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Abstract

Probation plays a key role in managing the prison population and provides large potential

fiscal and social gains, but little is known about the broader externalities to the community of a

probationed offender. This paper investigates these questions by leveraging the random assign-

ment of criminal cases to judges in order to estimate the causal effect courtroom punishments

on the future criminal behavior of both the defendant and their community. I derive new iden-

tification results for two-stage least squares that illustrate the risk of omitted treatment biases

and show how these biases can be addressed using measures of judge preferences as instruments.

In my empirical analysis, I find that both prison and probation sentences lead to reductions in

recidivism, but that these punishments operate through alternative mechanisms. Prison acts to

prevent crime through incapacitation while probation acts to reduce crime through increased

policing and re-conviction. At the community level, I find that greater exposure to criminal

offenders leads to higher crime rates by other community members, which suggests a multiplier

effect associated with prison sentences but not probation sentences.
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1 Introduction

The US carceral population stands out as one of the largest amongst developed countries. At its

peak in 2007, the US incarceration rate reached 506 inmates per 100,000 US residents, a number

over 260% larger than the contemporaneous prison rate across Europe (Guerino et al., 2011;

Walmsley, 2015). The social and economic costs brought by incarceration to this level have

been well-documented in the literature and have sparked ongoing debates for decarceration.

In turn, the past decade has witnessed new efforts across all levels of government to reduce

the inmate population. This has been met with a dramatic decline in the carceral population

of approximately 20% since 2012 (Carson and Kluckow, 2023). Probation plays a key role in

managing incarceration rates, as the probation population measures at approximately 250% the

size of the prison population (Kaeble, 2023).

Probation provides offenders with an opportunity to avoid incarceration by instead serving

a supervisory sentence within their community. The potential benefits are clear. For one, the

fiscal savings of probation are expectedly large as estimates suggest that over 80% of probationed

offenders avoid incarceration (Kaeble, 2023). Two, probation can mitigate negative effects as-

sociated with incarceration as past research has shown that imprisonment contributes to the

development of criminal capital, labor market exclusion, and the formation of criminal peer net-

works (Bayer et al., 2009; Drago and Galbiati, 2012; Aizer and Doyle, 2015; Bhuller et al., 2018a;

Mueller-Smith and T. Schnepel, 2020). These effects of incarceration collectively contribute to

high recidivism rates and more severe future criminal behavior (Mueller-Smith, 2015).

However, a largely unexplored aspect is how probation might influence the local community

of an offender and it is ex-ante unclear whether probation is socially improving for members of

the offender’s community and household. Theoretically, reductions in incarceration will be met

with higher steady state crime rates due to lower incapacitation and deterrent effects (Becker,

1968; Kessler and Levitt, 1999; Drago et al., 2009; Buonanno and Raphael, 2013; Barbarino and

Mastrobuoni, 2014; Bhuller et al., 2018b). It would be expected then that a higher reliance

on probation will increase the risk of victimization and generally increase exposure to harmful

or risky behaviors and influences (Norris et al., 2021; Arteaga, 2023). On the other hand, the

incarceration of a household member can both destabilize household dynamics and finances while

also bringing negative emotional and developmental impacts for household members (Dobbie et

al., 2018a; Bhuller et al., 2018a).

In this paper, I study how incarcerative and probationary sentences shape the future criminal

behavior of offenders and how exposure to offenders in turn influences the local criminal activity

of the household and community. To causally identify effects of sentencing, I implement an

instrumental variable estimator with a “judge fixed effect” design that leverages the randomized

assignment of judges to criminal defendants.

In the first step of my analysis, I derive new identification results for the two-stage least

squares (2SLS) estimator of multiple endogenously assigned and continuously-valued treatments.

My results formalize the conditions required for 2SLS to be interpretted as a weighted LATE in

the presence of arbitrary first and second stage heterogeneity and can be viewed as extensions of

the monotonicity and exclusion restriction assumptions from lower dimensional settings. These

results bridge the recent literature studying the performance of 2SLS with presence of multiple

discrete treatments (Bhuller and Sigstad, 2023; Frandsen et al., 2023; Humphries et al., 2024)

with the literature on continuously-valued treatments (Angrist et al., 2000). My results also
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more broadly relate to the recent literature on regression estimators for continuously valued

treatments in the presence of heterogeneous treatment effects (Goodman-Bacon, 2021; Callaway

et al., 2024).

Importantly, I show that in the context of court room sentencing decisions, 2SLS estimators

are only valid when the researcher instruments for both the type of punishment received by an

offender (e.g., prison or probation) and the length of the sentence and formalizes the arguments

made in (Mueller-Smith, 2015). Past research sutdying spillovers of judge sentencing decisions

have generally not adopted this approach and relied on alternative approaches to controlling for

“omitted treatment biases” (Arteaga, 2023; Bhuller et al., 2018a; Dobbie et al., 2018b).

My empirical findings show that both prison and probation reduce future crime by offenders,

but through different mechanisms. Probation prevents crime by increasing the policing on pro-

bationed offenders, thereby increasing re-conviction rates for those who remain criminally active.

As a result, there is a short-term increase in convictions the probation sentences that fades as

re-offenders are convicted again. The effect on prison differs in that it reduces crime through

incapacitation. That is, it prevents crime in the short-run by holding offenders in prison, but

I do not find that the response to be released from prison is influenced by the duration of the

prison sentence. In studying community responses, I find only exposure to ex-convicts increases

the community crime rate. In particular, crime rates from those living at the same address as

the defendant rise the longer that a previously incarcerated defendant is in community.

2 Institutional Setting

My analysis focuses on the city of Milwaukee, Wisconsin over the years 2006 to 2018. All

criminal cases originating from within the city are also handled by the city’s courthouse. The

courthouse features six criminal divisions that handle different classifications of crimes. These six

divisions are as follows: general felonies, felonies of sexual assault and homocide, drug felonies,

gun felonies, general misdemeanors, and misdemeanors of domestic violence. Cases in the four

specialty divisions may be selectively assigned to judges. For this reason, I decide to only focus

on cases from the general felony and general misdemeanor divisions where judges are randomly

assigned to cases.

2.1 Case Assignment

In the Milwaukee courthouse’s general felony and general misdemeanor divisions, criminal cases

are assigned to judges through a multistep process. This sequence is described by the flowchart in

Figure 1. First, cases are assigned to one of the six criminal divisions based upon the classification

of the charges. After this, cases are assigned to a judge within the assigned division.

Judges may serve in only one division at a time and may serve within the criminal court for

a maximum of four years before they are rotated into a different branch of the courthouse (e.g.,

the family courts). Thus, during a judge’s tenure within a particular division, they will only be

assigned to cases that have been first assigned to that division.

Major court rotations are dictated annually by the courthouse’s chief judge at the start of

August, in which approximately 25% of judges are rotated across court branches. Minor rotations

are also made over the course of the year when, for example, a judge is promoted to a higher

circuit court, retires, or takes an extended leave of absence. In such cases, judges may be rotated
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Figure 1: Milwaukee Judicial Assignment Process

across divisions in order to address vacancies. I refer to periods between any judicial rotation

within a division (major or minor) as a “division rotation”.

Once a judge has been assigned to a case, the defendant is informed and has ten days to

request a substitute judge. Upon request for a substitute judge, the case will again be randomly

assigned to a different judge within the division. This assignment is final and a defendant may not

request a second substitution. Substitution requests can induce endogeneity in the assignment

process by allowing defendants to select away from unfavorable matches. To address this, my

analysis will always focus on the effect of the originally assigned judge regardless of whether a

substitution is made.

2.2 Sentencing

The assigned judge oversees the trial and, upon an independent jury’s determination that the

defendant is guilty, the judge will decide on the defendant’s sentence. The Wisconsin penal

system features discretionary sentencing in which the judge decides the punishment of a guilty

defendant from a range of possible punishments defined by the penal codes. In general, criminal

sentences may contain both an incarceration sentence and a fine. Wisconsin also features truth-

in-sentencing laws that generally require a defendant to serve the entirety of any incarceration

sentence given by the judge at the time of sentencing.

A judge may alternatively place a guilty defendant on probation. In doing so, the judge

simultaneously determines both the probation sentence and the “stayed” prison sentence. The

stayed sentence defines an alternative prison sentence that the defendant receives only if they

violate the terms of their probation.

In my analysis, I consider a criminal sentence to be comprised of the following dimensions:
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whether or not the defendant is incarcerated, whether or not the defendant is placed on probation,

whether or not the defendant is fined1, and the lengths of any prison, probation, or stayed

sentence.

3 Data

To conduct my analysis, I combine Wisconsin state court records and the Milwaukee Master

Property Assessment Files (MPROP) for the years 2004 to 2023. During this period, there are

148,248 publically visible criminal cases within the Milwaukee criminal court. My sample is

defined as all guilty defendants in the general felony or general misdemeanor court divisions that

committed a crime after January 1, 2005 and whose trial ended before December 31, 2018, for

which there are 56,252 cases2. To match to the MPROP files, I additionally restrict my sample

to those defendant whose recorded address is within the city of Milwaukee. This excludes 21,065

additional cases of defendants who are not residents of Milwaukee city. Cases for which the

assigned judge oversees less than 10 defendants outside of the defendant’s residential zip code

are also excluded to ensure that the judge fixed effect instrument is sufficiently predictive of

judge preferences. This excludes an additional 5,838 cases. Lastly, I additionally exclude 1,062

cases for whom the defendant is guilty but is neither incarcerated nor placed on probation. This

selection provides easier interpretation of results at the cost of a possible sample selection bias.

Accordingly, I will also assess the robustness of my results when including these defendants. My

final sample consists of 28,287 trials3.

3.1 Court Records

In Wisconsin, state court records are made publically available online through the Consolidated

Court Automation Program (CCAP). For criminal and eviction trials, records are posted for all

defendants who lose their trial, while family court records are posted for all cases. I collected all

publically available criminal, family, and eviction court records in Milwaukee from 2004 to 2023

directly through CCAP4.

CCAP criminal court records report the defendant’s legal name, race, date of birth, sex, and

address as well as the assigned judge, charged offenses, determination of guilt or innocence by

charge, and final sentences. Records for guilty defendants remain posted for a minimum period

of 20 years and so I observe sentences for all guilty offenders during my collected sample.

Family courts cover trials for interventions by the child protective services, claims for alimony

and child support, divorce proceedings, and restraining orders. Family records report the name,

age, and address of both the defendant and the plaintiff and, unless the case is dismissed, remains

posted for a minimum of 40 years. I observe all family trials that are carried out during my

sample period.

1Fine amounts are not uniformally reported or measured in the Wisconsin court records and are prone to signifi-
cantly large variation in the reported quantities and so I leave this out of my analysis.

2My sample begins in 2005 to allow for a sufficient pre-trial period over which pre-trial variables can be measured.
My sample ends in December 2018 because the covid pandemic introduced emergency measures for court procedures.
As well, this allows for an appropriate post-trial period to study evictions as the national eviction moratorium began
in March 2020.

3In practice, the sample consists of 19 “singletons” that are dropped from the regressions. Thus, I often present
summary statistics and results with the effective sample that omits these singletons.

4Data collection of court records was carried out between June 2023 to January 2024.
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Eviction court records include the self-reported name of the defendant, the address from

which the defendant is evicted from, and the final judgement of the case. All records include

details on dates of trial proceedings and events, such as the dates of the initial filing and final

judgement. Eviction records remain posted for a minimum of 20 years when the defendant loses

the trial (i.e., an eviction actually occurs), and so I also observe all executed evictions during

my sample period.

3.2 MPROP

The MPROP files provide an annual census of all properties in the city of Milwaukee and is

collected by the Milwaukee Assessor’s Office. It includes information on the property owner and

descriptive characteristics of the property, such as the size of the lot or floorspace in the building,

number of units in the building, the use of the property, and the assessed value of the property.

Each property may be uniquelly identified by either the address or a property tax ID assigned

by the city.

3.3 Data Linking

Criminal court records provide accurate identifying information of defendants, including name

and date of birth. This allows me to track the criminal trials against a defendant over time by

linking criminal records on the name and date of birth of the defendant. To link property-level

measures back to the defendant, I first match all court records to the listed address’ property ID

using the city’s online property search look-up5. This allows me to accurately link all address-

level data in the city. I then study the response of a defendant’s residence by linking cases

matched to the same property ID as the defendant but committed by a different person.

3.4 Summary Statistics

Table 1 presents summary statistics on the defendants within my sample. Panel A presents

statistics for defendants, Panel B characterizes the crimes committed, while Panel C presents

statistics about their residences. The average defendant is approximately 30 years old (26 at the

median) with over 84% of defendants being male. The large majority of defendants are black,

comprising over 79% of the sample. White defendants make up nearly 18% with the remainder

of defendants being of other racial background. Approximately 13% of offenders were observed

committing a crime within the previous year before their trial. Divorce and paternity claims were

experienced by only 4% and 5% of the sample within the year prior to the defendant’s offense

while over 16% of defendants were evicted in the preceding year, signalling a high eviction rate

within the sample. The sample is nearly evenly split between felony and misdemeanor offenders,

with 53% of defendants being on trial for a felony. The large share of defendants commit non-

violent crimes, with only approximately 13% committing violent crimes.

Defendants tend to live on properties with multiple residential units (7.4 units on average

and 2 units at the median). The average unit within the residence of defendant is a 2.4 bedroom

unit with approximately 1,100 square feet. The average value of a unit on the property is valued

at approximately $54,000 on average and $43,000 at the median.

5The look-up may be found at https://itmdapps.milwaukee.gov/MyMilwaukeeHome/indexSidebarNew.jsp#.
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Table 1: Summary Statistics of Defendants

Mean Median SD N
(1) (2) (3) (4)

Panel A: Defendant Characteristics

Age of defendant 29.63 26.17 11.04 28,324
Male defendant 0.8450 1.00 0.3619 28,324
White defendant 0.1785 0 0.3829 28,324
Black defendant 0.7873 1.00 0.4092 28,324
Other race defendant 0.0342 0 0.1818 28,324
Committed crime in past year 0.1331 0 0.3397 28,324
Divorced in past year 0.0431 0 0.2030 28,324
Paternity claim in past year 0.0475 0 0.2127 28,324
Evicted in past year 0.1627 0 0.3691 28,324

Panel B: Case Characteristics

Felony 0.5252 1.00 0.4994 28,324
Property crime 0.3122 0 0.4634 28,324
Violent crime 0.1254 0 0.3311 28,324
Other crime 0.5625 1.00 0.4961 28,324

Panel C: Property Characteristics

Units in property 7.40 2.00 24.79 28,324
Mean area of unit (sqft) 1,075 1,056 583 28,324
Mean value of unit (USD) 54,501 43,100 123,716 28,324
Mean # bedrooms 2.36 2.00 1.15 28,324
Owner occupied 0.0356 0 0.1852 28,324
Crimes in previous year 0.0802 0 1.81 28,324

Notes: Summary statistics of means, medians, and standard devia-
tions for defendants in my primary sample. Panel A presents statis-
tics for defendant characteristics, Panel B presents statistics for case
details, and Panel C presents characteristics describing defendant’s
residences.
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4 Modelling Judge Sentencing Decisions

Here I introduce a model on judicial sentencing decisions. The model first considers a potential

criminal who decides whether or not to commit crime and faces a certain probability of punish-

ment. If apprehended, the judge decides on a punishment for the criminal in consideration of

how it may effect future criminality. The primary purpose of the model is to provide a general

framework for understanding how the identifying assumptions of 2SLS estimators induce a cer-

tain structure on judge biases and preferences. This model generally encompasses the threshold

crossing framework adopted in related studies, but also allows for a broader set of judge sen-

tencing patterns. However, given the importance of threshold crossing models in the literature,

I discuss this as a special case below and in Appendix D.

Defendant’s Problem

Consider a setting in which individuals live for two time periods. In each period, individuals

choose a bundle of M crimes denoted by C ∈ RM
+ . A criminal i receives benefits according

to the function Bi, but face a risk of punishment given by q0. The punishment is defined by

the 2K-dimensional vector W . The punishment W is comprised of variables Dk ∈ {0, 1} and

Tk ∈ RK
+ where, for example, Dprison indicates whether the offender is sentenced to prison and

Tprison indicates the length of the prison sentence. For a given punishment w, the defendant

receives disutility according to the function Si.

Bi : RM
+ → R+

q0 : RM
+ → [0, 1]

Si : R2K
+ → R+

The function q0 is assumed known but W is ex-ante unknown. Instead, criminals know the

expected value of W for a given bundle c, denoted as µw(c) := E[W |c]. Individual i’s chosen

bundle, denoted by C1i, maximizes the following equation

max
c

πi(c) = Bi(c) − q0(c)E[s(c)].

The above setup induces a probability distribution over C1, given by Φ1(c | q0, µw(c)):

Φ1

(
c | q0, µw(c)

)
:= P

[
C1 = c | q0(c), µw(c)

]
.

Judge Sentencing Decisions

Judges j observe period 1 criminals i with characteristics vi and decide on a punishment W .

A punishment has three effects. One, the punishment may increase the probability of being

punished for future crimes. Two, the punishment informs the defendant about future potential

punishments. Three, the punishment can change a criminal’s future incentives for crime by

remapping the functions B and S. This induces a new probability distribution over criminal
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behavior, Φ2(c2). For a given punishment w, these effects are summarized below:

q0(c) → qw(c) ≥ q0(c)

µw(c) → w

Φ1(c) → Φ2(c|qw, w)

Judges receive disutility if the criminal commits crime in period 2 according to the M -

dimensional vector of parameters αj < 0 and also receive disutility from administering punish-

ments, given by the function Rj : RK
+ → R which satisfies R′

j < 0 and R′′
j < 0. However, judges

do not know Bi or Si but instead observe Vi. Furthermore, judges hold biased beliefs regarding

the distribution Φ2. Specifically, judge j believes that

Φj(c|vi, qw, w) = Φ2(c|vi, qw, w).

Judges choose a punishment W to maximize expected disutility subject to a constraint that

w ∈ supp(W ). The constraint captures that legal codes may define sets of possible punishments

that judges may administer. Thus, the judge’s maximization problem is

max
w

E[Ui,j ] = Rj(w) + αj

∫
RK

+

c dΦj(c|qw, w, vi) s.t. w ∈ supp(W ).

Denote judge j’s maximizing choice for the punishment by wj . Then we can generally express

the set of potential assignments of punishments to criminal i by the function

h(j, c1i, vi) = wj

Special Case: Threshold Crossing Model

Threshold crossing models are encompassed within the general framework described above. In

the context of discrete treatment settings, threshold crossing models provide a powerful frame-

work to estimate marginal treatment effects following the approach of Heckman and Vytlacil

(2005). In the continuous treatment setting, threshold crossing models are still useful for devel-

oping a grounded understanding of estimated treatment effects. For this reason, I include a brief

discussion relating my results to the above setup here, but for a more complete discussion direct

readers to related studies like Arteaga (2023); Bhuller and Sigstad (2023); Chyn et al. (2024);

Humphries et al. (2024).

