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Abstract

Understanding how emotions stemming from previous failures affect investment

decisions is critical for the study of choice under uncertainty. I translate insights

from the psychological literature into two simple principles to integrate the effect of

emotions on investment decisions: frustration stemming from past failures lingers,

and success brings emotional relief. Frustration’s negative impact on utility creates

a trade-off. On one side, the agent wants to limit her exposure to future frustration

and decrease investment. Conversely, if her success probability increases with invest-

ment, frustration creates an incentive to eliminate its negative effect. In general, the

framework allows me to (i) precisely characterise how frustrating events interact with

an agent’s preference, environment and past frustration to influence her investment

level, (ii) rationalise data patterns, that are hard to reconcile with a single theory.

On the empirical side, I investigate the impact of frustration in baseball and find that

it increases the speed of pitches and affect their quality. I show that frustration’s

impact on quality can have impact on a pitchers’ career level performance.
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1 Introduction

Emotional reactions to unfavourable outcomes can impact economic decisions in hetero-

geneous ways. They prompt individuals to take more risks in various environments (Post

et al., 2008; Foellmi et al., 2016; Callen et al., 2014; Passarelli and Tabellini, 2017), while

reducing risk tolerance in many others (Cohn et al., 2015; Guiso et al., 2018; Meier, 2022).

Understanding these effects and the source of this heterogeneity is essential. For exam-

ple, if they influence an agent’s effort level, then the principal setting an optimal contract

should consider them. An unexpected bear market can trigger negative emotions, affecting

investors’ willingness to invest. In turn, these reactions can accelerate or dampen market

trends. Similarly, emotions stemming from lay-offs might affect labour searches and occu-

pational sorting. However, economists largely abstain from considering the role of emotions

after adverse outcomes.

Economic theory generally posits that negative outcomes can change beliefs, prompt

learning-by-doing, or change wealth. While these dynamics are essential in many appli-

cations, they do not apply to all contexts. In these cases, previous events should not

affect future investment. However, they do. Negative outcomes still impact investment

even when these traditional dynamics are absent, and they do so in heterogeneous ways.

(Heath, 1995; Augenblick, 2016; Dalmia and Filiz-Ozbay, 2021; Martens and Orzen, 2021;

Negrini et al., 2022). Moreover, negative outcomes influence investment behaviour even

when standard behavioural economics explanations, such as loss aversion, do not apply or

are controlled for (Heath, 1995; Malmendier and Nagel, 2011; Guiso et al., 2018; Dalmia

and Filiz-Ozbay, 2021).1

This paper aims to understand the dynamic effect of emotions stemming from below-

expectation outcomes (frustrating events hereafter) on investment decisions.2 The main

conceptual novelty of this paper is to define the circumstances that trigger the emotional

reaction while keeping the effect of emotions on utility general. As such, I use the umbrella

term frustration to name all emotions stemming from such frustrating events.3

1To be more precise, previous sunk costs influence behaviour insofar they influence wealth/endowment
in loss-aversion models such as cumulative prospect theory (Tversky and Kahneman, 1992). Heath (1995);
Dalmia and Filiz-Ozbay (2021) show that an effort sunk cost affects subsequent behaviour when there are
no changes in wealth, while Malmendier and Nagel (2011); Guiso et al. (2018) control for wealth changes.

2The focus on frustrating event is natural, and has a long tradition in psychology (Dollard et al., 1939).
In general, modern emotion theories would take the evaluation of an event as frustrating as one of the first
steps that could lead to many negative emotions and reactions (Keltner and Lerner, 2010).

3Dollard et al. (1939) use the term frustration to denote frustrating events. I find this rather counter-
intuitive so I use the term frustrating event to denote the event triggering frustration. See Breuer and
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In contrast, most of the current economic literature usually studies the effect of specific

emotions on behaviour. An event-based approach to emotions brings several advantages.

(1) Frustrating events provoke various negative emotions, such as disappointment, sadness,

and anger, which can affect behaviour differently (Shirai et al., 2021; Bell, 1985; Loomes

and Sugden, 1986; Keltner and Lerner, 2010; Breuer and Elson, 2017; Battigalli et al.,

2019). Restricting the analysis to a single emotion would therefore paint an inaccurate

picture of how people react to such situations. (2) It is less culturally dependent than

a definition-based approach. Emotions are neuro-biological and socio-cultural in nature.

As such, culture will influence the way people react to frustrating events and even what

type of emotion they are capable of having (Mesquita and Ellsworth, 2001; Mesquita and

Walker, 2003; Mesquita and Markus, 2004). (3) The approach also sheds light on why one

type of emotional reaction - as revealed by the agent’s action - arises instead of another

and how this reaction depends on the environment and the agent’s preferences.

The second distinctive feature of the approach is to consider emotions as dynamic pro-

cesses. I translate insights from the psychological literature into two simple and general

principles to answer this question. First, emotions stemming from successive frustrat-

ing events accumulate (Pe and Kuppens, 2012). Frustrating events are the source of our

decision-maker’s frustration. As such, I say that success, defined as an above-expectation

outcome, brings emotional relief (Goldberg et al., 1999; Han et al., 2007). I use this con-

ceptual framework to develop to study the dynamics of investment provision of frustration-

prone decision-makers that suffers a string of frustrating events.

I consider a forward-looking decision-maker who invests resources in projects until she

succeeds, which is given by the first event of a Poisson law. Her investment either increases

her return or her probability of success. When she fails, her frustration increases by

the amount of wasted investment: it accumulates. When she succeeds, she gets some

utility, called success utility, the decision problem stops, and frustration’s effect on utility

disappears: success brings emotional relief. Frustration exerts an emotional cost and

impacts utility negatively.4 Second, frustration creates appraisal tendencies (Lerner

and Keltner, 2000, 2001), which impact the agent’s evaluation of her environment and

preferences for the choices at hand. In my setting, this translates into a change (positive

or negative) in the marginal utility of investment in the same way habit formation would.

The main theoretical contribution is to provide a closed-form solution that represent

Elson (2017) for a modern summary of the theory.
4The negative impact on utility can be considered as the valence of the emotion, or in the cognitive

appraisal framework, the “pleasantness”(Smith and Ellsworth, 1985).
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the effect of frustration on an agent’s investment level.5 When does frustration increase or

decrease the agent’s investment? On the one hand, the agent wants to limit her exposure

to future emotional costs and decrease investment. On the other hand, if her success

probability increases with investment, frustration also creates an incentive to eliminate its

negative effect. I characterize the result of this trade-off, which shows the influence of the

agent’s belief of control on frustration’s effect on investment. This result is important.

