$\frac{\partial \ln P_m^{fr}}{\partial G_{mf}} = -\left[\left(\frac{\phi_m^{fr}}{\phi_j^{mr}}\right)^{\rho} G_{mf}^{\rho+1} + G_{mf}\right]^{-1} = -0.5 < -0.41 = -\left[\left(\frac{\phi_m^{fr'}}{\phi_j^{mr'}}\right)^{\rho} G_{mf}^{\rho+1} + G_{mf}\right]^{-1} = \frac{\partial \ln P_m^{fr'}}{\partial G_{mf}}$$

$$\frac{\partial \ln P_{f}^{mr}}{\partial G_{mf}} = \left[\left(\frac{\phi_{f}^{mr}}{\phi_{m}^{f}} \right)^{\rho} G_{mf}^{-\rho+1} + G_{mf} \right]^{-1} = 0.5 < 0.59 = \left[\left(\frac{\phi_{f}^{mr'}}{\phi_{m}^{fr'}} \right)^{\rho} G_{mf}^{-\rho+1} + G_{mf} \right]^{-1} = \frac{\partial \ln P_{f}^{mr'}}{\partial G_{mf}}$$

Dataset individuals

- ACS Public Use Microdata Sample (PUMS): 5y-estimates
 - 2015-2019
- Sample size (25-65 years old + married or cohabiting)
 - (Heterosexual) Couples: 2 288 182
 - Singles: 1 775 807

Gender ratios

- ACS: Sample gender ratios
- 51 US regions (50 states + District of Columbia)

Descriptive statistics

Matching distributions

Introduction	Model	Data	Estimation	Results	Conclusion
0000	00000000	0	•00	000	0

Estimation

Utility functions

$$\mu_m^{fr} = \alpha_1^m S E_{mf} + \alpha_2^m P E_f + \alpha_3^m S R_{mf} + \sum_{j=1}^4 I(PR_f = j)\alpha_{4j}^m + \sum_{k=1}^9 I(ToM_{mf} = k)\alpha_{5k}^m$$
(8)

$$\mu_f^{mr} = \alpha_1^f SE_{mf} + \alpha_2^f PE_m + \alpha_3^f SR_{mf} + \sum_{j=1}^4 I(PR_m = j)\alpha_{4j}^f + \sum_{k=1}^9 I(ToM_{mf} = k)\alpha_{5k}^f$$
(9)

with

- $SE \in \{0,1\} \Rightarrow$ Same education
- $PE \Rightarrow$ Partner's education
- $SR \in \{0,1\} \Rightarrow$ Same race
- $PR \Rightarrow$ Partner's race
- $ToM \Rightarrow$ Terms of marriage: labor supply division

Introduction	Model	Data	Estimation	Results	Conclusion
0000	00000000	0	000	000	0

Estimation

Labor supply division

		Man	
Woman	HW	PT	FT
HW	{HW,HW}	$\{HW, PT\}$	{HW,FT}
ΡT	{PT,HW}	$\{PT,PT\}$	$\{PT,FT\}$
FT	$\{FT,HW\}$	$\{FT,PT\}$	$\{FT,FT\}$

Introduction	Model	Data	Estimation	Results	Conclusion
0000	00000000	0	00●	000	0

Estimation

Likelihood function

$$\mathcal{L}_{if}(\theta) = I(y_{if} = 1) \left[\sum_{m} \sum_{r} I(d_{if} = \{m, r\}) (\ln[\phi_f^{mr}(\theta)] + \ln[P_f^{mr}(\theta)]) \right] + I(y_{if} = 0) \ln \left[\sum_{m} \sum_{r} \phi_f^{mr}(\theta) \times (1 - P_f^{mr}(\theta)) \right]$$
(10)

with

• $\theta = \{\alpha, \rho, A\} \Rightarrow$ Needs to be estimated

- $y_{if} = 1 \Rightarrow i$ -th woman of type f is matched
- $d_{if} =$ Search decision; $s \in \{1, ..., 51\} =$ Regions

$$\hat{\theta} = \arg\max_{\theta} \left(\sum_{s} \sum_{f} \sum_{i=1}^{N_{f}^{s}} \mathcal{L}_{if}^{s}(\theta) + \sum_{s} \sum_{m} \sum_{i=1}^{N_{m}^{s}} \mathcal{L}_{im}^{s}(\theta) \right)$$
(11)

Introduction	Model	Data	Estimation	Results	Conclusion
0000	000000000	o	000	•00	O
Results					

Structural model estimates			
A. Matching parameters			
ho	-9.1472		
	(0.5496)		
A	0.9127		
	(0.0064)		
-log(<i>L</i>)	16462200		
Time	+/- 5 days		

Introd	uction
0000	

Data O Estimation

Results

Conclusion O

Results

Structural model estimates				
Preferences	B. Men	C. Women		
Same education (α_1^m)	0.5946	0.8589		
	(0.0045)	(0.0131)		
Partner's education (α_2^m)	0.0690	-0.1824		
· 2 /	(0.0093)	(0.0191)		
Same race (α_3^m)	2.3406	2.1509		
	(0.0228)	(0.1066)		
Partner White (α_{41}^m)	-1.2006	-1.1927		
· 41,	(0.5004)	(0.5016)		
Partner Black (α_{42}^m)	-4.1403	-3.8536		
· · · · · · · · · · · · · · · · · · ·	(0.5066)	(0.5093)		
Partner Hispanic (α_{A3}^m)	-2.1641	-2.0503		
	(0.5026)	(0.5106)		
Partner Other (α_{44}^m)	-0.5040	-0.9055		
(44)	(0.5193)	(0.5446)		

Introd	uction
0000	

Data O

.