A simple variation of a threshold crossing model can be obtained by assuming that judges

hold common preferences over offenses αj and common beliefs Φj , that Φj is rank invariant in

v with respect to w, and that preferences over punishments Rj are commonly ordered. This is

summarized below:

Φj(c|qw, w, vi) = Φj′(c|qw, w, vi) ∀ (j, j′)

αj = α ∀ j

Φj(c|qw, w, vi) > Φj(c|qw, w, v′i) ⇔ Φj(c|qw′ , w′, vi) > Φj(c|qw′ , w′, v′i) ∀ (w,w′, vi, v
′
i)

Rj(w) > Rj(w
′) ⇔ Rj′(w) > Rj′(w

′) ∀ (j, j′, w, w′)

The restrictions on Φj and αj induces a single index for measuring the severity of defendants
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that is common to all judges and hence variation in sentencing only arises from differences in

stringency. The intuition of the above model is that all judges share a common ordering of

punishments W and a common ordering of defendants i in terms of their perceived severity.

Furthermore, these orderings are independent of each other and defined across the support of v

and so the ranking of an individual is invariant to the choice of W 6. Hence, we can express an

individual i’s indexed ranking along a single index ϕi ∈ [0, 1].

Estimating with Judge Fixed Effects

The model suggests that a defendant’s sentence can be viewed as a function h that depends both

on characteristics of the criminal, given by vi and c1i, and characteristics of the assigned judge

j. And while sentences W are generally endogenously determined, the assignment of the judge

can be viewed as inducing an exogenous sentencing shock. This shock is expressed as

δi = h(j, c1i, vi) − E[h(J, c1i, vi)|c1i, vi].

Borusyak and Hull (2023) show that (a variance-weighted) δi is an efficient and exogenous

measure of sentencing shocks that controls for influence of the characteristics c1 and v. That is,

if the δi were observed (or equivalently E[h(J, c1i, vi)|c1i, vi]), then one could estimate the effect

of sentencing shocks directly with the following OLS regression

Yi = βδi + γr + ui

where γr is a fixed effect for the randomization group (in my setting, this is the Crime ×
Division × Cycle) and u is a stochastic error term. However, for each i we only observe

Wi = h(j, c1i, vi) and hence E[h(J, c1i, vi)|c1i, vi] must be estimated. This presents an empirical

challenge because neither v nor the functional form of h are known.

The existing “judge fixed effect” literature has generally approached this with two-stage least

squares estimators in which the chosen instrument Z represents some prediction of h(J, c1i, vi).

Most commonly used is the judge’s average punishment, which is computed as a “leave-out”

sample average that is calculated by excluding the individual i. The first stage involves estimating

the sentencing shock with a randomization group fixed effect as follows

Wi = αZi + γr + vi (1)

where γr is a randomization group fixed effect and vi is a stochastic error term. The estimate

for δi is given by αZi, which represents the difference in the mean punishment for the assigned

judge relative to all other judges in the randomization group. The second stage regression is

given by

Yi = β2SLSαZi + γr + ui. (2)

6As disussed in Humphries et al. (2024), plea deals give a situation where the independence of defendant and
punishment orderings are likely violated. In the context of the above model, this occurs when the cost function R is
allowed to depend on whether a defendant accepts a plea. For clarity, let the punishment be given as (W,P lea). Then
the distribution (W,Plea = 0, V ) is likely very different to (W,P lea = 1, V ) because some individuals will never be
offered the plea and some will never accept. As a consequence, Φj under Plea = 1 is not defined for some v. This can
lead to violations in monotonicity as weaker punishments are accepted through plea deals by selectively more severe
defendants.
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Recent literature has emphasized that interpretation of β2SLS is not trivial (Bhuller and Sigstad,

2023; Blandhol et al., 2022; Humphries et al., 2024). In general, IV estimators rely on the assump-

tions that Z is exogenous from U , that Z is properly excluded from the second stage equation,

and that Z is strongly correlated with W . When either the first or second stage responses are

homogeneous, these assumptions are sufficient to ensure that β2SLS can be interpretted as a

LATE. However, assuming homogeneous first and second stage responses is a strong assumption

that is unlikely to be satisfied. In reality, judges are likely to have heterogeneous preferences over

defendant characteristics (first stage heterogeneity) and defendants are likely to have heteroge-

neous responses to punishments (second stage heterogeneity). The results contained in Section 5

and also those of Bhuller and Sigstad (2023) and Humphries et al. (2024) show that in this more

general case, β2SLS only holds causal interpretations under additional assumptions, which can

be viewed as multivariate extensions of the more familiar univariate monotonicity and exclusion

restriction assumptions.

Even under the assumptions covered in Section 5, β2SLS will generally represent a weighted

average of treatment effects across different compliers. The weights generally are inversely pro-

portional to how sensitive a complier is to the instrument. In the threshold cross model, this

would mean that defendants who require larger sentencing shocks to be moved into harsher

punishments will receive larger weights. This creates interpretation challenges when the weight

distribution is also correlated with treatment effects. In the criminal court setting, that is likely

to be the case because defendant who receive large weights will be those who are less severe, for

whom the treatment effect is likely to be different than those who are more severe.

To address this, I will construct instruments that attempt to reduce the degree of unobserved

first stage heterogeneity. Specifically, I will first use random forest estimators to predict the po-

tential punishments with pre-trial defendant characteristics. In doing so, I will employ “honest”

splitting rules, which Wager and Athey (2018) show that under appropriate assumptions, provide

an unbiased estimate for the conditional mean function of the actual punishment assigned. I fur-

ther reduce the risk of overfitting by training the random forests using samples that observation

i and their zip code, so that the model predictions are uncorrelated with the actual assignment

of the defendant or the assignment of local community members. By making predictions for all

potential assignments that a defendant might receive across the set of potential assigned judges,

a prediction for δi can then be made by taking the difference of the predicted punishment for

the actually assigned judge from the average predicted punishment across the pool of potentially

assigned judges and functions as a “re-centered” instrument in the style of Borusyak and Hull

(2023). This instrument choice will have the benefit of reducing the degree of correlation between

the complier weights and second-stage outcomes as the first stage heterogeneity should no longer

be systematically correlated with the pre-trial covariates used in the random forest predictions.

5 Identification with Two Stage Least Squares

In this section, I provide identification results for the 2SLS estimator when the second stage

endogenous variables W are possibly continuous. These results apply broadly to any 2SLS

estimator with multiple continuous treatments as the setup allows for arbitrary heterogeneity

in the both the first and second stages and the only restriction placed on the treatments is

that they are assumed to be mutually exclusive and exhaustive. The instruments may generally
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take on any form but are assumed to satisfy the standard assumptions of exogeneity, exclusion,

and rank, described below. These results are to my knowledge the first identification results

for 2SLS estimators of multiple continuously valued endogenous treatments under arbitrary

heterogeneity. The analysis may be viewed as an extension of the analysis of Bhuller and Sigstad

(2023), Humphries et al. (2024), and Frandsen et al. (2023) to the continuous treatment setting

or similarly as an extension of the analysis of Angrist et al. (2000) to the multiple treatment

setting.

A key takeaway from my results is that if the instrument Z is correlated with all elements

of W , then 2SLS is subject to an omitted treatment bias if any element of W is omitted. In

the context of courtroom sentencing, this means that 2SLS will be biased and will not identify

causal effects if for example the researcher only instruments for the extensive margin probability

of being sentenced to prison. The intuition for this can be understood through the following

example depicted in Figure 2. The lines in the figure depict the average potential outcome for

three types of criminals, Type 1, Type 2, and Type 3. The bold regions on each line indicate

the region on the support of W where that type might possibly be sentenced depending on the

judge to which they are assigned. The thin regions on the lines indicate regions on the support

of W where the respective type never receives the treatment under any judge assignment.

Figure 2: Average Potential Outcomes Example

(a): Potential Outcomes Under Probation (b): Potential Outcomes Under Prison

Notes: Each figure plots the average potential outcome of a three response types under two alternative treatments.
Response types are identified by the color of the line. Bold sections of the lines indicate regions on the support of

the treatments at which the indicated response type might possibly receive the treatment.

The problem arises when one uses a research design that takes the assigned judge as an

instrument for the punishment W , but defines W too narrowly. For example, a research design

that only instruments for whether a defendant is sentenced to prison, but does not instrument for

either the length of probation or prison sentences will violate the exclusion restriction. The goal

of such a research design would be to estimate the effect of receiving a prison sentence relative

to a probation sentence. Because Type 3 never receives a probation sentence under any judge

assignment, valid estimates should not be influenced by the treatment status of Type 3. However,

the judicial assignment does influence the sentence length for Type 3, and as a consequence

judicial assignment instruments designed to predict the probability of being sentenced to prison

will generally also be correlated with the length of the prison sentence. As a result, estimates are
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likely to capture the effect of both being sentenced to prison and of changing the length of the

sentence at unrelated margins. Research designs that ignore this will confuse effects from having

a harsher prison sentence with the effect of being incarcerated. This can more generally be viewed

as a problem that arises when there is the simultaneous assignment of multiple treatments.

The analysis in the remainder of this section discusses how 2SLS designs decompose the effects

of simultaneously assigned continuous treatments and under what conditions the estimand retains

a causal interpretation. I begin by introducing the setup and notation. I then define the relevant

treatment effect parameters that enter the 2SLS estimand. Finally I present identification results.

In the main text I only present the setup and discuss the theoretical results while all proofs are

presented in Appendix B.

5.1 Setup and Notation

Consider a vector W comprised of K mutually exclusive treatments which may be continuously

valued. If treatment k is multivalued, then the vector W contains both the variable Dk ∈ {0, 1}
indicating that the treatment k was received and the variable Tk ∈ R indicating the level received

of the treatment. Then we may express W as

W = (D1, . . . , DK , T1, . . . , TK).

Let m denote the total number of elements in W . The outcome is denoted by Y ∈ R and

the researcher has access to a vector of instruments Z ∈ Rn with n ≥ m that influences the

assignment of W . Then I assume that Y and W can be represented as

Y = g(W,U) (second stage)

W = h(Z, V ) (first stage)

The function g is assumed to be continuously differentiable across the support of W . The terms

U and V are first and second stage residual terms of unconstrained dimensionality. This setup

allows for arbitrary and unconstrained heterogeneity across both the first and second stages

responses. Potential outcomes are given by considering the function g at a fixed W = w and

U = u. “Response types” can also be defined according to the first stage residual V because

after fixing V = v the treatment assignment of W depends only on the instrument Z. In the

threshold crossing framework presented in Section 4, response types are defined according to the

common index of perceived defendant severity, Φj .

Lastly, because W is comprised of K mutually exclusive treatments, we may consider the

potential outcomes conditional on receiving treatment k. In this case, the potential outcome

depends only on the level of the treatment Tk and the second stage residual U . This is given by

the function gk defined as

gki (Tk, U) := g(D1 = 0, . . . , Dk = 1, . . . , DK = 0, T1 = 0, . . . , Tk, . . . , TK = 0, U).

Under the above setup, we may express the standard 2SLS assumptions as follows:

Assumption 1. (Exogeneity) {g(w, u), h(z, v), U, V } ⊥ Zi

Assumption 2. (Exclusion) h(z, v) = h(z′, v) implies g(h(z, v), u) = g(h(z′, v), u)
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Assumption 3. (Rank) Cov(Z,W ) has full rank

Additionally, I assume that the treatment intensities T are non-negative and thus bounded

from below by 0.

5.2 Treatment Effects

In the presence of multiple continuously valued treatments, there are several different notions

of treatment effects that might be of interest to researchers and policymakers. I consider two

particular treatment effects, which I denote the conditional “takeup effect” and the conditional

average causal response on the treated (ACRT):

βtakeup
k,v :=

E[g(W,U)|Dk = 1, v] − E[g(W,U) |Dk = 0, v]

E[Tk|k, v]

βACRT
k,v (tk) := E

[ ∂

∂t
gk(t, U)

∣∣
t=tk

∣∣Dk = 1, v
]

Each parameter is defined conditional on v and in reference to a particular treatment k. This

means that the parameters may be interpretted as the group average effect for a specific response

type, or, equivalently, as the average effect at a point on the severity index Φj . The takeup effect

can be interpretted as the average change in the outcome under treatment k compared to all

other treatment states, scaled by the expected dosage of treatment k. Thus, the takeup effect

indicates how the potential outcome shifts on average when given treatment k. On the other

hand, the average causal response indicates the average marginal response in the outcome when

the treatment is marginally increased from a level t. The ACRT may be interpretted as the slope

of the potential outcome curve under treatment k at the point t.

5.3 2SLS Estimand

Define the first stage prediction for W as Ŵ , where

Ŵ = V ar(Z)−1Cov(Z,W ).

Then, under the above assumptions, the 2SLS estimand is identifed by the following result

Theorem 1. Under Assumptions 1, 2, and 3, the 2SLS estimand is given by

β2SLS = ω−1
K∑

k=1

∫ ∞

0

E[τk,v(t)βACRT
k,v (t)]dt + ω−1

K∑
k=1

E
[
κk,vβ

takeup
k,v

]
where

ω :=

K∑
k=1

∫ ∞

0

E[τk,v(t)]dt +

K∑
k=1

E[κk,v]

τk,v(t) := V ar(1{Tk > t}|v)
(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v, Tk ≤ t]

)
κk,v := V ar(Dk|v)

(
E[Ŵ |k, v] − E[Ŵ ]

)
E[Tk|k, v]

The above result states that the 2SLS estimand can generally be interpretted as the ex-

pectation of weighted takeup effects and ACRT effects, where the expectation is taken across
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response types v. The effects for each response type are weighted by the τ and κ terms, which

in expectation sum to ω (after integrating). Each parameter βtakeup
k,v and βACRT

k,v represents a

local effect to response type v. Takeup parameters may be thought of as effects that are local

to regions in Supp(W ) where discrete changes in the Dk are observed while ACRT parameters

are local to regions in Supp(W ) where variation in Tk is observed.

However, Theorem 1 only states how the full parameter of coefficients in β2SLS can be in-

terpretted, but not the individual coefficients themselves. Theorem 2 identifies the individual

coefficients by applying the Frisch-Waugh-Lovell Theorem. Specifically, first define the residual-

ized first stage predictions, W̃ , as

W̃ :=
(
I2K − Ŵ (Ŵ ′Ŵ )−1Ŵ ′

)
Ŵ .

The residualized prediction for a particular element, W̃k, is obtained as the residual from regress-

ing each element Ŵk onto all other elements of Ŵ . Then by the Frisch-Waugh-Lovell Theorem,

the coefficient β2SLS
k is given by the regression of Y on W̃k. One may then apply Theorem 1 to

the univariate case where W̃k is the instrument for Wk, which gives the following result

Theorem 2. Under Assumptions 1, 2, and 3, the 2SLS parameter β2SLS
k is given by

β2SLS
k = ω−1

K∑
l=1

∫ ∞

0

E
[
βACRT
l,v (t)τl,v(t)

]
dt + ω−1

K∑
l=1

E[κl,vβ
takeup
l,v ].

where

ω :=

K∑
l=1

∫ ∞

0

E
[
τl,v(t)

]
dt +

K∑
l=1

E[κl,v]

τl,v(t) := V ar
(
1{Tl > t}|v

)(
E[W̃k|l, v, Tl > t] − E[W̃k|l, v, Tk < t]

)
κk,v := V ar(Dl|v)

(
E[W̃k|l, v] − E[W̃k]

)
E[Tk|k, v]

The result of Theorem 2 generally mirrors that of Theorem 1, except that the weights now

depends on W̃k instead of Ŵ .

Identification of Weighted LATE

There are two important implications of Theorem 2. One, the effect of Wk for type v may enter

the estimand β2SLS
k with a negative weight. Two, the estimand β2SLS

k for the effect of Wk

may be contaminated by the effects of the other elements of W . The source of both of these

problems is the first stage estimation. Negative weighting occurs when there is a systematic

negative relationship between W̃k with Wk. That is, for some response type v, W̃k is on average

decreasing as Wk increases. Cross-contamination occurs if after residualizing the first stage

predictions with W̃ , there is still systematic correlation between W̃k and the other dimensions

of the treatment assignment. Under either condition, β2SLS
k does not generally hold a causal

interpretation. The remainder of the analysis focuses on determining necessary and sufficient

conditions for ruling out these possibilities.

In order to ensure that β2SLS
k may be interpretted as a weighted LATE, we require three

components. The weights must sum to 1, the weights must be non-negative, and there must be
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no cross-contamination. The first property holds by construction. This can be seen by defining

the set of weights for each response type v as

ωv = ω−1
K∑

k=1

∫ ∞

0

τk,v(t)dt + ω−1
K∑

k=1

κk,v.

Then by definition of ω we have that

E[ωv] = 1.

The following two assumptions ensure that weights are non-negative and that there is no

cross-contamination in effects.

Assumption 4. Average conditional monotonicity

Discrete Case: For all types v such that V ar(Dk|v) ̸= 0, E[Tk|k, v] ̸= 0, and E[D̃k|k, v] ̸= E[D̃k],

the following holds

sign(E[D̃k|k, v] − E[D̃k]) = sign(E[T |k, v]).

Continuous Case: For all points t in the support of Tk the following holds for any response

type v satisfying V ar(1{Tk > t|v}) ̸= 0,

E
[
T̃k|k, v, Tk > t

]
≥ E

[
T̃k|k, v, Tk ≤ t

]
.

The average conditional monotonicity assumption states that the residualized prediction Ŵk

should on average be wekly increasing in the distribution of the actual Wk for each response

type v. This requires that the first stage prediction on average is in the correct direction of the

treatment level after removing linear correlation with other elements of the Ŵ .

Assumption 5. Conditional exclusion restriction

Consider any element Wk of W . Then W̃k satisfies the “conditional exclusion restriction” if the

following mean independence condition holds:

E[W̃k|v,W ] = E[W̃k|v,Wk]

The conditional exclusion restriction requires that the residualized first stage prediction W̃k

should be mean independent of all elements of W after conditioning on Wk for each response type

v. Intuitively, this states that the residualized W̃k first stage predictions should on average satisfy

the exclusion restriction in a univariate IV estimator with Wk as the endogenous treatment.

The following result shows that the conditional monotonicity and conditional exclusion re-

striction assumptions are necessary and sufficient for β2SLS
k to be interpretted as a weighted

LATE.