First, the controllability of a success probability can be measured and used to predict

responses to frustration. Second, the result fits stylised fact extremely well. For example,

psychologists usually consider that anger is associated with high feelings of control over

their environment. Moreover, angry individual tend to increase their involvement in a task

(investment here). I get that result endogenously as the result of the agent’s maximisation

problem. If one believes that one major difference between sadness and anger relies in the

agent’s evaluation of her action effectiveness at solving the problem that was causing her

distress, than, the solutions of the model provides the action tendencies6 of these emotions

endogenously.

The second contribution clarifies the role of appraisal tendencies in emotional responses.

While the previous results show that positive appraisal tendencies are not necessary to get

a positive effect of frustration on investment, I also show that they are not sufficient either.

Indeed, if the emotional cost is too high, positive appraisal tendencies might not be enough

to tip the balance towards a positive effect of frustration on investment. As such, while

important, appraisal tendencies are not the only force driving agent’s reactions. Moreover,

I show that trying to infer emotions through action is not straightforward. There is no

one-to-one revealed preference (or emotions) argument one can use to infer the action from

emotion or emotion to action. For example, sadness and anger are behaviourally equiv-

alent in some instances, even though their appraisal tendencies go in opposite directions.

Similarly, I show that angry individuals might decrease their investment level, even though

the stereotypical action associated to anger would be an increase in investment.

From an empirical perspective, I provide evidence for the principles on which I build

the model. I use a large pitch-by-pitch Major League Baseball Data with a detailed set of

controls to do this. These allow to control for most, if not all possible confounders. I exploit

the expected score variations due to the pitch outcome to measure the frustration triggered

5For psychologists, this closed-form expression can be considered as the result of the second (or other
higher order) evaluation in Lazarus and Folkman (1984); Scherer (2009). In other words, the model
endogenously links valence, cognitive appraisal, and appraisal tendencies to action tendencies.

6Whether angry or sad individuals tend to increase or decrease investment.
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by failed pitches. Frustration is measured as the difference between the expected numbers of

runs (points) before and after the pitch. I find signs of frustration accumulation in pitchers’

behaviour. Success seems to dissipate its effect. Frustration always increases pitches’ speed

and tends to decrease their quality when its effect is significant. The magnitude of the

effect on pitchers’ behaviour is important. One standard deviation increase in frustration7

accounts for 45.72% to 64.70 % of the magnitude of the effect of one standard deviation

increase in fatigue during an inning (5.16 throws). Finally, I show that frustration also

has important implications in terms of productivity. Pitchers whose pitch quality is more

negatively affected by frustration tend to have lower career average skills measures.

In section 3, I study the determinant of emotional reactions stemming from frustrating

events. I first focus on the impact of appraisal tendencies. I then study how frustration

interacts with the agent’s control over her success probability through investment. Section

4 investigates the effect of frustration accumulation using pitch-by-pitch Major League

Baseball data. I focus on pitchers’ emotional reactions to frustrating events. Section 5

concludes and discusses the forward-looking and time consistency assumption used in the

model.

This paper broadly relates to three strands of literature.

Psychological Game Theory: An active literature has been modelling emotions in

interpersonal contexts using psychological game theory tools (Geanakoplos et al., 1989;

Battigalli and Dufwenberg, 2009). The literature focuses on the role of beliefs in emotion

and their strategic implication. Different emotions such as guilt (Battigalli and Dufwen-

berg, 2007) and anger (Battigalli et al., 2019) have been modelled. Specifically, Battigalli

et al. (2019) studies how frustration and blame can lead to aggressive behaviour. My def-

inition of frustration is similar, as frustration in their paper is also triggered when other

players (or nature) reduce the maximum expected pay-off the agent could have gotten.

However, I do not specifically focus on anger and do not consider strategic situations.

Emotions in decision theory: Over the years, many contributions have modelled

the effect of particular emotions such as regret (Loomes and Sugden, 1982; Bell, 1982),

disappointment (Bell, 1985; Loomes and Sugden, 1986) anxiety or excitement (Caplin and

Leahy, 2001). One key feature of these models is that emotions only affect decision-making

through the expectation of what can happen, in a forward-looking manner, but past emo-

tions do not influence current decisions. Loewenstein (2000) develops a framework to show

7A standard deviation change in frustration equals 0.27 expected runs the opposing team could score
because of the pitch’s failure.
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the effect of visceral factors8 on current decision but does not consider the visceral factors’

dynamics as the decision-maker do no anticipate them.9 Here, both past and anticipated

emotions affect decisions, allowing novel theoretical predictions to be developed. One ex-

ception is Wälde (2018), who studies the effect of stress and coping strategies on working

memories. In this model, stochastic stress shocks decrease working memory and one’s ca-

pacity to work. The model then studies the various coping strategies an individual might

choose to reduce stress to an acceptable level.

Temporal risk aversion: Many factors might affect the risk aversion and, in turn in-

vestment provision. For example, time, wealth variations and consumption habit formation

can affect risk aversion, see (Kreps and Porteus, 1978; Segal, 1990; Tversky and Kahneman,

1992; Campbell and Cochrane, 1999; Rozen, 2010; Imas, 2016). Here, frustrating events

affects behaviour independently of these effects. Köszegi and Rabin’s reference-dependent

model (Kőszegi and Rabin, 2006, 2009) is also similar in the sense that frustrating events

are defined relative to an expectation. Specifically, these types of preference can be applied

to an inter-temporal framework, but the dynamics stemming from changes in beliefs about

future consumption are very different from those studied here.10 Finally, Dillenberger and

Rozen (2015) axiomatise a model of history-dependent risk-attitude. Their paper bears

important similarities with this ones as risk aversion depends on the history of realization of

lotteries. In particular, frustrating events (disappointing in their terminology) yield higher

risk aversion. One important difference between our two approaches is that in (Dillen-

berger and Rozen, 2015), intensity of past frustrating events plays no role in determining

risk aversion. Here, intensity and its endogenous relation with the investment level plays

a central role in the trade-off I study.

2 General Framework

Decision environment

I study an agent who is investing resources xt ∈ [0, I] at every point in time t ∈ R+, to

possibly get a successful investment.11 Investment might increase utility in case of success,

8Visceral factors are drive states that have a hedonic impact on utility, such as hunger and possibly
emotions.

9This is natural as it is apparently difficulty to anticipate visceral states (Loewenstein, 2000).
10In this setting, a failure always carries the same information because investment decisions are identical.

As such, (Kőszegi and Rabin, 2009) would predict a constant investment level after the first failed attempt.
11Resources can represent many different things: money, capital, time, force, space, effort etc..
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or increase the probability of success, depending on the application in the following sections.