Estimation 000 Results

Conclusion O

Results

Structural	model esti	mates
Preferences	B. Men	C. Women
HW,HW (α_{51}^m)	-2.0965	-2.4517
. 01.	(0.3365)	(0.3337)
HW,PT ($lpha_{52}^m$)	-2.9926	-3.4310
	(0.3964)	(0.3649)
HW,FT (α_{53}^m)	-0.5277	-1.0127
	(0.3352)	(0.3343)
PT,HW (α_{54}^m)	-3.2394	-3.3588
	(0.4675)	(0.4945)
PT,PT (α_{55}^m)	-3.2006	-3.2581
	(0.5988)	(0.6806)
PT,FT (α_{56}^m)	-0.9136	-1.0804
	(0.3351)	(0.3364)
FT,HW (α_{57}^m)	-2.2968	-1.8106
	(0.3348)	(0.3414)
FT,PT $(lpha_{58}^m)$	-2.7004	-2.0388
	(0.3335)	(0.3347)
FT,FT (α_{59}^m)	-0.0550	0.4358
	(0.3347)	(0.3336)

Introduction	N
0000	C

Data 0 Estimation 000

Results 000 Conclusion

Conclusion

To Do list

- Specification of utility function
- Interpretation of results
- Counterfactual analysis

Directed search - goods market <a>Return

- Random search: prices dictate how surplus is shared between buyers and sellers
 - Trading partners meet first and then negotiate prices
- Directed search: Also direct impact on meeting process
 - Sellers establish and publicly declare prices upfront
 - Buyers make informed decisions about which sellers they want to engage with
 - Allow buyers to direct search towards sellers who offer more attractive pricing
- Agents must not only consider terms of trade (i.e., prices), but also probability of trade

Transferable utility • Return

- Individuals can "bid" for their favorite partner by lowering own gain obtained from match such that partner can have a higher gain (Chiappori, 2017)
- Only joint gains from matching can be identified
 - Assume gender ratios do have impact on search behavior
 - Not clear in what way utilities are influenced by gender ratios because individuals might make transfers unobserved by econometrician

Appendix 00000000

Markets • Return

Descriptive statistics • Return

Descriptive statistics				
	Mean	SD	MIN	MAX
A. Couples				
Male age	47.59	10.92	25	65
Female age	45.65	10.92	25	65
Male has at least undergraduate degree	0.46	0.50	0	1
Female has at least undergraduate degree	0.52	0.50	0	1
Male work hours	38.24	15.96	0	69
Female work hours	27.68	18.59	0	69
B. Singles				
Male age	47.12	12.05	25	65
Female age	47.72	11.82	25	65
Male has at least undergraduate degree	0.42	0.49	0	1
Female has at least undergraduate degree	0.46	0.50	0	1
Male work hours	33.37	18.77	0	69
Female work hours	29.46	18.44	0	69

Note: Wages are net hourly wages in dollars. Work hours are hours per week.

Matching distributions • Return

Female education					
Male education	\leq High school	Associate or Bachelor	Master \leq	Total	
\leq High school	37.07	13.60	3.31	53.97	
Associate or Bachelor	8.90	16.17	6.05	31.12	
Master \leq	2.05	6.21	6.65	14.91	
Total	48.01	35.98	16.01	100.00	

Matching distribution across education

Note: The sample consists of 2 288 182 couples. The numbers in this table are displayed as percentages.

- +/- 60% same education
- +/- 23% wife higher educated than husband
- +/- 17% husband higher educated than wife

Matching distributions • Return

		Female race					
Male race	White	Black	Hispanic	Other	Total		
White	69.94	0.30	2.56	1.71	74.51		
Black	0.80	5.13	0.25	0.11	6.29		
Hispanic	2.25	0.10	9.89	0.21	12.46		
Other	0.78	0.03	0.15	5.80	6.75		
Total	73.76	5.55	12.85	7.84	100.00		

Matching distribution across race

Note: The sample consists of 2 288 182 couples. The numbers in this table are displayed as percentages.

• +/- 90% same race

Matching distributions • Return

Matching distribution across employment status

	Female employment				
Male employment	Unemployed	Part time	Full time	Total	
Unemployed	4.31	1.57	5.07	10.95	
Part time	1.70	1.69	3.55	6.94	
Full time (\geq 35h)	19.03	15.65	47.43	82.11	
Total	25.05	18.91	56.04	100.00	

Note: The sample consists of 2 288 182 couples. The numbers in this table are displayed as percentages.

• Majority couples have full time working husband

Matching distributions <a>Return

Gender ratios across race and education categories						
Gender ratio (+25 years)	MIN	MEAN	MAX			
All regions	0.89	0.95	1.09			
White						
\leq High school	0.93	1.02	1.27			
Associate or Bachelor	0.77	0.88	1.03			
Master \leq	0.68	0.89	1.51			
Black						
\leq High school	0.80	1.17	2.99			
Associate or Bachelor	0.51	1.90	19.63			
Master \leq	0.33	0.73	1.70			
Hispanic						
\leq High school	0.75	1.10	1.30			
Associate or Bachelor	0.48	0.86	1.55			
Master \leq	0.39	0.90	1.60			
Other						
\leq High school	0.54	1.28	1.51			
Associate or Bachelor	0.32	0.43	1.45			
Master \leq	0.54	1.22	2.46			

Note: The gender ratio is defined as the ratio of total m-type men over total f-type women.

Considerable variation across categories and US states