Theorem 3. Under Assumptions 1, 2, 3, the 2SLS coefficient on Wk, given by β2SLS
k , represents

a weighted LATE if and only if Assumptions 4, and 5 hold. The weighted averages are given by

β2SLS
k =

∫∞
0

E[τk,v(t)βACRT
k,v (t)]dt∫∞

0
E[τk,v(t)]dt

(Wk = Tk)

β2SLS
k =

E[κk,vβ
takeup
k,v ]

E[κk,v]
(Wk = Dk)
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where the weights are positively valued for all v and given by

τk,v(t) := V ar
(
1{Tk > t}|v

)(
E[W̃k|k, v, Tk > t] − E[W̃k|k, v, Tk < t]

)
κk,v := V ar(Dk|v)

(
E[W̃k|k, v] − E[W̃k]

)
E[h(Z, V )|k, v]

Theorem 3 states that under average conditional monotonicity and the conditional exclu-

sion restriction, the 2SLS estimand can be interpretted as a weighted average of takeup effects

(for discrete components Dk) or as a weighted average of ACRT parameters (for continuous

components Tk).

Omitted Treatment Bias

Recent research has raised concerns about omitted treatment biases when some element(s) of

W is excluded from the second stage equation (Mueller-Smith, 2015; Arteaga, 2023; Chyn et

al., 2024). That is, let Wl be some element of W and W−l represent the vector W when Wl is

omitted. If Z is correlated with Wl, then omitting Wl from the second stage equation violates the

exclusion restriction and 2SLS estimates will generally be biased. The following result formalizes

this “omitted treatment bias”.

Corollary 4. Let W = (D1, . . . , DK , T1, . . . , Tk) and define W−l as the vector including all

elements of W except for some element Wl. Now suppose that Z satisfies Assumptions 1, 2, and

3 and is correlated with both W−l and Wl.

β2SLS = ω−1
K∑

k=1

∫ ∞

0

E[τk,v(t)βACRT
k,v (t)]dt + ω−1

K∑
k=1

E
[
κk,vβ

takeup
k,v

]
where

Ŵ−l = V ar(Z)−1Cov(Z,W−l)

ω :=

K∑
k=1

∫ ∞

0

E[λk,v(t)]dt +

K∑
k=1

E[κk,v]

τk,v(t) := V ar(1{Tk > t}|v)
(
E[Ŵ−l|k, v, Tk > t] − E[Ŵ−l|k, v, Tk ≤ t]

)
κk,v := V ar(Dk|v)

(
E[Ŵ−l|k, v] − E[Ŵ−l]

)
E[Tk|k, v]

The result mirrors that of Theorem 1, except that Ŵ is replaced by Ŵ−l. The intuition is

that the effect of W remains unchanged when an element of W is omitted, but now the effect of

the omitted treatment will be distributed across the parameters of the included treatments. A

similar result holds in the form of Theorem 2 because the effect of l is still captured, but further

refinements in the form of Theorem 3 will generally not hold. The consequence of this is that it

is not possible to determine “where” the omitted treatment bias contaminates the coefficients of

the included elements W−l. It may be that the bias is entirely concentrated within an individual

element of the treatment or it may be spread across all elements. This in general depends on

the correlation of W̃−l with Wl.
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Comparing OLS and 2SLS

The results of Theorems 1, 2, and 3 relate to a broader literature that identifies the estimands of

different regression estimators as a weighted average of heterogeneous treatment effects. Iden-

tification of the 2SLS estimand as a weighted average of heterogeneous treatment effects has

been an on-going focus of the IV literature, but current research does not address the multi-

dimensional continuous setting (for examples, see Angrist et al. (2000); Heckman and Vytlacil

(2005); Bhuller and Sigstad (2023); Humphries et al. (2024); Frandsen et al. (2023); Blandhol et

al. (2022)). S loczyński (2022) provides results for OLS with a binary treatment that is exoge-

neous conditional on covariates and provides a comparison for the corresponding 2SLS estimator.

Goodman-Bacon (2021) and Callaway et al. (2024) provide results for difference-in-differences

designs in which the treatment might take a staggered adoption or feature continuous elements

in assignment.

To better describe how my results relate to this broader literature, I provide a comparison of

the 2SLS estimand to the OLS estimand for the effect of an endogenous treatment W for which

the researcher has access to an exogenous instrument Z. This is provided in Appendix C. In

general, the results show that both 2SLS and OLS estimators can be interpetted as weighted

averages of heterogeneous treatment effects. However, OLS constructs weights across the joint

distribution of (W,U) while 2SLS constructs weights across the joint distribution of (Z, V ).

The 2SLS estimand can be viewed as first marginalizing out the influence of U to estimate the

group average treatment effect for response types v. These group average treatment effects are

representative within each group V and provide the building blocks for the overall estimand.

Thus, 2SLS improves upon OLS by identifying the group average effects without weighting

issues, but still faces the challenge of appropriately weighting those effects to build the overall

estimand.

6 Research Design

In this section, I first present the estimating equations used to make my empirical analysis. I

then assess the validity of my instruments in terms of the identifying assumptions discussed in

Section 5 and assess the performance of the instruments.

6.1 Estimating Equations

Cross-sectional Estimator: Cumulative Effects

In the first part of my empirical analysis, I use a cross-sectional design to estimate the effect

of criminal sentencing on future crime rates of both the defendant and other members of their

residence. I measure effects over the first five years after the sentence so that estimates can

be interpretted as the cumulative effect of a punishment over this time frame. I define crimi-

nal sentences in terms of three different types of punishments: prison sentences, probationary

sentences, and fines. The second stage estimating equation is given by

yi = β1Probi + β2Finei + β3PrisDurationi + β4(PrisDurationi)<5

+ β5ProbDurationi + β6StayedDurationi + θXi + ηzip + γr + ui

(3)
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where criminal cases are indexed by i. The outcome of interest is given by y, which either

measures the crimes commited by the defendant or the per-housing unit crime rate at the de-

fendant’s address (excluding crimes committed by the defendant). X is a vector of pre-trial

defendant characteristics. Crime-by-division-rotation fixed effects are given γr and act as the

“randomization group” fixed effect. I additionally include zip code fixed effects, ηzip to absorb

community level variation.

The treatment vector W is comprised of Prob which is an indicator for assignment to proba-

tion, Fine which is an indicator for receiving a fine, and the prison, probation, or stayed sentence

lengths measured in years. Because outcomes are measured only over the first five years follow-

ing the sentence, it is expected that the marginal effect of increasing the prison sentence length

beyond five years would be zero. Accordingly, I introduce a kink design at the five year mark

for prison sentences by including the variable (PrisDuration)<5 which takes the value of zero

if the prison sentence is longer than five years.

The coefficients β1 and β2 give the average effect on the outcome of receiving probation or

a fine. β3 represents the average causal response in the outcome for a marginal increase in

the duration of an incarcerated defendant’s sentence length while β4 gives the difference in the

average causal response for those sentenced above and below the five year threshold. Similarly,

β5 and β6 give the average causal response for a marginal increase in the probation and stayed

sentence lengths. When treatment effects are heterogeneous, these effects represent weighted

averages across defendants of differing severity.

Panel Estimator: Incapacitation and Exposure Effects

In the second part of my analysis, I use a similar research design to Mueller-Smith (2015) in

order to disentangle incapacitation effects from exposure effects. To do this, in each year for

each defendant I observe whether the defendant is scheduled to be released from their initial

court sentence7 and if so for how long they were exposed to prison or probation. This allows me

to construct the following measures for “custody release” and “custody exposure”:

Releaset = % days in custody during year t

Exposuret = Number of years in custody through year t

where t ∈ {0, 1, 2, 3, 4} is the year since sentencing.

yit =
∑

k∈{Prob,Pris}

(
βk,1Releaseki,t−1 + βk,2Releasekit + βk,3Releasekit × Exposurekit

)
+ β4Probation + β5ProbationExposurekit + βW + θXi + ζt + uit

(4)

where the outcome y now gives the count of crimes committed by the defendant or the per-

housing-unit crime rate committed by others living at the defendant’s address in period t. The

summation index k is taken over probation and prison so that equivalent terms for probation

and prison sentences are included in the estimating equation. The vector W contains all other

endogenous variables except for prison and probation sentence lengths from Equation (3). The

vector X contains both the covariates and the fixed effects from Equation (3).

7Actual releases may differ from scheduled releases when, for example, a defendant receives an early release for
good time credit reductions or parole.
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Conceptually, the above specification breakdowns sentence lengths into four different groups

at the yearly level. First, it differentiates those who are in probation custody and prison custody

during period t and the coefficient β4 represents the takeup effect of probation relative to prison

for those still in custody. This effect is moderated by the cumulative exposure to probation,

captured by the parameter β5. Next, the specification differentiates between those who have

been released from probation relative to those still on probation. This effect is captured by

the released parameters βprobation,1 and βprobation,2, with the interaction parameter βprobation,3

moderating the effect of release by the probation sentence length. Similarly, the effects of prison

releases are made as comparisons between those assigned to prison who have been released by

year t to those assigned to prison who have not yet been released. The inclusion of lag release

measures accounts for dynamics effects in which someone who is arrested for a crime in period

t− 1 is unlikely to commit crime in period t due to incapacitation effects.

Equation (4) also has a close connection to a staggered difference-in-differences estimator

(one for probation and one for prison). Here, ζt is the time-period fixed effect while the release

variables act as the treatment event (with a continuous intensity). The second stage design

differs from a more standard staggered difference-in-differences design in that it involves a time-

dependent treatment (sentence durations) and there is no treatment group fixed effect term.

And while the identification results in Section (5) do not make any assumptions on the form

of the second stage, recent research has raised concerns about difference-in-differences research

designs in the presence of treatment effect heterogeneity, particularly continuously measured

treatments or treatments with heterogeneous effects over time, and so it is worth considering

how these results track to the 2SLS setting. Goodman-Bacon (2021) shows that, in the presence

of temporal treatment heterogeneity, staggered difference-in-differences estimates a weighted

sum of treatment effects in which earlier treatment groups receive a negative weight in later

periods. This can be viewed as an omitted treatment bias in which some feature of time drives

heterogeneity (for example, timing-based selection into treatment or exposure effects). This

is addressed in my analysis by estimating the heterogeneity directly through exposure effects.

Difference-in-differences estimators also generally rely on a parallel trends assumption that holds

after controlling for time-period and treatment-group fixed effects. Equation (4) does not include

any treatment-group fixed effect as this would re-introduce endogeneity based on the defendant’s

sentence. However, Miller (2023) shows that omitting the treatment-group fixed effect amounts

to making an assumption that the treatment is independent of potential outcomes. In this way,

the Assumption 1 ensures even the strong parallel trends assumptions for continuous treatments

introduced by Callaway et al. (2024). This is discussed in more detail in Appendix C.

6.2 Instrument Construction

As discussed in Section 4, instruments Z are chosen to estimate δi in the first stage according to

a function that depends on the assigned judge j, committed crime c, and personal characteristics

x. I do this with the use of honest forest predictions in the approach of Wager and Athey (2018).

I additionally avoid overfitting by training predictions for the potential punishments of i on the

sample of defendants that are assigned judge j but do not live in the same zip-code as i (thereby

also excluding i from the sample). As a result, the prediction does not depend on the assignment

of i or others living in their community.

The results of Wager and Athey (2018) show that honest forest predictions are an unbiased
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estimator for the conditional mean function of the predicted variable. That is, let X be the

set of pre-trial measures used to fit the random forest model and m(J,X,Zip) be the predicted

punishment of judge J for an individual with pretrial characteristics X who lives in zipcode zip.

Then

E[m(J,X, zip)] = E[W |J,X,Zip ̸= zip].

As a comment, the sample selection that omits the defendant’s zipcode induces a bias on the

random forest predictions and might induce a correlation in the weight distribution and potential

outcomes if judges hold strong preferences over individual zip codes. However, the leave-out

forest can also be viewed as a cluster JIVE estimator that eliminates many-treatment biases in

the second stage that arise when i’s instrument is correlated with its own treatment assignment

(Frandsen et al., 2024). Thus, this suggests a trade-off between inducing a correlation in the

weights over zipcodes and a bias in the second stage outcomes.

The random forest predictions are made over the set of pre-trial characteristics described in

Table 1 and additionally dummy indicators for the crime commited by the defendant and a set

of time controls to account for temporal dynamics in judge preferences. My instruments are

constructed by following the “recentering” approached described in Borusyak and Hull (2023).

To do this, I first predict the punishment of defendant i for each possible judge to which they

might possibly be assigned to produce a set of predictions m(J, xi). These predictions are made

for judge decisions on probation assignment, probation time, stayed time, prison time, and fine

assignment. Then, for each respective regression specification, I construct instruments by first

transforming the predicted punishments to obtain the predictions for the endogenous second-

stage regression variables, which I denote W forest (for example, in Equation (3) the prediction for

(PrisDuration)<5 is obtained by transforming the prediction for prison sentence lengths). I then

estimate the average predicted regression variables, EJ [W forest], by averaging the predictions

W forest, where the probability of being assigned to judge J is given by the share of defendants

assigned to judge J in the division rotation of defendant i. Lastly, I compute the predicted

sentencing shock as

δ̂i = W forest − EJ [W forest].

By construction, δ̂i is conditionally independent of potential outcomes after conditioning on X

and is (unconditionally) mean independent of potential outcomes.

6.3 Testing Identifying Assumptions

The results of Section 5 show that coefficient estimates from Equations (3) and (4) can be

interpretted as weighted LATEs only when Assumptions 1, 2, 3, 4, and 5 hold. I assess each of

these in turn.

Instrument Exogeneity

Assumption 1 depends on whether the assignment of cases to judges is independent of poten-

tial outcomes. This assumption is not directly testable because all potential outcomes are not

observed, however indirect balance tests can be conducted by assessing whether assignment is

correlated with pre-trial defendant characteristics. Balance tests are commonly conducted by

regressing a set of pre-trial characteristics on dummy variables for assignment to each judge. For
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my setting, the balance test regression is given by

Xi = δj + γr + ei (5)

where δj is a fixed effect for judge j, γr is a Crime×Division×Cycle fixed effect8, and ei is a

residual error term. The joint F-test for whether δj = 0 for all j provides an indirect test for As-

sumption 1. However, the F-test relies on the assumption that the δ̂j are approximately normally

distributed. When the fixed-effect group sizes used to compute δ̂j are small, this assumption

generally does not hold and the F-statistic will not be even asymptotically F-distributed (Blanca

et al., 2017).

In my setting, assignment groups are formed by the combination of Judge × Crime ×
Division×Cycle. Particularly problematic is the fact that in some cycles are very short (some-

times lasting only a couple months). Because fixed effects for judges j are estimated separately

within each rotation cycle, the assignment group sizes do not grow with the sample size and are

unequally distributed across randomization blocks. I address this by instead conducting a test

based on randomization inference in which I randomly re-assign defendants to a judge within the

same randomization block. Under the null hypothesis that the simulated randomization proce-

dure matches the true randomization procedure, the placebo test statistics are drawn from the

same distribution as the observed test statistic and inference can then be made by comparing the

true statistic against the placebo distribution (Fisher, 1935). This provides a distribution-free

test that corrects for the many-group false positive rate. The test procedure is as follows:

1. Estimate Equation (5) and store the resulting F-statistic for joint significance

2. Randomly reassign judges without replacement to a case within the same

Crime×Division× Cycle block

3. Estimate Equation (5) for the new judge assignment structure created by Step 2

4. Repeat Steps 2 - 3 M times, recording the obtained F-statistic each time

5. Conduct a one-sided test at the α significance level by comparing the F-statistic obtained

in Step 1 to the (1 − α) percentile of the M statistics obtained from Steps 2 - 4. The null

hypothesis is rejected if the observed statistic is greater than this threshold9

Table 2 reports results for these tests against 12 pre-trial defendant characteristics. Each test

features a placebo distribution of 100 simulated judge randomizations. In only one case is the

null hypothesis rejected (p-value of 0.07). This, however, does not differ dramatically from what

would be expected by random chance because over 12 tests it would be expected to reject on

average 1.2 tests at the 90% confidence level due to random variation. Thus, I do not find strong

evidence against the null that the assignment of defendants to judges is random conditional on

the initial Crime×Division× Cycle block classification.

8The inclusion of γr is important because the court assignment procedures discussed above indicate that judge
assignment is only random conditional on the initial crime and court division classification within a given court
rotation cycle.

9The balance test is conducted with a one-sided t-test because selective assignment on pre-trial characteristics
should induce greater variation in judge averages than under random assignment. In this case, the F-statistic should
grow larger.
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Table 2: Placebo Tests for Balance of Randomization

F-statistic Placebo 90th Percentile p-value N
(1) (2) (3) (4)

Units 1.28 1.90 0.63 28,324
Mean unit area 2.84 9.46 0.23 28,324
Mean unit value 1.90 2.09 0.16 28,324
Mean bedrooms 2.84 5.08 0.28 28,324
Age 1.39 5.77 0.75 28,324
Male 1.38 16.56 0.24 28,324
White 6.47 1.92 0.10 28,324
Black 7.27 8.32 0.22 28,324
Divorced last year 1.02 1.59 0.78 28,324
Paternity claim last year 1.10 1.73 0.72 28,324
Evicted last year 10.12 9.91 0.06 28,324
Committed crime last year 1.37 12.78 0.52 28,324

Notes: Permutation based placebo tests for balance of randomization in judge
assignment to criminal defendants. Column (1) presents the F-statistic for joint
significance from a regression of defendant pre-trial characteristics on the assigned
judge. Column (2) presents the 90th percentile of the placebo distribution of F-
statistics obtained from regressions of pre-trial characteristics on judge fixed effects
for the re-randomized judicial assignment. Column (3) presents a rank-based p-
value obtained from comparing the observed F-statistic of Column (1) to the placebo
distribution, with bold values indicating that the observed F-statistic is statisticall
different from the placebo distribution at the 10% confidence level. Column (4)
presents observation counts for the regressions.

First Stage Relevance

My analysis hinges on the notion that (i) judges differ in their sentencing preferences and (ii)

that these preferential differences are predictive of the actual sentences given to defendants.

Table 3 presents summary statistics for actual sentences, random forest predictions of these

sentences and the recentered deviation instruments. Approximately 45% of the sample is assigned

to probation. Defendants are on average assigned to probation for a length of 0.8 years and with

a stayed prison sentenced of 0.73 years and assigned to prison for a length of 1.5 years. Fines

are applied in approximately 11% of cases. The random forest predictions very nearly match

the first and second moment of the actual distribution, though the RMSE is relatively large for

prison sentence lengths, stayed sentences, and fines. The recentered instruments are on average

close to zero, consistent with the notion that they are mean-zero variables.

Next, I present the first stage estimates for both the cross-sectional and panel estimators.

Appendix Table B3 presents the first stage for the cross-sectional specification given by Equation

(3). Each column represents a regression of the indicated sentencing measure on the instruments

(rows). The results indicate that in general the first-stage relationship between expected and

actual sentencing is strong. Examining the diagonal of the table indicates how a particular

dimension of the expected sentence predicts the actual sentence of that same dimension, condi-

tional on the other judge preferences. The diagonal elements are all highly significant, suggesting

that the judge’s expected punishments are indeed strong predictors for the actual punishment.