Success is determined by a Poisson process q, where q = 0 if the investment failed. The

probability that q increases by 1 during dt, i.e. dq = 1, is given by π̄(xt)dt, where π̄(xt) is

the arrival rate of the Poisson process during the time interval dt. In other words, π̄(xt)dt

denotes the probability of getting a success during the time interval dt. As such, the

probability of failing from 0 to time t, denoted pt, is given by an inhomogeneous Poisson

point process with:

pt =

(∫ t

0
π̄(xs)ds

)0
0!

e−
∫ t
0 π̄(xs)ds = e−

∫ t
0 π̄(xs)ds. (1)

As such, pt takes a very convenient form as it will act as an endogenous discount rate

to the inter-temporal maximisation problem.

Psychological dynamics

Emotions are dynamic by nature. The central part of the framework is that frustration ft

is modelled as a stock that lingers if the investor continues to suffer failures. Specifically,

frustration increases by the amount of wasted investment when she fails but decays at a

rate δ ∈ (0, 1):

ḟt = xt − δft (2)

Where ḟt represents the derivative of frustration with regards to time.12 The decision

problem stops if the investor succeeds at time τ and all future utilities equal 0. These

modelling choices capture several critical dynamic features of emotions. First, the decay

rate δ represents that emotional response tends to fade when time passes and revert to a

neutral state (Loewenstein, 2000; Lerner et al., 2015).

Second, the effect of frustration disappears after achieving success. This represents

what psychologists call the “goal-attainment hypothesis”, whereby the impact of emotion

on behaviour ceases when the problem at its source is solved (Han et al., 2007; Goldberg

et al., 1999).

Finally, frustration accumulates. In general, emotions of the same sign (positive or

negative) that are triggered consecutively tend to overlap and create a phenomenon called

12Continuous time dynamics are not standard in decision theory or economic psychology. However,
it makes sense to consider them here as emotions’ dynamics are continuous by nature. A discrete-time
formulation of the same dynamics would be ft+1 = xt + (1− δ)ft.
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“emotion augmentation” (Pe and Kuppens, 2012; Kuppens and Verduyn, 2017). In these

cases, the effect of one emotional experience tends to increase the following one. The model

represents this with a time dependence between current and past frustration levels.

Material preferences

Investment is costly. I represent the investment cost as an increasing and (weakly) convex

cost function c(x). If she succeeds, the agent gets utility u(xt, ft), called success utility,

which is increasing in investment and jointly concave in investment and frustration. The

impact of frustration on success utility is described in the following subsection.

The impact of frustration on preferences

This section aims to provide the essential ingredients necessary to model any emotion

stemming from frustrating events. I consider that frustration impacts utility in two ways.

First, one feature that any emotions stemming from frustrating events will share is that

they will be negative emotions. As such, if she is still investing at time t, the agent suffers

from an emotional cost stemming from her frustration stock. I represent the emotional cost

as an increasing and convex function v(f). Psychologists would call the negative effect of

v(f) on utility the valence of the emotion. In other words, v(f) construction reflects that

ceteris paribus, people prefer to be less sad or less angry and prefer situations with lower

f .

Second, frustration triggers appraisal tendencies that affect the agent’s judgement. As

such, some options can become more appealing when in an emotional state than in a

neutral state. This is important as emotions with the same valence can have different

appraisal tendencies (e.g. fear and anger). Similarly, emotions with opposite valence can

have the same appraisal tendencies (e.g., anger and happiness) (Lerner and Keltner, 2001,

2000). Typically, angry individuals might want to increase their effort because their goal

becomes more important; they want “bigger” successes, while sadness could decrease the

project’s appeal. Similarly, angry (sad) individuals tend to become over-(under) estimate

the effectiveness of their actions.

To represent this, I say that frustration exhibits negative (positive) appraisal

tendencies if uxf < (>)0.13 In other words, negative (positive) appraisal tendencies

13In what follows, I represent derivatives by subscripts. For a function f(x, y), I call fx = ∂f(x,y)
∂x ,

fxy = ∂2f(x,y)
∂x∂y , fxx = ∂2f(x,y)

∂x2 , and so on.
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decrease (increase) the marginal utility of investment one gets in case of success. As such,

positive appraisal tendencies characterise a situation where the decision-maker believes her

actions are becoming more efficient at increasing her success utility or simply because she

marginally values this success more.

My objective is to understand how appraisal tendencies, wherever they come from,

interact with the environment and the emotional cost. Indeed, this model is the first

to simultaneously study emotional costs (valence) and appraisal tendencies in economics.

As such, given the research question, I feel it is appropriate to keep the source of these

appraisal tendencies exogenous.14

Appraisal tendencies could affect motivation through another channel: the decision

maker’s actual or assessment of the Poisson law arrival rate, with for example, some func-

tion π̄(x, f). This channel is essential, as emotions influence risk assessment (Lerner and

Keltner, 2000, 2001) and can impair performance (Wei et al., 2016).15 This framework can

easily be adapted to model these effects. Still, it is also somewhat analytically redundant

because it would create similar trade-offs as the one analysed in Section 3.1 and 3.2.

The inter-temporal decision problem

Let me now give the general form of the instantaneous expected utility representing the

decision maker’s preferences:

U(xt, ft) = π̄(xt)u(xt, ft)− v(ft)− c(xt) (3)

During a time interval dt, a probability π̄(xt) of success exists. In case of success, the

agent gets her success utility u(xt, ft). Note that in this general formulation, the probability

of success and utility depend on xt. While I do not focus on this general case in the next

sections, it is not improbable.16 Finally, the two last terms of equation (3) represent the

emotional cost v(ft) the agent has to endure because she is still investing at time t and the

14Note that it is, in theory, possible to endogenise them, but one would need to be more specific about
which emotion is triggered and what the socio-cultural and personal context is. For example, Battigalli
et al. (2019) endogenise appraisal tendencies (action tendency in their lingo) to reduce other players’ payoff
depending on how they blame them in leader-follower games.

15In fact, most of the literature studying appraisal tendencies focus on the effect of these tendencies on
the evaluation of decision environment but not the choices at hand.