Sanderson-Windmeijer F-statistics provide a measure for the overall strength of the first stage

relationships when considering the degree of common variation across the first stage equations

(Sanderson and Windmeijer, 2016). All SW-F statistics range from 151 to over 1,800.

Appendix Table B4 presents the first stage for the panel specification given by Equation (4).

22



Table 3: Summary Statistics for Average Criminal Punishments

Punishment RF Predicted Recentered IV RMSE N
(1) (2) (3) (4)

Probation 0.4541 0.4539 0.0117 0.0115 28,324
(0.4979) (0.4962) (0.0416)

Probation Time (Years) 0.8038 0.8018 0.0225 0.1972 28,324
(1.09) (1.05) (0.1486)

Stayed Sentence (Years) 0.7311 0.7319 0.0215 0.3992 28,324
(1.69) (1.56) (0.2676)

Prison Time (Years) 1.52 1.55 0.0729 1.73 28,324
(5.02) (4.60) (1.21)

Fine 0.1115 0.1120 0.0108 0.1108 28,324
(0.3148) (0.2772) (0.0815)

Notes: Table rows present means and standard deviations below in parentheses for crim-
inal punishments. Column (1) presents statistics for the sample averages. Column (2)
presents statistics for random forests predictions of the judge to which the defendant was
actually assigned. Column (3) presents statistics for the recentered deviation instruments.
Column (4) presents the RMSE of the predictions in column (2) relative to the actual
assignments in column (1).

The diagonal is again generally strongly significant and SW-F statistics range from 50 to over

1,100.

Conditional Monotonicity and Exclusion

Bhuller and Sigstad (2023) propose an indirect test to jointly assess the validity of the Assump-

tions 1, 2, 4, and 5. The null hypothesis is that the assumptions jointly hold and a rejection of

the null implies that at least one of the assumptions is not satisfied. The tests then provide an

initial sense as to whether the assumptions hold10. Because the balance tests conducted above

do not provide evidence for imbalance in pre-trial characteristics, I assume that Assumption 1

holds and instead interpret the results as tests of Assumptions 2, 4, and 5. I implement their

test as follows:

1. Estimate the first stage for the whole sample

2. Split the sample into two groups on the basis of pre-trial characteristics X

3. Within each group of the sample split, regress actual sentences W onto the fitted values

Ŵ obtained in Step 1. That is, for each sub-group I regress

Wk,i = ω̃Ŵi + ηzip + γr + ui (6)

4. For sentencing dimension Wk, conduct a Wald test that the kth coefficent, ω̃k, is non-

negative (average conditional monotonicity) and a Wald test for the joint hypothesis that

all other coefficients, ω̃−k, are not different from zero (conditional exclusion restriction)

5. Repeat Step 4 for each element of W

Appendix Tables B1 and B2 present p-values for these test for the cross-sectional and panel

specifications. Each cell represents the p-value from the test within the subgroup indicated by the

row and column for the average conditional monotonicity (Panel A) and conditional exclusion

10Bhuller and Sigstad (2023) derive the tests within a multiple discrete treatment setting, but their econometric
setup closely mirrors that of Section 5.
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restriction (Panel B). Bolded p-values indicate a rejection of the null hypothesis at the 10%

confidence level. If the null hypothesis is rejected, then the 2SLS estimand may not represent a

weighted LATE. For the cross-sectional specification, I reject the null hypothesis for conditional

exclusion in 9 cases. Given that I conduct the test across 24 subgroups for 4 treatments (96 total

tests), this is not different from what would be expected by random chance. This differs from

the panel estimator in which I find strong evidence that the conditional exclusion restriction

is violated. This might reflect that the panel estimator struggles to decompose the effect of

sentence lengths between exposure, release, and the interaction terms. I find no evidence that

the average conditional monotonicity assumption is violated.

As an illustrative exercise, I reconduct the conditional exlcusion restriction tests for Equation

(3) when not instrumenting for all elements of W but instead adopt alternative approaches to

control for omitted treatments found in the literature. These tests are presented in Appendix E

and provide strong evidence that when elements of W are omitted, the exclusion restriction is vi-

olated and estimates no longer represent a weighted LATE. Alternative approaches to controlling

for omitted treatment biases–by either controlling for the instrument of an omitted treatment or

by re-estimating effects in subsamples–do not appear to lead to any improvements in the test.

7 Empirical Results

7.1 Cumulative Effects

Table 4 presents estimates for the effect of criminal sentencing on crimes committed in the

subsequent fives years as estimated by Equation (3). Panel A presents effects for counts of crimes

committed by the defendant while Panel B presents effects on the crime rate per property unit

committed by any other resident of the defendant’s address. Each column is a separate regression.

For comparison, odd numbered columns provide estimates when sentence durations are omitted

while even columns present estimates from my preferred specification when sentence durations

are included.

Defendant Responses

First focusing on the extensive margin, the estimates indicate that the marginally probationed

defendant commits on average 0.1 more crimes over the first 5 years post-sentencing than if they

were incarcerated, which is largely driven by property crimes (increase of 0.07 property crimes),

though only the estimated effect on property crimes is different from zero. Studying the effect of

sentence durations, I find that both probation and prison sentence lead to statistically significant

reductions in crime over the first first years. Specifically, an additional year of probation prevents

0.1 crimes, of which are largely property crimes, while an additional year in prison prevents on

average 0.08 crimes, for which I find significant reductions in both violent and non-violent crimes.

Residential Responses

Panel B of Table 4 presents my estimates for effects on crime rates committed by other members

of a defendant’s residence11. In this case, I only find evidence for effects of prison sentence

11Rates are computed as the number of crimes committed by someone else living at the same address of the defendant
divided by the number of housing unit located at the address.
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Table 4: Cross-sectional Effects of Courtroom Sentencing on Crime
5 Years Post-sentencing

All Crimes Property Crimes Violent Crimes Other Crimes
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Crimes by Defendant

Extensive Margin
Probation 0.0511 0.0986 0.0212 0.0738∗ 0.0132 0.0419 0.0168 −0.0171

(0.0380) (0.0691) (0.0182) (0.0387) (0.0213) (0.0334) (0.0241) (0.0443)
Probation Years −0.1024∗∗∗ −0.0740∗∗∗ −0.0235 −0.0049

(0.0360) (0.0213) (0.0174) (0.0224)
Stayed Years 0.0001 0.0268∗∗∗ −0.0027 −0.0239∗∗∗

(0.0141) (0.0092) (0.0066) (0.0088)
Prison Effects
< 5 Years −0.0845∗∗∗ −0.0238∗∗ −0.0116∗∗ −0.0491∗∗∗

(0.0138) (0.0094) (0.0057) (0.0080)

Panel B: Crimes by Others on Property

Extensive Margin
Probation 0.0303 0.0608 0.0138 0.0267 0.0078 0.0013 0.0087 0.0328

(0.0400) (0.1132) (0.0145) (0.0330) (0.0131) (0.0359) (0.0253) (0.0635)
Probation Years −0.0787 −0.0284 −0.0070 −0.0433

(0.0678) (0.0179) (0.0217) (0.0376)
Stayed Years 0.0086 0.0081 −0.0033 0.0038

(0.0182) (0.0064) (0.0064) (0.0105)
Prison Effects
< 5 Years −0.0600∗∗∗ −0.0156∗∗ −0.0148∗∗∗ −0.0296∗∗∗

(0.0160) (0.0077) (0.0051) (0.0093)

N 28,324 28,324 28,324 28,324 28,324 28,324 28,324 28,324
Kleibergen-Paap rk LM Stat 3,076.59 764.15 3,076.59 764.15 3,076.59 764.15 3,076.59 764.15
Kleibergen-Paap rk F Stat 802.67 206.17 802.67 206.17 802.67 206.17 802.67 206.17
Continuous Effects No Yes No Yes No Yes No Yes

Notes: 2SLS estimates for the effect of sentencing on criminal outcomes in the 60 months post-sentencing. Each
column is a 2SLS regression of the outcome on sentencing dimensions, instrumented with assigned judge’s expected
sentence. Panel A presents estimates for crimes commited by the defendant. Panel B presents estimates for crime
rates committed by others (excluding the defendant) living at the same residence as the defendant as a rate per
property unit on the address. Odd columns exclude continuous dimensions of court sentences from the estimating
equation while even columns include continuous sentencing dimensions. Robust standard errors in parentheses.
∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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lengths. Specifically, an additional year in prison reduces the residence crime rate by 0.06 crimes

over the first five post-sentencing years. Studying effects across different crime categories, I find

that these reductions are driven by both property and violent crimes.

These results might be driven by either deterrent responses to community members sentence

or through reduced exposure to an ex-convict. I explore these potential mechanisms in more

detail below.

7.2 Mechanisms: Incapacitation and Exposure Effects

The previous analysis provides evidence that both probation and prison reduce crime. Proba-

tioned defendants commit more crimes, but this effect can be partially mitigated by extending

the length of the probation term. As well, probationed offenders appear most susceptible to

commit property crimes. The nature of the punishment also has spillover effects on the local

neighborhood of a defendant as longer prison sentences appears to decrease local crime. How-

ever, an important policy question is whether these effects purely reflect incapacitation effects

associated with higher custody levels or whether incarceration or probation sentences can pro-

vide longer lasting behavioral changes that reduce recidivism after the sentence. As discussed in

Section 6, these mechanisms can be assessed with the panel estimator given by Equation (4).

Estimates of Equation (4) are presented in Table 5. Panel A again presents results for

defendants while Panel B presents results for crimes of other members of the defendant’s property

as a per household rate. For Panel A, the outcome is the count of crimes commited in year t.

For Panel B, the outcome is the number of crimes committed per unit by others living at the

same address as the defendant in year t.

Defendant Responses

The results indicate that the marginally probationed defendant commits on average 0.15 more

crimes per year than if they were incarcerated. This contrasts with the findings of the cross-

sectional estimates that probationed defendants commit on average more crimes in the first five

years after the sentence. However, the difference can be explained by the exposure term, which

indicates that the increase in crime induced by probation releases is declining as the the offender

has been on probation longer. This reveals an underlying dynamic that the cross-sectional

estimator cannot identify. Specifically, there is a short-term increase in crime when a defendant

is released on probation. However, this causes criminally active defendants to be re-convicted,

so that the effect fades over successive years of custody.

Additionally, there is reduction in convictions once the defendant is released from proba-

tion. This indicates that part of the increase in arrests associated with probation reflects a

policing effect. Specifically, the estimates indicate that a probationed offender is convicted for

approximately 0.1 less crimes after being released from probation. This means that while pro-

bationed offenders commit more crime than if they were incarcerated, part of the crimes they

are convicted for are only identified because of the higher policing levels experienced during the

probation sentence (for example, if the offender fails a drug test). Consistent with this, the re-

ductions in crimes driven by releases are largely comprised of the residual other crime category.

The magnitude of this release effect is also declining in the level of exposure, indicating again

that the effect of probation fades over successive years of custody.
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Turning to prison effects, I find that when a defendant is released from prison they commit

on average 0.13 more crimes per year, which is driven by both violent and other non-property

crimes. The magnitude of these effects nearly match the magnitude of the effects of probation

releases, which might indicate that prison incapacitation effects simply act to push incapacitation

responses to a later date. There is however no evidence for positive or negative effects for exposure

to prison on future crime rates, indicating that increased exposure to prison is neither reformative

nor criminogenic for the defendants in my sample.

Residential Responses

I generally find no evidence for residential responses to criminal sentences with the panel esti-

mator. This however is not necessarily inconsistent with the previous findings with the cross-

sectional estimator, as Equation (4) only captures a defendant’s exposure to different punish-

ments, but it does not reflect the residence’s exposure to the defendant.

To address this, I re-estimate the specification given by Equation (4) when additionally

including the following endogenous variable:

Y earsSinceReleasek = max(t + 1 − SentenceDuration, 0) ×Dk

The measure is defined and included for both prison and probation and is 0 for those note

assigned to punishment k or while the defendant is in custody and represents that number of

years the defendant has been released from custody for punishment k otherwise.

The results for the effect of prison on residence crime rates when including the “Years Since

Release” measures are shown in Table . The results indicate now that while local crime rates

decline following the release of an imprisoned defendant, there are increases in crime rates for

those with longer setentences. The effects are also increasing the longer that the offender has

been returned in the community.

8 Conclusion

In this paper I study how prison sentences and probationary sentences influence the future

criminal behavior of both the sentenced defendant and their surrounding community. To identify

causal effects, I leverage the random assignment of judges to criminal defendants and apply a

2SLS “judge fixed effect” estimator. In making my analysis, I first provide new econometric

results that show that 2SLS estimators for the effect of prison and probation are generally only

valid when judge decisions for potential sentence assignments and durations are simultaneously

estimated. This framework extends the results of Angrist et al. (2000), Bhuller and Sigstad

(2023), Frandsen et al. (2024), and Humphries et al. (2024) by bridging the IV literature on

multiple treatments to the continuous treatment setting and more broadly applies to any setting

in which a continuous treatment(s) is assigned endogenously, but researchers have access to

an instrumental variable that induces exogenous variation in the assignment of both treatment

takeup and intensity. These results also formalize the arguments discussed in Mueller-Smith

(2015) to better understand the threats to validity in multi-treatment settings under arbitrary

first and second stage heterogeneity.

I show that my empirical strategy allows me to overcome omitted treatment biases to a
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Table 5: Panel Estimates for the Effects of Sentencing Releases on Crime
5 Years Post-sentencing

All Crimes Property Crimes Violent Crimes Other Crimes
(1) (2) (3) (4)

Panel A: Crimes by Defendant

Probation Effects
Probation 0.1494∗∗∗ 0.0223 0.0488∗∗∗ 0.0783∗∗∗

(0.0302) (0.0226) (0.0149) (0.0139)
Exposure −0.0450∗∗∗ −0.0133 −0.0167∗∗ −0.0149∗∗

(0.0134) (0.0095) (0.0065) (0.0071)
Release −0.1048∗∗∗ −0.0232 −0.0271 −0.0545∗∗∗

(0.0326) (0.0200) (0.0193) (0.0168)
Release × Exposure 0.0373∗∗ 0.0080 0.0119 0.0174∗∗

(0.0148) (0.0080) (0.0091) (0.0084)
Prison Effects
Release 0.1297∗∗∗ 0.0021 0.0506∗∗ 0.0769∗∗∗

(0.0465) (0.0367) (0.0227) (0.0185)
Release × Exposure 0.0071 0.0264 −0.0173 −0.0020

(0.0354) (0.0285) (0.0173) (0.0128)

Panel B: Crimes by Others on Property

Probation Effects
Probation 0.0440 −0.0171 0.0093 0.0518

(0.0661) (0.0236) (0.0193) (0.0353)
Exposure −0.0120 0.0069 0.0003 −0.0191

(0.0233) (0.0092) (0.0071) (0.0127)
Release −0.0151 −0.0006 0.0033 −0.0179

(0.0268) (0.0176) (0.0086) (0.0177)
Release × Exposure 0.0176 0.0009 −0.0009 0.0175∗∗

(0.0124) (0.0066) (0.0046) (0.0086)
Prison Effects
Release −0.0214 −0.0364 −0.0024 0.0175

(0.0448) (0.0348) (0.0102) (0.0244)
Release × Exposure 0.0285 0.0314 0.0040 −0.0069

(0.0342) (0.0273) (0.0074) (0.0175)

N 141,715 141,715 141,715 141,715
Kleibergen-Paap rk LM Stat 239.93 239.93 239.93 239.93
Kleibergen-Paap rk F Stat 21.92 21.92 21.92 21.92

Notes: 2SLS estimates corresponding to Equation (4) for the effect of sentencing on
criminal outcomes in the year of the observation. Each column is a 2SLS regression
of the outcome on sentencing dimensions, instrumented with the assigned judge’s
expected sentence. Panel A presents estimates for crimes commited by the defen-
dant. Panel B presents estimates for crime rates committed by others (excluding the
defendant) living at the same residence as the defendant as a rate per property unit
on the address. Standard errors clustered by judge in parentheses. ∗∗∗ = p < 0.01,
∗∗ = p < 0.05, ∗ = p < 0.1.

Table 6: Panel Estimates for the Effects of Sentencing Releases on Crime
5 Years Post-sentencing

All Crimes Property Crimes Violent Crimes Other Crimes
(1) (2) (3) (4)

Prison Effects
Release −0.6977∗ −0.1437 −0.3614∗∗ −0.1925

(0.4229) (0.2104) (0.1684) (0.2813)
Release × Exposure 0.2243∗ 0.0614 0.1071∗∗ 0.0557

(0.1259) (0.0651) (0.0489) (0.0832)
Years Since Release 0.2510 0.0455 0.1300∗∗ 0.0755

(0.1528) (0.0743) (0.0603) (0.1008)

N 141,715 141,715 141,715 141,715
Kleibergen-Paap rk LM Stat 26.49 26.49 26.49 26.49
Kleibergen-Paap rk F Stat 2.68 2.68 2.68 2.68

Notes: 2SLS estimates corresponding to Equation (4) for the effect of sentencing
on criminal outcomes in the year of the observation. Each column is a 2SLS
regression of the outcome on sentencing dimensions, instrumented with the assigned
judge’s expected sentence. Panel A presents estimates for crimes commited by
the defendant. Panel B presents estimates for crime rates committed by others
(excluding the defendant) living at the same residence as the defendant as a rate
per property unit on the address. Standard errors clustered by judge in parentheses.
∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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greater extent than other related studies. My econometric results formalize these arguments and

I provide empirical evidence that alternative approaches to controlling for omitted treatment

biases are generally less successful than my preferred estimators.

In the first step of my empirical analysis, I find that harsher sentences generally lead to

reduced crime. Longer sentences–either probation or prison–reduce future crime rates by the

defendants, but the overall reduction in crime from incarceration is larger than probation. In

the second part of my analysis, I seek to better understand the mechanisms driving these results.

I find that for prison the effects appear to largely be driven by incapacitation effects as

recidivism rates spike immediately within one year of the release, but I find no evidence that

increased exposure to prison leads to further reductions (or increases) in crime once the defendant

is released. Instead, effects appear to be driven by how rapidly an offender is released from

custody, which leads to a relatively persistent gap in crime over the first five years.

For probation, I find that during the probation sentence there is an initial policing effect

that appears to increase conviction rates. That is, for those who are assigned to probation and

continue to commit crime, the increased levels of supervision act to increase the probability

of re-conviction during probation. Two-thirds of this effect disappears once the defendant is

released from probation.

And while the mechanisms driving prison and probation effects are different in practice,

the effects of both are indicative of cyclical patterns of crime in which defendants are caught,

punished, released, and caught again. In general, I find little evidence that exposure to either

prison or probation leads to desistence, but rather capture different paths through the criminal

justice system.

However, I do find consistent evidence that exposure to criminals leads to increases in crime

rates at the offender’s residence, which is primarily driven by violent crimes. These effects do

not appear generally appear to be unique to either probation or prison, as residence crime rates

rise when an offender is returned home on probation or returned home after incarceration. This

provides evidence that exposure to criminals in the household/local community plays a role in

the persistence of criminal behavior within a community.