16For example, a researcher deciding to go for a more ambitious project would see the higher effort
level impacting the probability (higher π̄) and the quality of the publication (higher u). Similarly, an
entrepreneur launching a larger marketing campaign for a product will affect the probability of being
picked up by a large distributor, leading to higher sales.
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investment cost c(xt). Let ρ > 0 be the agent’s subjective discount rate. As the decision-

making process only continues until time t with probability pt, the agent must also discount

these situations accordingly. As such, let me denote by ϕ(xt, t) =
∫ t

0
π̄(xs)ds + ρt be the

effective discount rate. The inter-temporal decision problem is given by:

V (t0, ft0) = max
xt∈[0,I]

∫ ∞

t0

e−ϕ(xt,t)U(xt, ft)dt (G.O)

ḟt = xt − δft

ft0 given

As such, the decision maker, who stands at t0 decides on optimal investment levels xt

for all t. As such, xt is a function xt : [t0,∞) → [0, I] that gives, for every t, the optimal

investment level the agent is willing to put in if she is still failing at time t. To ensure

sufficiency of the first order conditions, I assume joint concavity of e−ϕ(xt,t)U(xt, ft). This

assumption is not trivial, as the endogenous probability of success can create important

convexities in the inter-temporal maximisation problem.

Note that I focus on situations where frustration accumulation is the only dynamic.

This assumption allows me to get more straightforward results, but it is also possible to

enrich the model. For example, in Appendix 8, I explore the combined effect of learning-

by-doing and frustration accumulation and characterise the conditions under which the

optimal investment path can become non-monotonic.

Before delving into the analysis, one should also note that without frustration, the

optimal investment path is constant. In such cases, all investment decisions are indepen-

dent and identical; as such, the decision-maker should always choose the same optimal

investment level. I focus the analysis on two distinct set-ups. First, I explore the inter-

temporal effects of appraisal tendencies, because they are reminiscent of previous works

in the literature (Loewenstein, 2000; Laibson, 2001). Indeed, appraisal tendencies affect

the agent’s marginal utility in case of success, as do Laibson (2001) ’s cues (which create

craving/disgust and then habits) or Loewenstein (2000)’s visceral factors. While no cost

is associated with the cues in Laibson (2001), one can see this model as an inter-temporal

version of the visceral factor model Loewenstein (2000). As we will see, it is essential to

consider the temporal dimension to understand the effect of emotional cost (or valence) on

behaviour.

In Section 3.2, I go beyond current models of emotions and consider an environment
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where investment affects the probability of success with π̄(x) = γ ·x, γ > 0, but frustration

does not directly influence the preferences for the choices at hand i.e. there are no appraisal

tendencies, which are the driving forces in Loewenstein (2000) and Laibson (2001).

3 The formation of emotional reactions

3.1 Appraisal tendencies

To get cleaner dynamics and isolate the role of appraisal tendencies, I focus on situations

where the success probability is exogenous, i.e. the arrival of the Poisson process will be

π̄(xt) = π > 0. As such, the investor invests because her success utility increases with

investment. The instantaneous expected utility at time t for a period dt is:

U(xt, ft) = πu(xt, ft)− v(ft)− c(xt) (4)

The overall optimisation problem is as in (G.O) presented before, with the specification

given here.17 After linearising the system obtained by solving the optimisation problem

around the steady state, I get the following system:18

˙̂xt = (ρ+ π + δ)x̂t + Ω∗
A · f̂t (5a)

˙̂
ft = x̂t − δf̂t (5b)

Where Ω∗
A =

1

U∗
xx

(
U∗
ff + (ρ+ π + 2δ)U∗

xf

)
(6)

Where U∗
ff , U

∗
xf and U∗

xx indicate the value of the second-order derivatives at the steady

state. The first line in (5a) is the Euler equation; it indicates how investment varies for a

given level of investment x̂t and f̂t.(5b) reiterates the frustration law of motion.

The variable of interest is Ω∗
A, which captures the temporal complementarity of invest-

17One can ensure that the solutions are in the interior of the control variable set by setting Inada type
conditions limx→0 Ux(x, f) = ∞ and limx→I Ux(x, f) = −∞ for all f . To have sufficiency, the Hamiltonian
must be jointly concave in x and f . In other words, the appraisal tendencies of frustration cannot be too
strong. Finally, note that these conditions also ensure the uniqueness of the steady-state

18I introduce a variable transformation such that the steady-state value of frustration and investment
equals zero. As such, values below the steady state level are strictly negative. The scaled variables are
denoted with a hat.
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ment and frustration when there are appraisal tendencies.19 Its sign indicates whether an

increase in frustration today increases or decreases the optimal investment level tomorrow.

Let us examine the phase diagrams representing the linearised system in Figure 1 to see

this. Given that they are not common in behavioural economics, I will spend some time

on their interpretation.

The ˙̂xt = 0 and
˙̂
ft = 0 loci respectively represent the set of points (x̂t, f̂t), for which the

investment and frustration level do not change over time. One can compute their equation

by equating the differential equations 5a and 5b to 0. Note that by doing this, one can

infer that if Ω∗
A is positive (negative), the ˙̂xt = 0 will be downward (upward) sloping. The

intersection of the two loci naturally gives the steady state which is normalised at (0, 0).

Let ft0 be below its steady-state value. Then, the system will only reach an interior

steady state if it is in quadrant A in both graphs.20 While quadrant A in both graphs

imply that frustration will increase to reach its steady-state level, this is not the case for

the investment level. Indeed, the optimal investment level will decrease to reach its steady-

state level, as on the left graph of Figure 1. On the other hand, if Ω∗
A < 0, investment

increases to reach the steady state, as in the right graph of Figure 1.

Proposition 1 formally shows the dependence of the system’s dynamics on Ω∗
A and

clarifies when the maximisation problem is well-behaved and has a stable steady-state.

Proposition 1. 1. An increase in f leads to an increase (decrease) in investment pro-

vision x if and only if Ω∗
A < (>)0,

2. The system exhibits saddle path stability as long as Ω∗
A > −δ(ρ+ π + δ).

3.1.1 Clarifying the role of appraisal tendencies in behaviour

Let us now study the determinant of the value of Ω∗
A described in equation (6) and interpret

the model. Its sign will be determined by the relative size of (ρ + π + 2δ)U∗
xf and U∗

ff .

The second term, U∗
ff < 0, represents the frustration cost: a more concave utility leads

to steeper utility losses if frustration increases. On the other hand, U∗
xf represents the

19To be precise, Ω∗
A is the value of the Volterra derivative of the optimal investment path functional

X∗(t) at the steady state, see Ryder Harl E. and Heal (1973), for more details. It is also easy to notice
the similarity with Becker and Murphy (1988) Rational Addiction model because the appraisal tendencies
U∗
xf are akin to addictive tendencies. In the next section, I set these appraisal tendencies to zero to study

different dynamics.
20One can guess the dynamics of frustration and investment by getting the sign of the differential

equations 5a and 5b. For example, the frustration stock will decrease if f̂t is too large relative to x̂t. In

this case, we are at the right of the
˙̂
ft = 0 locus.
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Figure 1: Phase diagrams, with increasing and decreasing optimal investment path.
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appraisal tendencies triggered by frustration. If they are positive, they can mitigate the

negative effect of the emotional cost. If strong enough, they can trigger an increase in

investment.