Overall, these findings highlight policy relevant tradeoffs between incarceration and pro-

bation. The direct impact of stringent incarcerative sentences to defendants might be severe

through time lost in prison and labor market disruptions, with little long-term reductions in

long-run crime from the criminal. However, incarceration does provide greater criminal reduc-

tions through the direct incapacitation of the offender and negative spillovers in the community.
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Table B1: Wald Test for the Average Conditional Monotonicity and the Conditional Exclusion Restriction
Cross-Sectional Estimator

Probation Prison Time Probation Time Stayed Time︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
X = 0 X = 1 X = 0 X = 1 X = 0 X = 1 X = 0 X = 1

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Average Conditional Monotonicity

Multi-unit Residence 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1{Unit Area > Median} 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1{Unit Value > Median} 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Family residence 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1{Age > Median} 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Male 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
White 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Other Race 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Divorced last year 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Paternity claim last year 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Evicted last year 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Committed crime last year 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel B: Conditional Exclusion Restriction

Multi-unit Residence 0.9007 0.9509 0.5934 0.7935 0.7910 0.9170 0.6291 0.7702
1{Unit Area > Median} 0.9496 0.9576 0.8469 0.8878 0.6818 0.8104 0.7390 0.8673
1{Unit Value > Median} 0.5210 0.4577 0.4040 0.2811 0.3313 0.2905 0.5785 0.5582
Family residence 0.5973 0.9531 0.7038 0.9637 0.9316 0.9924 0.8057 0.9363
1{Age > Median} 0.9482 0.9251 0.2105 0.3183 0.6253 0.5445 0.3123 0.1040
Male 0.0700 0.7352 0.0552 0.9209 0.0449 0.7791 0.1645 0.7466
White 0.7296 0.0444 0.8619 0.1258 0.5008 0.0040 0.4653 0.0025
Other Race 0.9986 0.3400 0.9948 0.1019 0.9974 0.2474 0.9964 0.2626
Divorced last year 0.9992 0.6744 0.9970 0.8094 0.9999 0.9811 0.9971 0.0867
Paternity claim last year 0.9988 0.7182 0.9988 0.7254 0.9962 0.0217 0.9802 0.0014
Evicted last year 0.9597 0.6708 0.9889 0.7451 0.9213 0.4909 0.9457 0.3515
Committed crime last year 0.9012 0.1102 0.9896 0.8317 0.9427 0.3242 0.9955 0.7590

Notes: Results from Wald tests for average conditional monotonicity and the conditional exclusion restriction for the cross-
sectional estimator given by Equation (3). Rows describe the variable used to determine the sample split, while columns
indicate the sub-sample tested on for each sentencing dimension. Each entry indicates a p-value from an F-test that proper
weights are satisfied. Bolded entries indicate results that are statistically significant at the 90% significance level. Panel A
presents p-values for tests of average conditional monotonicity while Panel B presents p-values for tests of the conditional
exclusion restriction.
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Table B2: Wald Test for Average Conditional Monotonicity and the Conditional Exclusion Restriction
Panel Estimates

Probation Release Prison Release Probation Fine Prison Exposure Probation Exposure Stayed Sentence︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
X = 0 X = 1 X = 0 X = 1 X = 0 X = 1 X = 0 X = 1 X = 0 X = 1 X = 0 X = 1 X = 0 X = 1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Panel A: Average Conditional Monotonicity

Multi-unit Residence 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9989 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1{Unit Area > Median} 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1{Unit Value > Median} 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Family residence 0.9999 1.0000 0.9998 1.0000 1.0000 1.0000 0.9918 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1{Age > Median} 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Male 0.8636 1.0000 0.9998 1.0000 1.0000 1.0000 0.9837 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
White 1.0000 1.0000 1.0000 0.9994 1.0000 0.9891 1.0000 0.9431 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Other Race 1.0000 0.9420 1.0000 0.9956 1.0000 0.9930 1.0000 0.1263 1.0000 0.7612 1.0000 0.9716 1.0000 0.9870
Divorced last year 1.0000 1.0000 1.0000 0.9420 1.0000 0.3908 1.0000 0.9681 1.0000 0.9996 1.0000 0.9992 1.0000 0.9999
Paternity claim last year 1.0000 1.0000 1.0000 0.9965 1.0000 0.9035 1.0000 0.8576 1.0000 0.9950 1.0000 0.9980 1.0000 0.9997
Evicted last year 1.0000 1.0000 1.0000 0.9870 1.0000 1.0000 1.0000 0.9952 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Committed crime last year 1.0000 1.0000 1.0000 0.9795 1.0000 0.0916 1.0000 0.9882 1.0000 1.0000 1.0000 1.0000 1.0000 0.9991

Panel B: Conditional Exclusion Restriction

Multi-unit Residence 0.7230 0.9389 0.8916 0.9839 0.2642 0.5666 0.7006 0.9359 0.9833 0.9968 0.6553 0.9157 0.7820 0.9402
1{Unit Area > Median} 0.9833 0.9839 0.9837 0.9893 0.8408 0.9231 0.9743 0.9816 0.9389 0.9539 0.9733 0.9725 0.9140 0.9114
1{Unit Value > Median} 0.5729 0.6187 0.6751 0.7528 0.2753 0.3094 0.4632 0.4170 0.1019 0.0985 0.4316 0.4626 0.0090 0.0109
Family residence 0.7329 0.9948 0.8662 0.9983 0.6130 0.9978 0.5441 0.9937 0.9918 1.0000 0.8960 0.9990 0.9714 0.9998
1{Age > Median} 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Male 0.0000 0.0132 0.0000 0.0255 0.0000 0.0000 0.0000 0.0033 0.0000 0.0000 0.0000 0.0272 0.0000 0.0106
White 0.2328 0.0000 0.3656 0.0000 0.9359 0.0227 0.8994 0.0319 0.7056 0.0001 0.6574 0.0000 0.6641 0.0000
Other Race 1.0000 0.4858 1.0000 0.2017 1.0000 0.0205 0.9999 0.0186 1.0000 0.2488 1.0000 0.4931 1.0000 0.0909
Divorced last year 1.0000 0.4856 1.0000 0.6940 1.0000 0.5855 1.0000 0.3738 1.0000 0.8604 1.0000 0.7272 1.0000 0.9219
Paternity claim last year 1.0000 0.0795 1.0000 0.0731 1.0000 0.8680 1.0000 0.5540 1.0000 0.8547 1.0000 0.5298 1.0000 0.8403
Evicted last year 0.9210 0.0000 0.9833 0.0031 0.9874 0.1125 0.9854 0.0681 0.9933 0.0172 0.9073 0.0000 0.9881 0.0177
Committed crime last year 0.6992 0.0000 0.2908 0.0000 0.6606 0.0000 0.6987 0.0025 0.4556 0.0000 0.6018 0.0000 0.6225 0.0000

Notes: Results from Wald tests for average conditional monotonicity and the conditional exclusion restriction for the SDIVD estimator given by Equation (4). Rows describe the variable used to determine
the sample split, while columns indicate the sub-sample tested on for each sentencing dimension. Each entry indicates a p-value from an F-test that proper weights are satisfied. Bolded entries indicate
results that are statistically significant. Panel A presents p-values for tests of average conditional monotonicity while Panel B presents p-values for tests of the conditional exclusion restriction.
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Table B3: First Stage Estimates
Cross-sectional Estimates

Probation Probation Time Stayed Sentence Prison Time<5 Fine
(1) (2) (3) (4) (5)

∆{Probation|X} 5.71∗∗∗ 6.55∗∗∗ 3.02∗∗∗ −3.43∗∗∗ −0.4199∗∗∗

(0.1161) (0.2525) (0.5627) (0.1857) (0.0502)
∆{Probation Time|X} −0.0802∗∗∗ 1.75∗∗∗ 1.22∗∗∗ −0.0939∗∗∗ 0.0088

(0.0264) (0.1004) (0.2727) (0.0286) (0.0086)
∆{Stayed Sentence|X} 0.0359∗∗∗ 0.1880∗∗∗ 1.89∗∗∗ −0.0177 −0.0018

(0.0120) (0.0577) (0.2156) (0.0141) (0.0037)
∆{Prison Time<5|X} 0.0394∗∗ 0.0102 −0.0753∗∗ 0.6463∗∗∗ −0.0614∗∗∗

(0.0154) (0.0247) (0.0332) (0.0715) (0.0128)
∆{Fine|X} −0.4737∗∗∗ −0.7785∗∗∗ −0.5116∗∗∗ 0.7690∗∗∗ 2.07∗∗∗

(0.0333) (0.0692) (0.0855) (0.1090) (0.0596)

N 28,324 28,324 28,324 28,324 28,324
SW-F 1,853 579 151 873 1,830
Crime-Division-Rotation FEs Yes Yes Yes Yes Yes
Pre-Trial Controls Yes Yes Yes Yes Yes

Notes: First-stage estimates for Equation (3) for the relationship between the expected sentencing instruments
and endogenous variables of actual sentencing. Each column is a regression of the endogenous variable on
all instruments. SW-F statistics represent Sanderson-Windmeijer F-statistics for tests of weak instruments
with multiple endogenous variables. Standard errors clustered by judge in parentheses. ∗∗∗ = p < 0.01,
∗∗ = p < 0.05, ∗ = p < 0.1.
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Table B4: First Stage Estimates
Panel Estimates

Probation Releaset−1 Prison Releaset−1 Probation Fine Prison Custody Probation Custody Prison Exposure Probation Exposure Stayed Sentence
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Extensive Margin
E{Probation Releaset−1|J} −0.0439∗∗∗ 0.8304∗∗∗ 0.0060 0.0262∗ −0.0505∗∗∗ 0.1261∗∗∗ −0.4789∗∗∗ 0.7047∗∗∗ −0.0762∗

(0.0160) (0.0236) (0.0133) (0.0143) (0.0171) (0.0314) (0.0322) (0.0839) (0.0412)
E{Prison Releaset−1|J} 0.8091∗∗∗ −0.0219 −0.0950∗∗∗ 0.0814∗∗∗ −0.1641∗∗∗ 0.1020∗∗∗ 0.0891∗ −0.2568∗∗∗ −0.1400∗∗

(0.0495) (0.0262) (0.0200) (0.0294) (0.0328) (0.0315) (0.0473) (0.0449) (0.0704)
E{Probation|J} 0.1070∗∗∗ −0.1168∗∗∗ 0.5985∗∗∗ 0.0887∗∗∗ −0.1436∗∗∗ −0.1715∗∗∗ 0.5530∗∗∗ −0.0719 0.3510∗∗∗

(0.0184) (0.0206) (0.0790) (0.0274) (0.0399) (0.0357) (0.0660) (0.0672) (0.1182)
E{Fine|J} −0.0022 0.0806∗∗ 0.1203∗∗ 0.8044∗∗∗ −0.0006 0.0323∗ 0.0102 0.0488 −0.0689

(0.0311) (0.0338) (0.0583) (0.0440) (0.0170) (0.0184) (0.0245) (0.0326) (0.0688)
Prison Durations
E{Custody (Prison)t|J} 0.0396∗∗∗ −0.0208∗∗ −0.0144 0.0247∗∗∗ 0.0424∗∗∗ 0.0173∗ 0.0172∗∗∗ −0.0276∗ 0.0521∗∗∗

(0.0071) (0.0087) (0.0100) (0.0090) (0.0075) (0.0099) (0.0055) (0.0161) (0.0162)
E{Prison Timet|J} 0.0031 −0.0019 −0.0038 0.0055∗∗∗ −0.0070∗ 0.0938∗∗∗ −0.0060∗ 0.0583∗∗∗ −0.0093

(0.0022) (0.0025) (0.0029) (0.0021) (0.0037) (0.0113) (0.0031) (0.0116) (0.0155)
Probation Durations
E{Custody (Probation)t|J} −0.0708∗∗∗ −0.0226∗∗∗ −0.0157 0.0297∗∗∗ 0.0221∗∗ −0.0829∗∗∗ 0.1878∗∗∗ −0.2875∗∗∗ −0.0922∗

(0.0184) (0.0077) (0.0114) (0.0114) (0.0110) (0.0121) (0.0186) (0.0370) (0.0472)
E{Probation Timet|J} −0.0307∗∗∗ 0.0012 −0.0014 0.0050∗ −0.0294∗∗∗ 0.0802∗∗∗ −0.0236∗∗∗ 0.2236∗∗∗ −0.0055

(0.0059) (0.0035) (0.0036) (0.0030) (0.0045) (0.0082) (0.0044) (0.0181) (0.0148)
E{Stayed Time|J} 0.0077∗ 0.0110∗∗∗ −0.0444∗∗∗ −0.0001 0.0093 −0.0026 −0.0487∗∗∗ 0.0205∗ 0.1618∗∗∗

(0.0044) (0.0041) (0.0120) (0.0038) (0.0082) (0.0076) (0.0074) (0.0117) (0.0540)

N 141,435 141,435 141,435 141,435 141,435 141,435 141,435 141,435 141,435
SW-F 243 537 641 739 293 85.09 1,140 160 50.60
Crime-Division-Rotation FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Pre-Trial Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: First-stage estimates for Equation (3) for the relationship between the expected sentencing instruments and endogenous variables of actual sentencing. Each column is a regression of the
endogenous variable on all instruments. SW-F statistics represent Sanderson-Windmeijer F-statistics for tests of weak instruments with multiple endogenous variables. Standard errors clustered
by judge in parentheses. ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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B Econometric Results

Lemma 5. Under Assumption 3, β2SLS is given by

β2SLS =

K∑
k=1

Cov(Ŵ ,WDk)−1
K∑

k=1

Cov(Ŵ , gk(Tk, U)Dk).

or equivalently by

β2SLS =

K∑
k=1

V ar(Ŵ )−1
K∑

k=1

Cov(Ŵ , gk(Tk, U)Dk).

where Ŵ is given by

Ŵ := V ar(Z)−1Cov(Z,W )Z

and gk(Tk, U) is the potential outcome when receiving treatment k with a dosage of Tk.

Proof. Under Assumption 3, Cov(Z,W )−1 exists. It follows that

V ar(Ŵ )−1Cov(Ŵ , Y ) = Cov(Ŵ , Ŵ )−1Cov(Ŵ , Y )

= Cov(Ŵ ,W − (W − Ŵ ))−1Cov(Ŵ , Y )

= [Cov(Ŵ ,W ) − Cov(Ŵ ,W − Ŵ )]−1Cov(Ŵ , Y )

= Cov(Ŵ ,W )−1Cov(Ŵ , Y )

= Cov
(
V ar(Z)−1Cov(Z,W )Z,W

)−1

Cov
(
V ar(Z)−1Cov(Z,W )Z, Y

)
= Cov

(
Z,W

)−1

(V ar(Z)−1Cov(Z,W ))−1V ar(Z)−1Cov(Z,W )Cov
(
Z, Y

)
= Cov(Z,W )−1Cov(Z, Y )

= β2SLS .

The third equality holds from the distributive property of covariances. The fourth equality holds

from the fact that W −Ŵ is the residual of projection of W on Z and hence is uncorrelated with

the projection itself, given by Ŵ . The fifth equality follows from replacing Ŵ with its definition.

The sixth equality holds as a property of the linearity property of covariance matrices and as a

property of the inverse of products of matrices.

Now focus on the term Cov(Ŵ , Y ). Then note that this may equivalently be written as

Cov(Ŵ , Y ) = Cov
(
Ŵ ,

K∑
k=1

gk(Tk, U)Dk

)
=

K∑
k=1

Cov
(
Ŵ , gk(Tk, U)Dk

)
Similarly, we have that

Cov(Ŵ ,W ) =

K∑
k=1

Cov
(
Ŵ ,WDk

)
.
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Lemma 6. Under Assumptions 1 and 2, the covariance of Cov(Ŵ , Y |Dk = 1) is given by

Cov(Ŵ , Y |k, v) =

∫ ∞

0

βACRT
k,v (t) V ar

(
1{Tk > t}|k, v

)(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v, Tk ≤ t]

)
dt.

Proof. Consider the conditional covariance Cov(Ŵ , Y |Dk = 1, v). Expressing Y under treatment

k in terms of its potential outcome function gives

Cov
(
Ŵ , Y |Dk = 1, v

)
= Cov

(
Ŵ , gk(Tk, U)|k, v

)
.

Now we may write gk(Tk, U) as

gk(Tk, U) = gk(0, U) +

∫ Tk

0

∂

∂t
gk(t, U)dt = gk(0, U) +

∫ ∞

0

∂

∂t
gk(t, U)1{Tk > t}dt.

Thus, the conditional covariance Cov(Ŵ , Y |k, v) becomes

Cov(Ŵ , Y, |k, v) = Cov
(
Ŵ , gk(0, U) +

∫ ∞

0

∂

∂t
gk(t, U)1{Tk > t}dt |k, v

)
= Cov

(
Ŵ , gk(0, U) |k, v

)
+ Cov

(
Ŵ ,

∫ ∞

0

∂

∂t
gk(t, U)1{Tk > t}dt |k, v

)
= Cov

(
Ŵ ,

∫ ∞

0

∂

∂t
gk(t, U)1{Tk > t}dt |k, v

)
= E

[
(Ŵ − E[Ŵ |k, v])

∫ ∞

0

∂

∂t
gk(t, U)1{Tk > t}dt

∣∣∣k, v]
=

∫ ∞

0

E
[ ∂

∂t
gk(t, U)1{Tk > t}(Ŵ − E[Ŵ |k, v])

∣∣∣k, v]dt
=

∫ ∞

0

E
[ ∂

∂t
gk(t, U)

∣∣k, v]E[1{hk(Z, V ) > t}(Ŵ − E[Ŵ |k, v])
∣∣k, v]dt

=

∫ ∞

0

βACRT
k,v (t) E

[
1{hk(Z, V ) > t}(Ŵ − E[Ŵ |k, v])

∣∣k, v]dt
=

∫ ∞

0

βACRT
k,v (t) E[1{Tk > t}(Ŵ − E[Ŵ ])|k, v]dt.

The third equality holds from Assumptions 1 and 2. The fifth equality holds from Fubini’s

Theorem. The sixth equality follows from Assumptions 1 and 2. Specifically, after conditioning

on v, 1{hk(Z, V ) > t}(Ŵ − E[Ŵ |k, v]) is simply a function of Z. Assumptions 1 and 2 then

imply that gk(t, U) is independent of Z (and any function of Z) and hence the expectation can

be separated. The seventh equality applies the definition of βACRT
k,h (t).

Now consider the expectation term given by E
[
1{Tk > t}(Ŵ − E[Ŵ ])

∣∣k, v]. This can be

rewritten as

E
[
1{Tk > t}(Ŵ − E[Ŵ |k, v])

∣∣k, v] = P
(
Tk > t|k, v

)(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v]

)
.