Also note that the parameters ρ, π and δ play an essential role. Suppose the investor

does not discount future failures heavily because she thinks that failures are likely (low π).

In that case, the effects of appraisal tendencies are relatively discounted compared to long-

term frustration costs because they only affect success utility. Similarly, lower discounting

(low ρ) would put relatively more weight on U∗
ff . The opposite effect happens for the decay

rate of frustration, which amplifies the effects of appraisal tendencies. If the decay rate

increases, frustration cannot reach higher levels and is potentially less emotionally costly

in the long run.

However, one should not interpret having positive appraisal tendencies as directly lead-

ing to an investment increase. Indeed, appraisal tendencies are only one part of the trade-off

the decision maker is considering. The following example shows how using emotion labels

or inferring emotions from behaviour can sometimes lead to misleading conclusions. Let

us focus on the case of anger and sadness.

Example. Let us consider the case of Emmanuel, who needs to buy clothes at every point

in time. Spending x = 0 would buy Emmanuel regular clothes, but buying more expensive

clothes might bring some success utility that increases in x as he likes it when people praise
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his wealth. Emmanuel has impeccable taste. As such, the probability of getting praise does

not depend on the price of his clothes. When Emmanuel does not get any praise when

spending xt, he gets frustrated, and his frustration follows the law of motion described in

2. If he gets at least one praise, the decision problem stops.21

Emmanuel’s example showcases how difficult it can be to infer what kind of emotion

will be triggered by frustrating events outside a lab. Will Emmanuel be sad that nobody

notices how rich he is despite his best efforts? Or will he be angry because of his entourage’s

lack of interest. 22. However, what interests economists is whether Emmanuel spends more

or less money on clothes and why. In other words, I ultimately want to characterise the

emotional trade-off described in Ω∗
A.

Example. Now let us consider the appraisal tendencies typically associated with sadness

for Emmanuel.

Sadness: Psychologists associate sadness with irrevocable feelings of loss and a desire

to change circumstances (Lerner et al., 2004). On the one hand, the sense of loss can be

linked to the frustration accumulated because of the financial sunk cost.

On the other hand, U∗
xf ≤ 0 can represent Emmanuel’s general disinterest in buying

expensive clothes. Alternatively, sadness has also been shown to influence people’s judge-

ment on how effective they are at changing their circumstances. When sad, Emmanuel

believed that the same amount of money spent on clothing would translate into a lower

level of wealth praises. The marginal utility of getting praise for his wealth is lower for

greater frustration levels. Intuitively, sadness decreases the interest in cloth investment at

the margin. As such, Ω∗
A > 0. In this case, the frustration stock always leads to lower

investment as both the appraisal tendencies and the sensitivity to frustration impact are

negative.

So far, so good. The appraisal tendencies associated with sadness amplify its action

tendency to decrease investment. Emmanuel is decreasing his clothing expenditures even

more when they are present. But what happens to Emanuel if the situation makes him

somewhat angry? His resentment of not getting any praise might be such that showing signs

of wealth becomes more important to him. Angry individuals typically try to move against

the problem and approach it directly. Similarly, he could also believe that people would

get him more praise for the same amount of money. In our context, this can be interpreted

21He could start repurchasing cloth in a separate maximisation programme.
22These are, of course, only two emotions out of many that could be triggered in this situation.
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as Emmanuel being willing to double down on the wealth signalling and getting even more

utility for higher levels of wealth demonstration. That is, U∗
xf ≥ 0. In this situation, the

cloth investment marginal utility in case of praise increases with frustration.

Example. In the case of anger, two situations can emerge.

Contained anger: U∗
xf ≥ 0 and (ρ + π + 2δ)U∗

xf < −U∗
ff . Emmanuel would marginally

want more expensive clothes. However, anger would still decrease his cloth expenditure as

the possible future emotional cost as measured by U∗
ff is higher than (ρ+ π + 2δ)U∗

xf .

All out anger: If U∗
xf > 0 and Ω∗

A < 0 an increase in anger today will increase invest-

ment tomorrow in case of failure. In this case, the effects of anger’s appraisal tendencies

are so powerful that they dominate Emmanuel’s emotional trade-off, and he increases her

effort whenever frustration rises.

As such, one cannot make a one-to-one revealed preference argument on emotions. If

cloth expenditure increases, one can be sure Emmanuel was angry. However, if it decreases,

one can only say that appraisal tendencies are either negative or positive and strong enough

to counterbalance the emotional cost, as contained anger and sadness are behaviourally

equivalent.

This point is essential, as economic applied works are starting to cite the appraisal-

tendency framework to build and guide their analysis, for example, John Griffith and Shen

(2020); Brooks et al. (2023); Meier (2022). This analysis shows that one must be cautious

when inferring the emotional consequences on actions.

On the one hand, an emotional state might not always lead to the stereotypical reaction

to the emotion. Similarly, one cannot always infer what emotion was triggered by an event

by looking at how the agent reacted. This might explain why the literature has sometimes

produced mixed results when trying to understand the effect of emotions on action outside

the lab, see Brooks et al. (2023) for a review.

3.2 The effect of the controllability of the environment

This section shows how the perceived control of an environment influences emotional re-

actions stemming from frustrating events. Perceived control is generally seen as a critical

driver in emotional responses. People who believe they control their environment more

also tend to be more proactive in solving the problem causing their distress (Smith and

Ellsworth, 1985; Lerner and Keltner, 2001). It is also one of the main features differ-

entiating individuals who state they are angry or sad, even without considering appraisal
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tendencies. One appealing feature of this framework is that its solution provides action ten-

dencies (increase or decrease investment) that resemble the reaction of anger and sadness,

depending on how they control their environment.

To show this, let us adapt the general framework. I equate control over the environment

with the control over the probability of success during each time interval dt, given by

π̄(xt) = γ ·xtdt, with γ > 0. The higher the γ, the higher the control. These situations are

essential in many critical economic situations. Principal-agent models almost exclusively

deal with agents whose effort increases the probability of success. In general, many real-life

situations outside finance involve people increasing their efforts to increase their chances of

success, like student training for an exam. Let ϕ(xt, t) =
∫ t

0
γxsds+ ρt. The fact that the

probability of success depends on investment is crucial. Investment increases the chances

of a successful investment. However, more importantly, it increases the chance of getting

rid of the current frustration stock. This means that even though it is a negative emotion,

frustration can create an emotional incentive to invest more. Let us use the following

specification to fix ideas.