Thus, we may express the conditional covariance Cov(Ŵ , Y, |k, v)∫ ∞

0

βACRT
k,v (t)P(Tk > t|k, v)

(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v]

)
dt (7)
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The term E[Ŵ |k, v] may be rewritten as

E[Ŵ |k, v] = P
(
Tk > t|k, v)

)
E[Ŵ |k, v, Tk > t] +

(
1 − P(Tk > t|k, v)

)
E[Ŵ |k, v, Tk ≤ t]

If follows then that

E
[
1{Tk > t}(Ŵ − E[Ŵ |k, v])

∣∣k, v]
= P

(
Tk > t|k, v

)(
1 − P

(
Tk > t|k, v

))(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v, Tk ≤ t]

)
= V ar

(
1{Tk > t}|k, v

)(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v, Tk ≤ t]

)
.

This gives the result that Formula (7) is equivalently given as

Cov(Ŵ , Y |k, v) =

∫ ∞

0

βACRT
k,v (t) V ar

(
1{Tk > t}|k, v

)(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v, Tk < t]

)
dt.

Lemma 7. The summed covariances of the conditional expectations of Ŵ and potential out-

comes, conditional on Dk and v are given by

K∑
k=1

Cov
(
E[Ŵ |Dk, v],E[gk(Tk, U)Dk|Dk, v]

)
= E

[
Cov

(
E[Ŵ |D],E[h(Z)|D] |v

)
E[βlevel|v]

]

Proof. First consider the term Cov
(
E[Ŵ |Dk, v],E[gk(Tk, U)Dk|Dk, v]

)
. This can be equiva-

lently expressed as

Cov
(
E[Ŵ |Dk, v],E[gk(Tk, U)Dk|Dk, v]

)
= E

[
(E[Ŵ |Dk, v] − E[Ŵ ])E[gk(Tk, U)Dk|Dk, v]

]
=

∑
v

P(Dk = 1, v)(E[Ŵ |k, v] − E[Ŵ ]) E[gk(Tk, U)|k, v].

Now consider the term E[gk(Tk, U)|k, v]. This term represents the expected potential outcomes

for response type v who receive treatment k. We may express this generally as a deviation from

the mean outcome for type v:

E[g(W,U)|k, v] = (E[g(W,U)|k, v] − E[g(W,U)|v]) + E[g(W,U)|v]

= (1 − P(k|v))
(
E[g(W,U)|k, v] − E[g(W,U)|Dk ̸= 1, v]

)
+ E[g(W,U)|v]

= (1 − P(k|v))E[Tk|k, v]βtakeup
k,v + E[g(W,U)|v].

Returning to the covariance term, we then have

Cov
(
E[Ŵ |Dk, v],E[gk(Tk, U)Dk|Dk, v]

)
=

∑
v

P(k, v)(E[Ŵ |k, v] − E[Ŵ ])
(

(1 − P(k|v))E[Tk|k, v]βtakeup
k,v + E[g(W,U)|v]

)
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This may be expressed as the sum of two summations. The first summation is given by∑
v

(E[Ŵ |k, v] − E[Ŵ ])P(k, v) (1 − P(k|v))E[Tk|k, v]βtakeup
k,v

=
∑
v

(E[Ŵ |k, v] − E[Ŵ ])P(v)V ar(Dk = 1|v) E[Tk|k, v]βtakeup
k,v

=
∑
v

P(v)κk,vβ
takeup
k,v

= Ev

[
κk,vβ

takeup
k,v

]
.

where Ev indicates that the expectation is taken over v and

κk,v := (E[Ŵ |k, v] − E[Ŵ ])V ar(Dk = 1|v)E[Tk|k, v].

The second summation is given by∑
v

P(k, v)(E[Ŵ |k, v] − E[Ŵ ])E[g(W,U)|v].

The covariance then is given by

Cov
(
E[Ŵ |Dk, v],E[gk(Tk, U)Dk|Dk, v]

)
= Ev

[
κk,vβ

takeup
k,v

]
+

∑
v

P(k, v)(E[Ŵ |k, v] − E[Ŵ ])E[g(W,U)|v]

Taking the summation over all k treatments gives

K∑
k=1

Cov
(
E[Ŵ |Dk, v],E[gk(Tk, U)Dk|Dk, v]

)
=

K∑
k=1

E
[
κk,vβ

takeup
k,v

]
+

K∑
k=1

∑
v

P(k, v)(E[Ŵ |k, v] − E[Ŵ ])E[g(W,U)|v]

=

K∑
k=1

E
[
κk,vβ

takeup
k,v

]
+ Cov

(
E[Ŵ |K,V ],E[g(W,U)|V ]

)
.

The last step is to show that under Assumption 1,Cov
(
E[Ŵ |K,V ],E[g(W,U)|V ]

)
= 0.

Cov
(
E[Ŵ |K,V ],E[g(W,U)|V ]

)
= E

[
E[Ŵ |K,V ] E[g(W,U)|V ]

]
− E[Ŵ ]E[g(W,U)]

= E
[
E
[
E[Ŵ |K,V ] E[g(W,U)|V ]

∣∣V ]]
− E[Ŵ ]E[g(W,U)]

= E
[
E
[
E[Ŵ |K,V ]

∣∣V ]
E[g(W,U)|V ]

]
− E[Ŵ ]E[g(W,U)]

= E
[
E[Ŵ |V ] E[g(W,U)|V ]

]
− E[Ŵ ]E[g(W,U)]

= E
[
E[Ŵ ] E[g(W,U)|V ]

]
− E[Ŵ ]E[g(W,U)]

= E[Ŵ ]E[g(W,U)] − E[Ŵ ]E[g(W,U)]

= 0
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where the second, third, fourth, and sixth equalities apply the law of iterated expectations and

the fifth equality applies Assumption 1.

Theorem 1. Under Assumption 1, 2, and 3, the 2SLS estimand is given by

β2SLS = ω−1
K∑

k=1

∫ ∞

0

E[τk,v(t)βACRT
k,v (t)]dt + ω−1

K∑
k=1

E
[
κk,vβ

takeup
k,v

]
where

ω :=

K∑
k=1

∫ ∞

0

E[λk,v(t)]dt +

K∑
k=1

E[κk,v]

τk,v(t) := V ar(1{Tk > t}|v)
(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v, Tk ≤ t]

)
κk,v := V ar(Dk|v)

(
E[Ŵ |k, v] − E[Ŵ ]

)
E[Tk|k, v]

Proof. From Lemma 5, the 2SLS estimand is given by

β2SLS = Cov(Ŵ ,W )−1Cov(Ŵ , Y )

=
( K∑

k=1

Cov(Ŵ , hk(Z, V )Dk)
)−1 K∑

k=1

Cov(Ŵ , gk(Tk, U)Dk)

Applying the Law of Total Covariance to each of the covariance terms gives

Cov(Ŵ ,W ) =

K∑
k=1

E[Cov(Ŵ , hk(Z, V )Dk|Dk, v)] +

K∑
k=1

Cov
(
E[Ŵ |Dk, v],E[hk(Z, V )Dk|Dk, v]

)
Cov(Ŵ , Y ) =

K∑
k=1

E[Cov(Ŵ , gk(Tk, U)Dk|Dk, v)] +

K∑
k=1

Cov
(
E[Ŵ |Dk, v],E[gk(Tk, U)Dk|Dk, v]

)
Consider that when Dk = 0, the terms hk(Z, V )Dk and gk(Tk, U)Dk are also always zero. Hence

the conditional covariances are also zero for any v when Dk = 0:

Cov(Ŵ , hk(Z, V )Dk|Dk = 0, v) = 0

Cov(Ŵ , gk(Tk, U)Dk|Dk = 0, v) = 0

It follows then that we may write the unconditional covariances above as

Cov(Ŵ ,W ) =

K∑
k=1

∑
v

P(k, v)Cov
(
Ŵ , hk(Z, V )Dk|k, v

)
+

K∑
k=1

Cov
(
E[Ŵ |Dk, v],E[hk(Z, V )Dk|Dk, v]

)
Cov(Ŵ , Y ) =

K∑
k=1

∑
v

P(k, v)Cov
(
Ŵ , gk(Tk, U)Dk|k, v

)
+

K∑
k=1

Cov
(
E[Ŵ |Dk, v],E[gk(Tk, U)Dk|Dk, v]

)
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Now consider Cov(Ŵ , Y ). By Lemma 6 and Lemma 7, this is equivalently given by

Cov(Ŵ , Y ) =

K∑
k=1

∑
v

P(k, v)

∫ ∞

0

βACRT
k,v (t) V ar

(
1{Tk > t}|k, v

)(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v, Tk < t]

)
dt

+

K∑
k=1

E
[
κk,vβ

takeup
k,v

]
=

K∑
k=1

∑
v

P(v)

∫ ∞

0

τk,v(t)βACRT
k,v (t)dt +

K∑
k=1

E
[
κk,vβ

takeup
k,v

]
=

K∑
k=1

∫ ∞

0

E
[
τk,v(t)βACRT

k,v (t)
]
dt +

K∑
k=1

E
[
κk,vβ

takeup
k,v

]
.

where τk,v(t) := V ar
(
1{Tk > t}|v

)(
E[Ŵ |k, v, Tk > t] − E[P |k, v, Tk ≤ t]

)
.

Now consider Cov(Ŵ ,W ). By a similar argument to Lemma 6, we can define Tk = hk(Z, V )

as

Tk =

∫ ∞

0

1{t < Tk}dt.

It follows that

K∑
k=1

∑
v

P(k, v)Cov(Ŵ , hk(Z, V )Dk|k, v) =

K∑
k=1

∫ ∞

0

E[τk,v(t)]dt.

Similarly, by setting gk(W,U) = hk(Z, V ) in Lemma 7, it follows that

K∑
k=1

Cov
(
E[Ŵ |Dk, v],E[hk(Z, V )Dk|Dk, v]

)
=

K∑
k=1

E[κk,v].

We have then that

Cov(Ŵ ,W ) =

K∑
k=1

∫ ∞

0

E[τk,v(t)]dt +

K∑
k=1

E[κk,v].

Theorem 2. Under Assumptions 1, 2, and 3, the 2SLS parameter β2SLS
k is given by

β2SLS
k = ω−1

K∑
l=1

∫ ∞

0

E
[
βACRT
l,v (t)τl,v(t)

]
dt + ω−1

K∑
l=1

E[κl,vβ
takeup
l,v ].

where

ω :=

K∑
l=1

∫ ∞

0

E
[
τl,v(t)

]
dt +

K∑
l=1

E[κl,v]

τl,v(t) := V ar
(
1{Tl > t}|v

)(
E[W̃k|l, v, Tl > t] − E[W̃k|l, v, Tk < t]

)
κk,v := V ar(Dl|v)

(
E[W̃k|l, v] − E[W̃k]

)
E[Tk|k, v]

Proof. By Lemma 5, β2SLS is equivalently given by the estimand for the regression of Y on
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Ŵ . It follows then from the Frisch-Waugh-Lovell Theorem, that β2SLS
j is the estimand given

by first regressing Ŵj on all other elements of Ŵ and then regressing Y on the residual of this

regression, denoted as W̃j .

It follows that if Z satisfies Assumptions 1, 2, and 3, then so does W̃j as W̃j is a linear

combination of Z. Thus, replacing W with W̃j in Lemmas 5, 6, and 7 and Theorem 1 gives the

result.
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Corollary 8. Suppose that Assumptions 1, 2, and 3 hold and Assumption 4 holds for treatment

k. Then denote D̃k = W̃k and T̃k = W̃2k, respectively. Then:

κk,v > 0

τ2k,v(t) > 0

Proof. Continuous Case:

Under Assumptions 1, 2, and 3, the weight on βACRT
k,v (t0) at an arbitrary t0 in the support of

Tk is given by

τk,v(t0) := V ar
(
1{Tk > t}|v

)(
E[T̃k|k, v, Tk > t] − E[T̃k|k, v, Tk ≤ t]

)
.

Now consider three mutually exclusive and exhaustive subcases:

a) V ar
(
1{Tk > t}|v

)
> 0

b) V ar
(
1{Tk > t}|v

)
= 0

Continuous Subcase (a):

We have V ar
(
1{Tk > t0}|v

)
> 0. Then consider:(
E[T̃k|k, v, Tk > t0] − E[T̃k|k, v, Tk ≤ t0]

)
.

By Assumption 4, we have that E[T̃k|k, v, Tk > t0] − E[T̃k|k, v, Tk < t0] ≥ 0. It follows that

τk,v(t0) ≥ 0.

Continuous Subcase (b):

We have that V ar
(
1{Tk > t0}|v

)
= 0, which ensures that τk,v(t0) = 0.

Thus, Assumptions 1, 2, 3 and 4 are sufficient for τk,v(t) ≥ 0. To see that they are necessary,

suppose that τk,v(t0) < 0. Then this is only possible in Subcase (a). In particular, it must be

that

E[T̃k

∣∣k, v, Tk > t0] < E[T̃k

∣∣k, v, Tk ≤ t0].

So Assumption 4 cannot hold.

Discrete Case: Under Assumptions 1, 2, and 3, the weight κk,v for response type v is given

by

κk,v := (E[D̃k|k, v] − E[D̃k])V ar(Dk|v)E[Tk|k, v]

Consider the two mutually exclusive and exhaustive subcases:

(a) V ar(Dk|v) > 0

(b) V ar(Dk|v) = 0

Discrete Subcase (a):

We have that V ar(Dk|v) > 0. Then κk,v > 0 if and only if

E[D̃k|k, v] − E[D̃k]

E[Tk|k, v]
≥ 0

This occurs if and only if the numerator and denominator have the same sign or the numerator

is zero. Thus, Assumption 4 is necessary and sufficient for κk,v > 0 in Discrete Subcase (a).

Discrete Subcase (b):

We have that V ar(Dk|v) = 0. Thus, κk,v = 0 for any value of E[D̃k|k, v].
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Corollary 9. Under Assumptions 1, 2, 3, and 5, the 2SLS estimand for the effect of Wk is

given by

(Wk = Tk) → β2SLS
k =

∫ ∞
0

E[τk,v(t)β
ACRT
k,v (t)]dt∫ ∞

0
E[τk,v(t)]dt

(Wk = Dk) → β2SLS
k =

E[κk,vβ
takeup
k,v ]

E[κk,v ]

Proof. Under Assumptions 1, 2, and 3 the weights on βtakeup
j,v and βACRT

j,v for type v are given

by κj,v and τj,v(t), respectively, where

τj,v(t) := V ar
(
1{Tj > t}|v

)(
E[W̃k|j, v, Tj > t] − E[W̃k|k, v, Tj ≤ t]

)
κj,v := (E[W̃k|j, v] − E[W̃k])V ar(Dj |v)E[Tj |j, v]

Discrete Case

We have three subcases for when κj,v = 0:

(a) V ar(Dj |v) = 0

(b) E[Tj |j, v] = 0

(c) E[W̃k|j, v] = E[W̃k]

We want to show that mean independence of W̃k from Dj is necessary and sufficient to ensure

subcase (c) when subcases (a) and (b) do not hold. To see this, first notice that Assumption 1

implies

E[W̃k|v] = E[W̃k].

Furthermore, by definition, W̃k is mean independent of Dj conditional on v, if and only if

E[W̃k|j, v] = E[W̃k|v].

So we have that W̃k is mean independent of Dj if and only if

E[W̃k|j, v] = E[W̃k|v] = E[W̃k].

Continuous Case

We have three subcases for when τj,v(t) = 0 for any arbitrary t in the support of Tj :

(a) V ar
(
1{Tj > t}|v

)
= 0

(b) E[W̃k|j, v, Tj > t] = E[W̃k|k, v, Tj ≤ t]

Thus, we must show that mean independence of W̃k from Tj is necessary and sufficient to ensure

subcase (b) when subcase (a) does not hold.

(Mean Independence → (b)):

First, show that mean independence implies subcase (b). To that end, consider any t0 in the

support of Tj . Then note that by Assumption 5, for any t′ in the support of Tj such that

t′ < t0, it holds that

E[W̃k|j, v, Tj = t′] = E[W̃k|j, v].

This implies that

E[W̃k|j, v, Tj ≤ t0] = E[W̃k|j, v].
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By a similar argument, it holds that

E[W̃k|j, v, Tj > t0] = E[W̃k|j, v].

(Subcase (b) → Mean Independence):

To show that subcase (b) implies mean independence, we will first show that subcase (b)

implies that the conditional mean of W̃k is constant over any arbitrary interval that overlaps

with the support of Tj . Then we will show that this implies that W̃k is point-wise mean

independent of Tj .

To that end, assume that subcase (b) holds. Then for all t in the support of Tj , we have that

E[W̃k|j, v, Tj > t] = E[W̃k|j, v, Tj ≤ t].

Now consider the conditional expectation E[W̃k|j, v], which can be expressed as:

E[W̃k|j, v] = P(Tj > t|j, v) E[W̃k|j, v, Tj > t] + P(Tj ≤ t|j, v) E[W̃k|j, v, Tj ≤ t]

Substituting with E[W̃k|j, v, Tj > t] = E[W̃k|j, v, Tj ≤ t] gives

E[W̃k|j, v] = (1 − P(Tj ≤ t|j, v)) E[W̃k|j, v, Tj ≤ t] + P(Tj ≤ t|j, v) E[W̃k|j, v, Tj ≤ t]

= E[W̃k|j, v, Tj ≤ t]

= E[W̃k|j, v, Tj > t].

Now consider any tl, tu such that tl < tu and there exists at least one t0 ∈ [tl, tu] such that t0 is

within the support of Tj . Then by the above we have that

E[W̃k|j, v, Tj ≤ tl] = E[W̃k|j, v, Tj > tu] = E[W̃k|j, v]. (8)

By the Law of Iterated Expectations, we have that

E[W̃k|j, v] = P(Tj ≤ tl|j, v)E[W̃k|j, v, Tj ≤ tl] + P(tl < Tj ≤ tu|j, h)E[W̃k|j, v, tl < Tj ≤ tu]

+ P(Tj > tu|j, v)E[W̃k|j, v, Tj > tu].

Substituting according to Equation (8) gives

E[W̃k|j, v] = P(Tj ≤ tl|j, v)E[W̃k|j, v] + P(tl < Tj ≤ tu|j, v)E[W̃k|j, v, tl < Tj ≤ tu]

+ P(Tj > tu|j, v)E[W̃k|j, v].

This implies that

P(tl < Tj ≤ tu|j, v)E[W̃k|j, v] = P(tl < Tj ≤ tu|j, v)E[W̃k|j, v, tl < Tj ≤ tu]

and hence

E[W̃k|j, v] = E[W̃k|j, v, tl < Tj ≤ tu].

Thus, we have shown that the conditional mean of W̃k is constant across any arbitrary interval
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in R overlapping with the support of Tj . It follows that

E[W̃k|j, v, tl < Tj ≤ t0] = E[W̃k|j, v].