U(xt, ft) = γ · xtu− v(ft)− c(xt) (7)

Success utility u > 0 is fixed, and the probability of having a success during dt, γ ·xt ·dt,
depends on x. Notice that Uxf = 0: there are no appraisal tendencies, and increasing ft

does not change the marginal value of investment xt at time t. However, this does not mean

that frustration does not affect the inter-temporal marginal value of investment. Indeed,

the relevant objective function to consider at time t is F (xt, ft) = e−ϕ(xt,t)U(xt, ft). The

effect of xt is inter-temporal by nature as an increase in xt today changes the probability

of continuing tomorrow. Even though today’s frustration cost is sunk, as xt does not affect

v(ft), it affects the probability of still being frustrated tomorrow. Frustration impacts the

marginal utility of investment because Fxf > 0. Solving the optimization problem G.O

given the specification described here, (see Appendix 6.1) yields the following Proposition:

Proposition 2. Let Ω∗
C = 1

Uxx

(
U∗
ff − (ρ+ γ · x∗ + 2δ)

γU∗
f

ρ+γ·x∗+δ

)
.

1. An increase in frustration leads to an increase (decrease) in investment provision if

and only if Ω∗
C < (>)0,

2. The system exhibits saddle path stability as long as Ω∗
C > −δ(ρ+ γ · x∗ + δ).

Ω∗
C and Ω∗

A share the same structure. On the one hand, the potential future emotional

cost U∗
ff remains. On the other hand, frustration is now accompanied by another factor
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multiplied by (ρ+γ ·x∗+2δ). This second factor represents the shadow cost of frustration

at the steady state multiplied by γ, the marginal effect of investment on the arrival rate of

success. It represents how effective additional effort is at avoiding the additional emotional

cost a new failure would entail. Naturally, this depends on how effective investment is

at increasing the odds of success and how much the potential increase in frustration will

decrease utility.

The sign of Ω∗
C will determine the system’s dynamics, and the decision-maker will face

a similar trade-off as with Ω∗
A. As such, I will not spend too much time on it. However,

contrary to the previous section, where appraisal tendencies could influence investment

either way, environment controllability can only increase the investment level when frus-

tration rises. This is in line with the psychological literature (Smith and Ellsworth, 1985;

Lerner and Keltner, 2001).

4 Illustration

This part aims to provide an illustration that fits the model’s set-up and test its building

blocks. It also shows how one can use an event-based approach to emotion to get meaningful

information about the emotional process to which the individuals respond. To do so, I use

Major League Baseball pitching data to study the effect of frustration accumulation on

pitcher behaviour.

4.1 The Dataset and Baseball Rules

I first give an extremely summarised version of Baseball rules. Readers acquainted with

baseball can skip the following three paragraphs. The basic unit of play is called an inning

and works like the half-time in other sports, except there are typically nine innings (or

more) in a baseball game. An inning comprises two half-inning periods where attacking and

defending teams switch roles. I focus on players called pitchers, who are in the defending

team, throwing the baseball at another teammate, called the catcher. Between these two

players is a third player called the batter, who is in the offensive team and tries to score

points.

The batter aims to hit the ball to advance as far as possible around four bases while

the defending team tries to get the ball back to the catcher.23 If the batter does not reach

23The four bases create a square, with each side measuring 27.43 meters (90 feet) in length.
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the fourth base (home plate), he waits on one of the bases for the next opportunity to

advance during the following plays. A base with a player on it is “loaded”. Once a batter

is out or on a base, one of his teammates replaces him, and the process starts again. If one

member of the offensive team goes around the four bases, the team scores a run (a point).

The team with the most runs at the end of the game wins.

A pitcher’s primary goal is to throw pitches that are difficult for the batter to hit. His

first objective is to prevent the batter from scoring runs. The second is to get three batters

out (which ends the current half-inning), thus preventing the other team from scoring

further runs. The four more important pitch outcomes are (1) balls: if the pitch is not

thrown correctly, it is considered a ball, and four balls grant first base to the batter. (2)

strikes, if the batter did not hit a valid pitch in a valid area, the batter is out with three

strikes;24 (3) the batter bats the pitch in a valid area: it is in game.

The data set consists of measurements for every pitch thrown during the 2010-2019

period retrieved on a Major League Baseball (MLB) run website for more than 7 million

pitches. Physical information about the pitches is gathered through the PITCHf/x system

for the 2010-2015 period and Statcast for 2015-2019. These two systems are automated

camera systems developed to analyse player’s movements. Physical information about the

pitches includes speed at release, location of the pitch at different points in time, spin rate,

spin angle, acceleration etc... The dataset includes detailed game information, including

game, pitcher and batter identifiers, base occupancy and strike, and ball and out counts.

The MLB also provides information about the batter team’s change in run-expectancy

before and after each pitch. The information was retrieved using the python package

pybasebeball.25

4.2 How to measure investment for pitchers

The primary dependent variable for the analysis is pitch velocity. This is a natural choice

as it is arguably the variable over which the pitcher has the most control. Moreover, it has

a natural interpretation. Faster pitches should increase the odds of success until the pitcher

starts to lose precision. As I argue below, pitchers should always throw their pitches at an

optimum speed, given a pitch type and a strategic environment. As such, one can interpret

any significant frustration coefficient as over- or under-investment relative to the optimal

level with the appropriate control strategy.

24A pitch batted in a non-valid area is called a foul.
25See https://pypi.org/project/pybaseball/
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Isn’t Baseball a strategic game? It is true that changing the speed of the pitch

might be a strategy to surprise the batter. However, baseball culture has developed so that

pitches with significant differences in speed are also categorised differently. Each category

is called a pitch type and differs in terms of speed, variations in release point, spin, and

mechanics that affect the ball’s velocity.26 For example, the slow version of a (four-seam)

fast-ball is called a change-up and is, as such, categorised differently. Much of a pitcher’s

strategy is expressed through the strategic randomisation of the type of pitch he is throwing

to catch the batter off-guard. From a game theoretic point of view, a pitcher’s optimal

strategy should be a probability distribution over the pitches in his repertoire, which is a

mixed Nash equilibrium. As my model does not consider such strategic considerations, I

control for the different pitch types and eliminate this strategic component of the game

from my analysis. In other words, my analysis exploits the fact that, within pitch type,

speed should not be affected by strategic consideration.27

4.2.1 Objective of the analysis

I structure this analysis around three axes. (1) Does frustration impact pitch velocity? I

will not focus on the sign of the impact but on whether it is statistically and economically

significant. If it is, then building a model of frustration accumulation is warranted. (2) The

second objective is to focus on the most essential building block of the model: frustration

dynamics. First, frustration decays with time in the framework. Second, the model’s as-

sumption that success brings emotional relief is crucial. As such, I expect to observe these

two features in the data. (3) The final objective will be to determine through which chan-

nel frustration affects pitch velocity: frustration’s expected emotional cost, frustration’s

appraisal tendencies or/and the controllability of the environment. The result section 4.6

is organised around these three axes.

4.3 Frustration and pitcher’s utility for speed

To understand how speed affects the pitcher’s expected utility for speed, given a frustration

level, let me introduce a functional form to guide the analysis. The catcher and pitcher

26Pitcher and catcher must communicate using a secret and limited sign language. Using signs, the
catcher proposes a pitch type that the pitcher should throw and prepares accordingly to catch it. Note
that this specificity evolved because all MLB players understand English. In contrast, in cricket, this is
only sometimes the case as pitchers and catchers can communicate more precisely using local dialects that
the other team cannot understand.

27Although I carefully control for possible additional confounders.
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first choose the pitch they want to play. I focus on the pitcher’s expected utility once

this decision is made. Let xt be the pitch speed, with xt = 0 being the optimal speed

given the pitch type and the strategic environment. Let st denote the game’s strategic

state at time t and let ust measure the success utility of a pitch and a state of the game

st. Finally, I represent the possible appraisal tendency effect of frustration on speed by

µ(xt, ft). I assume that µ(xt, 0) = 0 and µxf > (<)0 if there are positive or negative

appraisal tendencies. The expected utility is:

U(xt, ft, st) = γxtust + µ(xt, ft)− v(ft)− c(xt) (8)

The fact that the probability of success only increases linearly reflects the fact that

the estimation will be a local one. Even though the effect of speed on the probability

of success is probably hump-shaped, the dataset only comprises the best pitchers in the

world. As such, their training must be such that we will not observe significant deviation

from the optimum. In that case, considering a linear approximation of the effect of speed

on the probability of success seems appropriate. Equation (8) shows the challenges of

this illustration: the success utility is game-state dependent. As such, it will be capital to

control for such game-state effects as they would naturally affect speed.28 Finally, note that

the expected utility exhibits an endogenous success probability and appraisal tendencies.

As such, the analysis here will be derived from the general form of the problem shown in

(G.O) and solved in the Appendix.

4.4 Frustration definition and measurement

In this section, I present the definition of my variable of interest, frustration. At every

point in time, it is possible to compute the expected number of runs the opposing team

can score in the rest of the half-inning. Let Rt be the run expectancy of the opposing

team during this half-inning before throw number t, where t ≤ T and T are the number of

consecutive throws the pitcher does during this half-inning. The pitcher’s objective is to

prevent the other team from scoring runs, that is, to always have Rt+1 − Rt + runst < 0,

where runst indicates the number of runs the other team scored at time t. Fortunately, this

difference in expectation is provided by the MLB.29 I can then classify pitches’ outcomes

28Notice that success utility is not frustration dependent, as it was before when I introduced appraisal
tendencies. I explain in section 4.6 why this would not affect the analysis.

29Computing the expected number of runs for any game state is relatively straightforward as it is simply
the historical average number of runs that are scored until the end of the innings given the current game
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by their effect on the expected score. This yields the following definition of failure:

Definition. A pitch a time t is considered a failure if it increases the run expectancy of

the opposing team, that is, if Rt+1 −Rt + runst ≥ 0.

Now, I need to measure the level of frustration associated with any failure in the game.

I consider the difference in run expectancy before and after a failure as my frustration

proxy. Doing this allows me to get two desirable properties. First, the measure is in runs

and is easily interpretable. Second, it objectively measures the frustration intensity, as

different failures can have other repercussions. For example, a ball at the beginning of an

inning will have a negligible impact on the expected game score30, while a home run or

a fourth ball with three bases loaded can be decisive. Accordingly, the measure reflects

that more minor mistakes are less frustrating and that the same event can trigger different

levels of frustration depending on the state of the game31.

Definition. The frustration triggered by a failure at time t, ∆ft is:

∆ft = Rt+1 −Rt ≥ 0 (9)

Next,32 following the model’s set-up, the frustration level increases by the (positive)

difference in run expectancy in case of a frustrating event and goes to 0 following success.

Let Ct represent the set of time period s that are in a string of consecutive failure before

t, that is:

Ct = {s < t : ∆fs > 0 , and ,∀s′ : , t > s′ ≥ s : ∆fs′ > 0}

Definition. The stock of frustration at the beginning of period t ≤ T , Ft is:

Ft =
∑
s∈Ct

∆fs

state. The game state description mirrors the Game State FE presented in Section 4.5.
30Indeed, some baseball fans would even be reluctant to consider a ball at the beginning of an inning

as frustrating. A ball at the beginning of an inning would increase frustration by 0,034. This is negligible
but still worse than any other non-frustrating outcome (strikes, fouls, ...)

31Notice that the measure can sometimes miss subtleties specific to the throw. For example, it is possible
to have a positive difference in run expectancy after flawlessly executed pitches where the rest of the team
did not live up to the pitcher’s performance or for failures where the pitcher was at fault. In other words,
this measure only takes the effect of the pitch on the game’s outcome into account without characterising
who is responsible for the poor performance. However, regardless of the source of the emotional reaction,
the measure should be a good proxy for its intensity.

32The previous definition also considers a foul ball after two strikes as a failure, but with a frustration
value of 0. As such, it is a neutral event that does not break strings of consecutive failures.
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As such, in case of consecutive failures, the measured frustration law of motion is:

Ft+1 = ∆ft + Ft,

while Ft+1 = 0 if there is a success at time t, as Ct+1 is empty. Note that this means

that the frustration does not directly depend on the pitcher’s action but only on the

consequences of those actions and the state of the game. In other words, frustration

increases will not depend on the pitcher’s investment (speed) in the pitch. Moreover, this

measured law of motion does not feature a decay rate δ, while the actual law of motion

does. I get back to this when studying frustration’s temporal effect in section 4.6 to study

the value of δ.

Figure 2 gives insight into how the frustration stock is distributed in the dataset.