Now consider taking the limit as tl → t0. Because tl was chosen arbitrarily, the right-hand side

remains constant. Thus we have that

lim
tl→t0

E[W̃k|j, v, tl < Tj ≤ t0] = E[W̃k|j, v, Tj = t0] = E[W̃k|j, v].

Because t0 was chosen to be an arbitrary element in the support of Tj , this implies that

E[W̃k|j, v] is mean independent of Tj .

Joint Case

We have shown in the above that under Assumptions 1, 2, and 3, E[W̃k|j, v] is mean

independent of Tj , if and only if τj,v(t) = 0 for all t in the support of Tj and that E[W̃k|v] is

mean independent of Dj if and only if κj,v = 0. That is

E[W̃k|j, v, Tj ] = E[W̃k|j, v] → τj,v(t) = 0

E[W̃k|j, v] = E[W̃k] → κj,v = 0

It follows that if E[W̃k|v] is mean independent of all Wj where Wj ̸= Wk, then we have by

definition of mean independence that

E[W̃k|v,W ] = E[W̃k|v,Wk],

where we may note that in the case where Wk = Tk that necessarily we have that

E[W̃k|Dk = 1, v, Tk ̸= 0] = E[W̃k|v, Tk ̸= 0]

E[W̃k|Dk = 0, v, Tk = 0] = E[W̃k|v, Tk = 0]

because P(Dk = 0, Tk ̸= 0) = P(Dk = 1, Tk = 0) = 0.

Furthermore, this implies that

(Wk = Tk) → β2SLS
k =

∫ ∞
0

E[τk,v(t)β
ACRT
k,v (t)]dt∫ ∞

0
E[τk,v(t)]dt

(Wk = Dk) → β2SLS
k =

E[κk,vβ
takeup
k,v ]

E[κk,v ]

Theorem 3. Under Assumptions 1, 2, 3, 4, and 5, the 2SLS coefficient on Wk, given by β2SLS
k ,

represents a weighted average of βACRT
k,v (t) if Wk = Tk or a weighted average of βtakeup

k,v if

Wk = Dk. Specifically, the weighted averages are given by

β2SLS
k =

∫∞
0

E[τk,v(t)βACRT
k,v (t)]dt∫∞

0
E[τk,v(t)]dt

(Wk = Tk)

β2SLS
k =

E[κk,vβ
takeup
k,v ]

E[κk,v]
(Wk = Dk)
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where the weights are positively valued for all v and given by

τk,v(t) := V ar
(
1{Tk > t}|v

)(
E[W̃k|k, v, Tk > t] − E[W̃k|k, v, Tk < t]

)
κk,v := V ar(Dk|v)

(
E[W̃k|k, v] − E[W̃k]

)
E[Tk|k, v]

Proof. Under Assumptions 1, 2, 3, 4, and 5, Corrollary 9 shows that, β2SLS
k is given by

β2SLS
k =

∫∞
0

E[τk,v(t)βACRT
k,v (t)]dt∫∞

0
E[τk,v(t)]dt

(Wk = Tk)

β2SLS
k =

E[κk,vβ
takeup
k,v ]

E[κk,v]
(Wk = Dk)

where

τk,v(t) := V ar
(
1{Tk > t}|v

)(
E[W̃j |k, v, Tk > t] − E[W̃j |k, v, Tk < t]

)
κk,h := V ar(Dk|v)

(
E[W̃k|k, v] − E[W̃k]

)
E[Tk|k, v].

By Corrollary 8, if Assumption 4 also holds, then for all h, τk,v(t) > 0 for all t in the support

of Tk if Wk = Tk, or if Wk = Dk then κk,v > 0.

Corollary 10. Let W = (D1, . . . , DK , T1, . . . , Tk) and define W−l as the vector including all

elements of W except for some element Wl. Now suppose that Z satisfies Assumptions 1, 2, and

3 but is correlated with W−l.

β2SLS = ω−1
K∑

k=1

∫ ∞

0

E[τk,v(t)βACRT
k,v (t)]dt + ω−1

K∑
k=1

E
[
κk,vβ

takeup
k,v

]
where

Ŵ−l = V ar(Z)−1Cov(Z,W−l)

ω :=

K∑
k=1

∫ ∞

0

E[λk,v(t)]dt +

K∑
k=1

E[κk,v]

τk,v(t) := V ar(1{Tk > t}|v)
(
E[Ŵ−l|k, v, Tk > t] − E[Ŵ−l|k, v, Tk ≤ t]

)
κk,v := V ar(Dk|v)

(
E[Ŵ−l|k, v] − E[Ŵ−l]

)
E[Tk|k, v]

Proof. The results of Theorems 1 and 2 still hold because the only element of β2SLS that depends

on W−l is the predicted value of Ŵ . All other elements were derived by relying on the unobserved

first stage response function h for the true treatment vector W , potential outcomes g over the

true treatment vector W , and the by treating Ŵ as a function of Z. Thus, the result holds by

substituting Ŵ for Ŵ−l, given by

Ŵ−l = V ar(Z)−1Cov(Z,W−l).
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C Comparing 2SLS Estimand to OLS

Other recent econometric identification results have revealed that the OLS estimator can be

represented as a weighted average of treatment effects, similar to those derived in the main

analysis of this paper. In particular, Callaway et al. (2024) show that the difference-in-differences

estimator with a (single) continuous treatment can be expressed as either a weighted average of

causal response parameters or as an average takeup effect (in their terminology, a level effect).

In their analysis, they consider the OLS estimator for a single continuous treatment under

the “parallel trends” assumption. However, their results can be broadened to any general OLS

estimator with a continuous treatment under the assumption that treatment takeup is exogenous

to the outcome (for a difference-in-differences estimator, the outcome is first demeaned).

For comparison, I first replicate these results here for a single continuous treatment in order

to provide a consistent notation for comparison across estimators and then show that the 2SLS

esitmator can be built in a mirroring way. First, I provide identification for the OLS estimator as

a weighted average of treatment effects under endogeneity. This provides a greater intuition into

the tradeoffs associated with 2SLS estimation in comparison to OLS, as well as the role of various

exogeneity assumptions often employed in regression-based research designs. The results below

show that 2SLS can be viewed as first constructing group average effects for each response type.

These effects serve as the building blocks for the overall estimator and remove endogeneity by

marginalizing out the influence of the second stage residual component U . As shown throughout

the main text of this paper, this approach still faces the risk that the 2SLS weights may introduce

other issues, in particular they may be negative or introduce cross-contamination.

To that end, let the Wi = (1, Di, Ti) be a vector of the constant and assignment to a

continuously-valued treatment for individual i. As before, Di indicates whether the individ-

ual receives the treatment at all (takeup) and Ti indicates the level of the treatment received

(intensity). I again assume that potential outcomes are given by the function Y = g(W,U),

where U is multidimensional and thus allows for unconstrained heterogeneity in effects. Impor-

tant is that (W,U) are assumed to be jointly distributed and so W is endogenously assigned.

The OLS estimator is given by the following regression equation

Yi = βWi + Ui (9)

The identification result for the OLS estimand from Equation (9) is given by the following

theorem.

Theorem 11. The OLS estimand of β from Equation (9) is given as

βOLS =
1

V ar(W )

(∫ ∞

−∞
βACRT (t)τ(t)dt + κβtakeup + Cov

(
g(0, U),E[W |D,U ]

))
+

1

V ar(W )

(∫ ∞

−∞
E
[
τu(t)∆βACRT

u

]
dt + E[κu∆βtakeup

u ]︸ ︷︷ ︸
selection bias

)
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where

τu(t) = P(T > t|U)(E[W |D = 1, U, T > t] − E[W |D = 1, U ])

κu = P(D = 1|U)(E[W |D = 1, U ] − E[W ])

τ(t) = E[τu(t)]

κ = E[κu]

Proof. The OLS estimator is given by

Yi = βWi + ui

where W = (1, Di, Ti). The OLS estimand is given by

βOLS =
Cov(Y,W )

V ar(W )

Proceeding as before, we will first focus on Cov(Y,W ). By the Law of Total Covariance, this is

equivalently given by

Cov
(
g(T,U),W

)
= E

[
Cov

(
g(T,U),W |D,U

)]
+ Cov

(
E[g(T,U)|D,U ],E[W |D,U ]

)
Now focus on the first covariance term

E
[
Cov

(
g(T,U),W |D,U

)]
= E

[
P(D = 1|U)E

[
(W − E[W |D = 1, U ])

∫ ∞

−∞
g′(t, U)1{T > t}dt

∣∣D = 1, U
]]

=

∫ ∞

−∞
E
[
P(D = 1|U)g′(t, U)E

[
(W − E[W |D = 1, U ])1{T > t}

∣∣D = 1, U
]]
dt

=

∫ ∞

−∞
E
[(

g′(t, U) − βACRT (t) + βACRT (t)
)
τu(t)

]
dt

=

∫ ∞

−∞
E
[(

g′(t, U) − βACRT (t)
)
τu(t) + βACRT (t)τu(t)

]
dt

=

∫ ∞

−∞
E
[(

g′(t, U) − βACRT (t)
)
τu(t) + βACRT (t)τu(t)

]
dt

=

∫ ∞

−∞
E
[
τu(t)∆βACRT

u

]
dt +

∫ ∞

−∞
βACRT (t)E

[
τu(t)

]
dt

=

∫ ∞

−∞
E
[
τu(t)∆βACRT

u

]
dt︸ ︷︷ ︸

selection bias

+

∫ ∞

−∞
βACRT (t)τ(t)dt.

The first equality holds because when D = 0, the vector W is just a constant and the following

terms are defined as

τu(t) = P(T > t|U)(E[W |D = 1, U, T > t] − E[W |D = 1, U ])

τ(t) = E[τu(t)]

∆βACRT
u = g′(t, U) − βACRT (t).

Before turning to the second covariance term, define D0 := 1{(D = 0)} and D1 := 1{(D = 1)}.
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Then we have that

Cov
(
E[Y |D,U ],E[W |D,U ]

)
= Cov

(
E[Y D0 + Y D1|D,U ],E[W |D,U ]

)
= Cov

(
E[Y D0|D,U ],E[W |D,U ]

)
+ Cov

(
E[Y D1|D,U ],E[W |D,U ]

)
Now, consider each individual covariance in turn. First, consider Cov

(
E[Y D1|D,U ],E[W |D,U ]

)
.

Then, we may note that E[Y D1|D] is given as

E[Y |D = 1, u] = E[Y |D = 1, u] − E[Y |D = 0, u] + E[Y |D = 0, u]

= βtakeup
u + E[Y |D = 0, u]

= βtakeup
u + (E[Y |D = 1] − E[Y |D = 0]) − (E[Y |D = 1] − E[Y |D = 0]) + E[Y |D = 0, u]

= βtakeup
u + βtakeup − βtakeup + E[Y |D = 0, u]

= βtakeup + (βtakeup
u − βtakeup) + E[Y |D = 0, u]

= βtakeup + ∆βtakeup
u + E[Y |D = 0, u].

where βtakeup, βtakeup
u , and ∆βtakeup

u are defined as

βtakeup := E[Y |D = 1] − E[Y |D = 0]

βtakeup
u := E[Y |D = 1, u] − E[Y |D = 0, u]

∆βtakeup
u := βtakeup

u − βtakeup.

Cov
(
E[Y D1|D,U ],E[W |D,U ]

)
=

∑
u

P(D = 1, u)E[Y |D = 1, u]
(
E[W |D = 1, u] − E[W ]

)
=

∑
u

P(D = 1, u)
(
βtakeup + ∆βtakeup

u + E[Y |D = 0, u]
)(

E[W |D = 1, u] − E[W ]
)

= κβtakeup +
∑
u

P(D = 1, u)
(

∆βtakeup
u + E[Y |D = 0, u]

)(
E[W |D = 1, u] − E[W ]

)
where

κ := V ar(D)
(
E[W |D = 1] − E[W |D = 0]

)
.

Now consider Cov
(
E[Y D0|D,U ],E[W |D,U ]

)
. This is equivalently given as

Cov
(
E[Y D0|D,U ],E[W |D,U ]

)
=

∑
u

P(D = 0, u)E[Y |D = 0, u]
(
E[W |D = 0, u] − E[W ]

)
.

Returning to the covariance of conditional expectations, we have

Cov
(
E[Y |D,U ],E[W |D,U ]

)
= Cov

(
E[Y D0|D,U ],E[W |D,U ]

)
+ Cov

(
E[Y D1|D,U ],E[W |D,U ]

)
= κβtakeup + E[κu∆βtakeup

u ] + Cov
(
E[Y |D = 0, U ],E[W |D,U ]

)
= κβtakeup + E[κu∆βtakeup

u ]︸ ︷︷ ︸
selection bias

+Cov
(
g(0, U),E[W |D,U ]

)
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where κu := P(D = 1|u)(E[W |D = 1, u] − E[W ]), noting that κ = E[κu].

The above result shows that OLS estimates the average takeup effect, the ACRT, and the

conditional baseline mean of the outcome, subject to two selection biases. The selection biases

reflect heterogeneity in treatment effects across the joint distribution of treatment assignment W

and U . The first selection bias is captured by the integral of E[τu(t)∆βACRT
u ] across the support

of T . This generally reflects how selection occurs along the intensive margin. The second

selection bias is captured by the expectation E
[
κu∆βtakeup

u

]
. This captures how selection along

the extensive margin into treatment is correlated with differences in takeup effects.

The weights can also be viewed as aggregating heterogeneity in treatment effects. Because

the terms ∆βtakeup
u and ∆βACRT

u are necessarily mean zero, a non-zero selection bias indicates

that the weighted average over-represents some individuals and under-represents others on the

basis of unobserved characteristics u.

This also provides the intuition in how endogeneity biases the OLS estimator through the

above derivation. The misrepresentation of heterogeneous effects captures variation in responses

driven by the joint variation across U and W . From this perspective, it is not clear whether

the OLS selection bias terms are driven by variation in treatment assignment or variation in

unobserved factors captured by U .

The following theorem provides the corresponding derivation for 2SLS and helps provide

intuition on how 2SLS addresses this selection bias.

Theorem 1’. Under Assumptions 1, 2, 3, 4, and 5, the 2SLS estimand, denoted by by β2SLS,

can be decomposed into the average treatment effect and a weighted average of the heterogeneity

in treatment effects across response types V

β2SLS = V ar(W )−1
K∑

k=1

(∫ ∞

−∞
τ̂k(t)βACRT

k (t)dt + κ̂kβ
takeup + E

[
κ̂k,vE[Y |Dk = 0, v]

])
+ V ar(W )−1

K∑
k=1

(∫ ∞

−∞
E
[
τ̂k,v(t)∆βACRT

k,v (t)
]
dt + E

[
κ̂k,v∆βtakeup

k,v

]
︸ ︷︷ ︸

treatment effect heterogeneity

)

where the following terms are defined as

τ̂k,v(t) := P(Tk > t|v)
(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v]

)
τ̂k(t) := E[τ̂k,v(t)]

κ̂k,v := P(Dk = 1|v)(E[Ŵ |k, v] − E[Ŵ ])

κ̂k := E[κ̂k,v]

βACRT
k|τ̂ (t) := E[βACRT

k,v (t)|τ̂k,v(t) ̸= 0]

∆βACRT
k,v (t) := βACRT

k,v (t) − βACRT
k,v|τ̂ (t)

βtakeup
k|κ̂ := E[Y |Dk = 1, κ̂k,v ̸= 0] − E[Y |Dk = 0, κ̂k,v ̸= 0]

βtakeup
k,v := E[Y |Dk = 1, v] − E[Y |Dk = 0, v]

∆βtakeup
k,v := βtakeup

k,v − βtakeup
k,v|κ̂ .
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Proof. From Lemma 5, the 2SLS estimator is given by

β2SLS = V ar(Ŵ )−1
K∑

k=1

Cov(Ŵ , Y Dk)

where by the Law of Total Covariance

Cov(Ŵ , Y Dk) =

K∑
k=1

E[Cov(Ŵ , Y Dk|Dk, V )] +

K∑
k=1

Cov
(
E[Ŵ |Dk, V ],E[Y Dk|Dk, V ]

)
.

First, from formula (7) in Lemma 6, we have that

Cov(Ŵ , Y Dk|k, v) =

∫ ∞

−∞
βACRT
k,v (t)P(Tk > t|k, v)

(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v]

)
dt.

Then taking the expectation of Cov(Ŵ , Y Dk|Dk, V ) gives

E[Cov(Ŵ , Y Dk|Dk, V )] =
∑
v

P(Dk = 1, v)Cov(Ŵ , Y |k, v)

=
∑
v

P(v)P(Dk = 1|v)Cov(Ŵ , Y |k, v)

=
∑
v

P(v)

∫ ∞

−∞
τ̂k,v(t)βACRT

k,v (t)dt

=

∫ ∞

−∞
E
[
τ̂k,v(t)βACRT

k,v (t)
]
dt

=

∫ ∞

−∞
E
[
τ̂k,v(t)

(
βACRT
k|τ̂ (t) + ∆βACRT

k,v (t)
)]
dt

=

∫ ∞

−∞
τ̂k(t)βACRT

k|τ̂ (t)dt +

∫ ∞

−∞
E
[
τ̂k,v(t)∆βACRT

k,v (t)
]
dt

where the following terms are defined as

τ̂k,v(t) := P(Tk > t|v)
(
E[Ŵ |k, v, Tk > t] − E[Ŵ |k, v]

)
τ̂k(t) := E[τ̂k,v(t)]

βACRT
k|τ̂ (t) := E[βACRT

k,v (t)|τ̂k,v(t) ̸= 0]

∆βACRT
k,v (t) := βACRT

k,v (t) − βACRT
k (t)

Now consider Cov(E[Ŵ |Dk, V ],E[Y Dk|Dk, V ]). From Lemma 7, this is given by

Cov
(
E[Ŵ |Dk, v],E[Y Dk|Dk, v]

)
= E

[
κ̂k,vE[Y |k, V ]

]
.

where κ̂k,v := P(Dk = 1|v)(E[Ŵ |k, v] − E[Ŵ ]). For a particular v, we may rewrite E[Y |k, v] as
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follows

E[Y |k, v] = E[Y |Dk = 1, v] − E[Y |Dk = 0, v] + E[Y |Dk = 0, v]

= βtakeup
k,v + E[Y |Dk = 0, v]

= βtakeup
k,v + βtakeup

k|κ̂ − βtakeup
k|κ̂ + E[Y |Dk = 0, v]

= βtakeup
k|κ̂ + ∆βtakeup

k,v + E[Y |Dk = 0, v]

where the following terms are defined as

βtakeup
k|κ̂ := E[Y |Dk = 1, κ̂v ̸= 0] − E[Y |Dk = 0, κ̂v ̸= 0]

βtakeup
k,v := E[Y |Dk = 1, v] − E[Y |Dk = 0, v]

∆βtakeup
k,v := βtakeup

k,v − βtakeup
k|κ̂ .

Thus, we have that

Cov
(
E[Ŵ |Dk, v],E[gk(Tk, U)Dk|Dk, v]

)
= E

[
κ̂k,vE[Y |k, V ]

]
= E

[
κ̂k,v

(
βtakeup
k,κ̂ + ∆βtakeup

k,v + E[Y |Dk = 0, v]
)]

= κ̂kβ
takeup
k,κ̂ + E

[
κ̂k,v∆βtakeup

k,v

]
+ E

[
κ̂k,vE[Y |Dk = 0, v]

]
.

with κ̂k = E[κ̂k,v].

The above result shows that 2SLS can be represented in a mirroring form to the OLS es-

timator, except that 2SLS constructs weights with Ŵ and V , instead of W and U , and that

the targeted average effects are local to those response types for whom the instrument induces

variation in treatment assignment. This is not surprising as the second stage point estimates

are equivalently obtained from a regression of Y on Ŵ . However, with 2SLS heterogeneity is

captured only across response types V . The weighted average of treatment effect heterogeneity,

however, is still prone to being misrepresented because an unweighted average would be mean

zero, but in general the weighted heterogeneity terms do not sum to zero. This leaves a question

as to in what way the 2SLS estimator marks an improvement over the OLS estimator, given that

both estimators are prone to misrepresenting treatment effect heterogeneity?

One view to this is that the 2SLS estimators can be viewed as first estimating group average

treatment effects within each response type v using the exogenous variation induced by the

instrument. These group effects provide exogenous building blocks to aggregate up. From this

perspective, the group average heterogeneity marginalizes out the heterogeneity across U so that

the remaining heterogeneity in treatment effects is only across W . 2SLS still misrepresents this

heterogeneity, but the influence of U is at least removed.
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D Threshold Crossing Model

Threshold crossing models are encompassed within the general framework described in Section

4. These models generally are employed to estimate marginal treatment effects following the

approach of Heckman and Vytlacil (2005), which are more readily interpretable in comparison

to the general weighted LATE. Given the relative pervasiveness of these results in the literature,

I include a brief discussion relating my results to the above setup here, but for a more complete

discussion direct readers to related studies like Arteaga (2023), Bhuller and Sigstad (2023), Chyn

et al. (2024), and Humphries et al. (2024). As well, I note that threshold crossing models are gen-

erally considered within the framework of discretely measured treatments. My discussion here

does not intend to map those identification results to the multi-treatment continuous setting.

Rather, I map the model framework and estimating assumptions to the multi-treatment contin-

uous setting, which serves to highlight that the assumptions place empirically strong restrictions

on judge sentencing behavior.

A simple variation of a threshold crossing model often employed in the literature can be

obtained by assuming that judges hold common preferences over offenses αj and common beliefs

Φj , that Φj is rank invariant in v with respect to w, and that preferences over punishments Rj

are commonly ordered. This is summarized below:

Φj(c|qw, w, vi) = Φj′(c|qw, w, vi) ∀ (j, j′)

αj = α ∀j
Φj(c|qw, w, vi) > Φj(c|qw, w, v′i) ⇔ Φj(c|qw′ , w′, vi) > Φj(c|qw′ , w′, v′i) ∀ (w,w′, vi, v

′
i)

Rj(w) > Rj(w
′) ⇔ Rj′(w) > Rj′(w

′) ∀ (j, j′, w, w′)

The restrictions on Φj and αj induces a single index for measuring the severity of defendants

that is common to all judges and hence variation in sentencing only arises from differences in

stringency. The intuition of the above model is that all judges share a common ordering of

punishments W and a common ordering of defendants i in terms of their perceived severity.

Furthermore, these orderings are independent of each other and defined across the support of v

and so the ranking of an individual is invariant to the choice of W 12. Hence, we can express an

individual i’s indexed ranking along a single index ϕi ∈ [0, 1].

The above model is attractive and is often applied in related studies as it implies “pairwise

monotonicity”, which is defined as

Assumption 6. (Pairwise Monotonicity) For any pair of judges j, j′, where wji and wj′i rep-

resents the punishment given by judge j to defendant i, the following holds:

Rj(wji) ≥ Rj′(wj′i) ∀i OR Rj(wji) ≤ Rj′(wj′i) ∀i

Pairwise monotonicity is a stronger form of the average conditional monotonicity assumption

because it effectively means that judge punishments can also be ordered. However, whether the

12As disussed in Humphries et al. (2024), plea deals give a situation where the independence of defendant and
punishment orderings are likely violated. In the context of the above model, this occurs when the cost function R is
allowed to depend on whether a defendant accepts a plea. For clarity, let the punishment be given as (W,P lea). Then
the distribution (W,Plea = 0, V ) is likely very different to (W,P lea = 1, V ) because some individuals will never be
offered the plea and some will never accept. As a consequence, Φj under Plea = 1 is not defined for some v. This can
lead to violations in monotonicity as weaker punishments are accepted through plea deals by selectively more severe
defendants.
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assumption and overall model hold is in actuality an empirical matter. The identification of

marginal treatment effects lastly relies on the assumption that judges share a common support

for punishments W , which can be stated as

Assumption 7. (Common support of W ) P(W = w|j) > 0 for all judges j and w ∈ Supp(W )

Assumption 7 implies that for every judge j and punishment w ∈ Supp(W ), there exists a

vi ∈ Supp(V ) such that wij = w. This allows for stronger identification results because discrete

jumps from probation to incarceration across a judge’s preferences always occur at the same local

point in Supp(W ). This establishes a clear comparison region for the marginally incarcerated

defendant. For example, if the maximum possible probation sentence is 5 years, then the above

set of assumptions would suggest that the marginally incarcerated defendant under judge j

would receive a probation sentence of 5 years under a slightly more lenient judge j′. Under this

assumption, we may express the first stage as a monotonically increase function of ϕi for each

judge j, hj(ϕ).

The standard estimator for the marginal treatment effect of prison takes the form of a Wald

estimator

βMTE(p) = lim
p′→p

E[Yi|P(prison|Z) = p] − E[Yi|P(prison|Z) = p′]

p− p′

βMTE(p) has the form a univariate discrete 2SLS estimator and thus the results of Section 5

apply. As a consequence, even under the restrictions of the above model, if W is multidimensional

and continuous then βMTE(p) generally captures the effect across all elements of W . The above

model does provide some structure around this, however. In particular, convergence in the two

alternative probabilities of incarceration (p, p′) generally reflects convergence in the distribution

of hj(ϕ) as p′ converges to p. Thus, even local IV estimators made in the style of Heckman

and Vytlacil (2005) will generally reflect the full effect of these distributional differences. Recent

studies have addressed by adopting a

it is clear from the results of Section 5 that βMTE(p) will not generally reflect

The combination of the above assumptions is emprically very strong. First, the exclusion

restriction requires that if judge decisions on whether to incarcerate are correlated with judge

decisions on the length of incarceration (or probation), that one must also include sentence

lengths in W . Pairwise monotonicity requires then that a relatively strict judge is strict across

every dimension of W , while the common support assumption on W then requires that judges do

not have gaps in their individual sentencing patterns. Gaps in sentencing patterns might occur

if, for example, some judges are willing to assign defendants to probation up to a maximum of

three years before turning to incarceration while other judges are only willing to assign probation

up to a maximum of two years.
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E Testing Robustness of Condtional Exclusion Restriction

when Omitting Sentence Lengths from Endogenous Mea-

sures

Here I assess the performance of alternative research designs to controlling for omitted treat-

ments. In each case, I keep the first stage equations the same as in the tests above to ensure

that differences in the results are not driven by differences in the prediction for the included

treatments. Because omission of correlated treatments is likely to induce an exclusion restric-

tion violation, I focus on tests for the conditional exclusion restriction in which I regress all

elements of W (those specified in Equation (3)) on a subset of the first stage predictions. The

two alternative approaches I take are the following:

1. Include only the first stage predictions for the extensive margin (being granted probation

and receiving a fine) while excluding all other elements of W (Table B5)

wk,i = α̃1
̂Probationi + α̃2F̂ inei + θXi + ηzip + γr + ui. (10)

2. Repeat Test 1 but include instruments for omitted treatments as controls, denoted by

Zexclude (Table B6)

wk,i = α̃1
̂Probationi + α̃2F̂ inei + πZexlcude

i + θXi + ηzip + γr + ui. (11)

For each case, the test strongly rejects the null hypothesis and thus approach 2 above does

not appear to adequately address omitted treatment biases. Furthermore, there is not a clear

causal interpretation of the results under the omitted treatment bias. For example, one cannot

interpret 2SLS estimands as “collapsing” the sentence lengths in. For one, the effects of omitted

treatments for some response types will necessarily be negatively weighted. This removes any

interpretation of averaging. Two, it is unclear where the omitted treatment biases appear. In

approach 1 and 2 above, the omitted treatments might enter into the estimand for probation or

fine and it is not possible to assess the extent to which this occurs for either measure. Three, the

effects will generally represent different subpopulations. This last point relates to the definition of

takeup effects and ACRT parameters. Specifically, takeup effects only reflect the effect for those

who possibly receive, e.g., probation or not. An “always taker” of prison would necessarily drop

out of the takeup effect. However, an “always taker” of prison would not be excluded from ACRT

effects. This provides a clear example as to why takeup and ACRT effects cannot be interpretted

jointly because both are local to overlapping but different regions of the distribution of (V,W ).

In this sense, the ACRT does not (solely) represent the effect of extensive margin compliers.
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Table B5: Wald Test for the Conditional Exclusion Restriction
Excluding Continuous Sentencing Measures

Probation Prison Time Probation Time Stayed Time︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
X = 0 X = 1 X = 0 X = 1 X = 0 X = 1 X = 0 X = 1

(1) (2) (3) (4) (5) (6) (7) (8)

Multi-unit Residence 0.7183 0.8040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1{Unit Area > Median} 0.5688 0.5499 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1{Unit Value > Median} 0.2971 0.3766 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Family residence 0.8123 0.9212 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1{Age > Median} 0.6594 0.6384 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Male 0.0073 0.1927 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
White 0.2617 0.0212 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Other Race 0.8058 0.1057 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Divorced last year 0.9121 0.6012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Paternity claim last year 0.8719 0.4294 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Evicted last year 0.7359 0.4747 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Committed crime last year 0.5807 0.2241 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Results from Wald tests for the conditional exclusion restriction when continuous sentencing measures are omitted from
the second stage. Rows describe the variable used to determine the sample split, while columns indicate the sub-sample tested
on for each sentencing dimension. Each entry indicates a p-value from an F-test that proper weights are satisfied. Bolded entries
indicate results that are statistically significant after adjusting for a false disovery rate assumed to be equal to α.
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Table B6: Wald Test for the Conditional Exclusion Restriction
Instruments Controls for Continuous Sentencing Measures

Probation Prison Time Probation Time Stayed Time︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
X = 0 X = 1 X = 0 X = 1 X = 0 X = 1 X = 0 X = 1

(1) (2) (3) (4) (5) (6) (7) (8)

Multi-unit Residence 0.7597 0.8272 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1{Unit Area > Median} 0.5792 0.5550 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1{Unit Value > Median} 0.4509 0.5681 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Family residence 0.9285 0.9920 0.0000 0.0000 0.0000 0.0000 0.0144 0.0000
1{Age > Median} 0.6343 0.5905 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Male 0.0101 0.2326 0.0000 0.0000 0.0000 0.0000 0.1648 0.0000
White 0.2166 0.0113 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Other Race 0.8328 0.2385 0.0000 0.0000 0.0000 0.0000 0.0000 0.0069
Divorced last year 0.9110 0.6092 0.0000 0.0000 0.0000 0.0000 0.0000 0.0772
Paternity claim last year 0.8578 0.4242 0.0000 0.0001 0.0000 0.0000 0.0000 0.4044
Evicted last year 0.8005 0.5696 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
Committed crime last year 0.6932 0.4570 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Notes: Results from Wald tests for the conditional exclusion restriction when omitting sentence lengths from the second stage
endogenous variables but including controls for average judge sentence lengths. Rows describe the variable used to determine
the sample split, while columns indicate the sub-sample tested on for each sentencing dimension. Each entry indicates a p-value
from an F-test that proper weights are satisfied. Bolded entries indicate results that are statistically significant after adjusting
for a false disovery rate assumed to be equal to α.
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F Robustness to Inclusion of Non-probation and Non-incarcerated

Defendants

Table B7: Cross-sectional Effects of Courtroom Sentencing on Crime (All Cases)
5 Years Post-sentencing

All Crimes Property Crimes Violent Crimes Other Crimes
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Crimes by Defendant

Extensive Margin
Not Incarcerated 0.0856 0.7629∗∗ 0.0268 0.2388∗ −0.0407 0.2599 0.0995∗ 0.2642

(0.0730) (0.3513) (0.0457) (0.1360) (0.0255) (0.1631) (0.0585) (0.2216)
Fine −0.1663∗∗∗ −0.0922 −0.0626∗ −0.0324 0.0041 0.0343 −0.1078 −0.0942

(0.0600) (0.0871) (0.0321) (0.0334) (0.0216) (0.0313) (0.0646) (0.0766)
Prison Durations
Prison Years 0.0257 0.0076 0.0228 −0.0048

(0.0396) (0.0164) (0.0223) (0.0188)
< 5 Years −0.3548∗∗ −0.1211∗ −0.1430 −0.0907

(0.1618) (0.0631) (0.0869) (0.0999)
Probation Durations
Probation Years −0.3278∗∗ −0.1750∗∗ −0.0724 −0.0804

(0.1561) (0.0752) (0.0828) (0.1079)
Stayed Years 0.0081 0.0160 0.0460 −0.0538

(0.1086) (0.0579) (0.0531) (0.0635)

Panel B: Crimes by Others on Property

Extensive Margin
Not Incarcerated −0.1241∗ 0.5544 0.0064 0.1945 −0.0370 0.2232∗ −0.0935∗ 0.1367

(0.0681) (0.3786) (0.0294) (0.1532) (0.0243) (0.1207) (0.0487) (0.2837)
Fine 0.0079 0.0005 0.0036 0.0244 0.0136 0.0132 −0.0092 −0.0372

(0.0583) (0.0713) (0.0218) (0.0252) (0.0179) (0.0220) (0.0457) (0.0519)
Prison Durations
Prison Years 0.0543 0.0199 0.0066 0.0278

(0.0470) (0.0154) (0.0144) (0.0313)
< 5 Years −0.3253∗ −0.1019 −0.0989∗ −0.1245

(0.1812) (0.0650) (0.0565) (0.1307)
Probation Durations
Probation Years 0.3585∗ −0.0769 0.1537∗∗ 0.2817∗∗

(0.1815) (0.0814) (0.0652) (0.1086)
Stayed Years −0.2811∗∗ 0.0244 −0.0710 −0.2345∗∗∗

(0.1301) (0.0629) (0.0445) (0.0645)

N 29,330 29,330 29,330 29,330 29,330 29,330 29,330 29,330
Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Pre-trial Controls Yes Yes Yes Yes Yes Yes Yes Yes
Continuous Effects No Yes No Yes No Yes No Yes

Notes: 2SLS estimates for the effect of sentencing on criminal outcomes in the 60 months post-sentencing
when including guilty defendants who are not sentenced to prison or probation. Each column is a 2SLS
regression of the outcome on sentencing dimensions, instrumented with assigned judge’s expected sentence.
Panel A presents estimates for crimes commited by the defendant. Panel B presents estimates for crime
rates committed by others (excluding the defendant) living at the same residence as the defendant as a
rate per property unit on the address. Odd columns exclude continuous dimensions of court sentences from
the estimating equation while even columns include continuous sentencing dimensions. Standard errors
clustered by judge in parentheses. ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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Table B8: Panel Estimates for the Effects of Sentencing Releases on Crime (All Cases)
5 Years Post-sentencing

All Crimes Property Crimes Violent Crimes Other Crimes
(1) (2) (3) (4)

Panel A: Crimes by Defendant

Extensive Margin
Released (Prison) 0.1584∗∗ 0.0590∗∗ 0.0435∗ 0.0559

(0.0651) (0.0281) (0.0251) (0.0378)
Released (Probation) −0.3711∗∗ −0.0819 −0.0835 −0.2056∗∗

(0.1618) (0.0706) (0.0565) (0.1008)
Probation 0.2933∗∗ 0.1110∗∗ 0.0369 0.1454∗∗

(0.1173) (0.0519) (0.0378) (0.0643)
Fine −0.0174 −0.0081 0.0077 −0.0169

(0.0161) (0.0068) (0.0063) (0.0145)
Prison Durations
Release × Years Prison −0.0886 0.0026 −0.0367 −0.0545

(0.0756) (0.0328) (0.0279) (0.0440)
Probation Durations
Release × Years Probation 0.2382∗∗∗ 0.0431 0.0622∗ 0.1329∗∗

(0.0854) (0.0387) (0.0321) (0.0539)
Stayed Sentence (Years) −0.0635∗ −0.0166 −0.0044 −0.0424∗∗

(0.0342) (0.0144) (0.0112) (0.0190)

Panel B: Crimes by Others on Property

Extensive Margin
Released (Prison) 0.1287∗∗ 0.0286 0.0663∗∗∗ 0.0339

(0.0507) (0.0278) (0.0235) (0.0405)
Released (Probation) −0.1253 −0.0454 −0.0464 −0.0335

(0.1003) (0.0567) (0.0420) (0.0765)
Probation 0.1647∗∗ 0.0361 0.0763∗∗ 0.0523

(0.0760) (0.0476) (0.0315) (0.0658)
Fine 0.0070 0.0057 0.0087 −0.0075

(0.0153) (0.0064) (0.0053) (0.0092)
Prison Durations
Release × Years Prison −0.0992∗∗ −0.0309 −0.0431∗ −0.0252

(0.0489) (0.0274) (0.0238) (0.0346)
Probation Durations
Release × Years Probation 0.0769 0.0282 0.0252 0.0236

(0.0579) (0.0313) (0.0238) (0.0417)
Stayed Sentence (Years) −0.0491∗∗ −0.0055 −0.0111 −0.0324∗∗

(0.0228) (0.0132) (0.0103) (0.0126)

N 146,745 146,745 146,745 146,745
Fixed Effects Yes Yes Yes Yes
Pre-trial Controls Yes Yes Yes Yes

Notes: 2SLS estimates corresponding to Equation (4) for the effect of sentenc-
ing on criminal outcomes in the year of the observation when including guilty
defendants who are not sentenced to probation or prison. Each column is a
2SLS regression of the outcome on sentencing dimensions, instrumented with the
assigned judge’s expected sentence. Panel A presents estimates for crimes com-
mited by the defendant. Panel B presents estimates for crime rates committed
by others (excluding the defendant) living at the same residence as the defendant
as a rate per property unit on the address. Standard errors clustered by judge in
parentheses. ∗∗∗ = p < 0.01, ∗∗ = p < 0.05, ∗ = p < 0.1.
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