Figure 2: Frustration level histogram
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Having a high frustration stock is not common. This is natural. First, the definition
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chosen is somewhat extreme, as frustration goes to 0 after any success. An alternative could

be to have only a share of Ft remaining after a successful pitch. However, determining the

level of the share seems arbitrary. I prefer to show that the results hold under the most

extreme assumption. Second, remember that given the frustration is measured in runs. As

such, it seems natural that professional pitchers usually do not concede high numbers of

consecutive runs without being replaced.

4.5 Estimation Strategy

Even though it is impossible to develop a quasi-experiment in this dataset, the sheer amount

of information available for every pitch makes it possible to control for most confounders

that could bias the analysis results. Before investigating the potential effect of frustration

on speed, one must review all the possible reasons why a pitcher might vary the speed of

a given pitch. Figure 3 gives a schematic and simplified view of the possible influence one

must control and Table 1 describes the controls used in the regressions.

Figure 3: Schematics of factors that can influence pitch velocity
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Note: Schematic view of the possible confounders of the analysis. Note that
some elements could also be in other categories, and the links between
categories are not represented. I mention these overlaps between categories
in the discussion below. ∆ Exp., represents the difference in run
expectancy between the current throw and the beginning of the half-inning.

Strategy: As mentioned in section 4.2, much of a pitcher’s strategy is expressed

through the strategic randomisation of the type of pitch he is throwing to catch the batter
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off-guard. To control for this, I use MLB’s pitch type classification.33 Note that even

though strategy affects pitch selection, pitch speed given a game state and a pitch type

should not vary.

Other strategic interactions might also affect the pitches’ speed. Specifically, the value

of the success utility ust in the pitcher’s expected utility (8) depends on st. For example,

suppose a game or plate appearance is not particularly competitive. In that case, the

pitcher might decide to reduce the speed of his pitches to save his arm. The Game State

fixed effect is a categorical variable that tries to describe the current state of an inning

comprehensively. The objective is to capture Game-State dependent strategic considera-

tions affecting the speed of a given throw. Each category is a 6-digit number, representing

the number of outs, strikes and balls, whether a player is on first, second or third base.34

Finally, I also control for Batter and Pitcher × Game fixed effect, inning number and

difference in score to account for the plausible strategic impact on player’s behaviours.

Physical feedback: Belief updating might play an essential role in a pitcher’s pitch

velocity decision. Here, I focus on belief updating, although these fixed effects could

capture strategic incentives to some extent. First, a player might update his beliefs about

his current ability by looking at the performance of his throws. As such, I create a variable

counting the number of successes and failures. Assuming that the agents consistently

update failures and successes, this should proxy the effect of Bayesian updating. It also

allows for controlling for asymmetric updating where the agent puts relatively more weight

on bad news, for example. I also control for the number of throws the pitcher already

threw in an inning to consider fatigue.

Other emotions: Emotional triggers are usually belief dependent Keltner and Lerner

(2010). To control for other possible emotions, I include ∆ Exp., which represents the

difference in run expectancy between the current throw and the beginning of the half-

inning. Many emotions that frustrating events might not trigger are rooted in changes in

beliefs and expectations. As such, this should, together with Bayesian updating, capture

the effect of other belief-based emotions. Finally, one crucial feature I want to test is the

relief the pitcher is supposed to feel once he succeeds after a string of failures. Then, if there

was no relief effect, this variable should capture the effect of the frustration coefficient.

Player Characteristics: Sometimes, physical characteristics can influence pitches’

33They use a player-specific neural network called PitchNet to classify pitches. The accuracy reaches
78.30% for rookies and 96,25% for regular players. See Sharpe and Schwartz (2020).

34For example, a Game State variable being equal to 213101 describes an inning with two outs, one
strike, three balls, one player on first base, no player on second and one on the third.
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velocity. Temperature, weather, or a pitcher’s current condition can significantly impact

a pitcher’s performance. However, it should also be easily controlled with the Pitcher ×
Games fixed effect.

Table 1: Controls for regressions

Possible factors Controls

Fatigue # Attempt : Number of pitches in Inning
Player’s current ability Game × Player FE
Strategy on a given game Game × Player FE
Strategy in a Game State Game State FE : #Out × #Strikes × #Balls × Bases load
Batter characteristics Batter FE
Pitch type Pitch type FE
Score Difference in Score
Score in inning ∆ Inscore: Difference in score in the inning.
Inning Inning FE
Bayesian Updating # Failures and Successes
Other expectation-based emotions ∆ Exp.: Net Difference in exp. since start of Inning

Given this, I estimate the following regression using a multi-way fixed effect estimator:

Speedgpti = β0 + β1Fgpti + β2∆Exp.gpti

+ β3GameStategpti + β4PitchTypegpti + β5Battergpti + β6∆Scoregpti + β7∆InScoregpti

+ β8#Attemptgpti + β9#Failuresgpti + β10#Successesgpti

+ β11αgp + β12αi

Where the subscripts g denote game, p denotes pitcher, t denotes the throw number,

and i is the inning, αgp is the Player ×Game fixed effect, αi is the inning fixed effect.

4.6 Results

4.6.1 Frustration’s effect on pitchers’ behaviour

Table 2 presents the main result of this section. One additional unit of frustration Ft

(measured in runs) increases the speed of pitches by 0.12 mph (0.19km/h). Depending on

the type of pitch thrown, this accounts for an increase in speed between 0.08% to 0.17%.35

35See table 8, in the Appendix, for more detailed results
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The careful strategy to control for cofounders also seems to work with an adjusted R2 of

0.912.36.

To better understand the magnitude of the effect, let us compare it to the impact of

fatigue, as defined in Table 1. The effect of one standard deviation increase in frustration

(0.27 runs) accounts for 45.72% of the magnitude of one standard deviation increase in

the fatigue gained during an inning by a pitcher (5.16 throws). Suppose one considers

the standard deviation of frustration for positive frustration values only. In that case, the

effect rises to 64.70 % of one standard deviation increase in fatigue37. As such, frustration

seems to have a non-negligible impact on pitcher’s behaviour.

Emotional Relief

One crucial building block of the model is that success brings emotional relief, in that

frustration’s effect disappears after success. Notice the frustration coefficient is positive

and significant while controlling for ∆ Exp.. In other words, the impact of frustration

cannot be captured by a net effect of an elation/frustration function that ∆ Exp. (the net

difference in run expectancy since the beginning of the inning) should capture. One can

interpret this as evidence of an asymmetric drop in Ft after a success. There must be a

relief and accumulation effect, as in Ft’s construction.

Temporal Effects

Finally, the central insight from this paper is that emotions are inter-temporal processes:

frustration accumulates and decays with time. Table 1 analysis shows that frustration,

under the form of the variable Ft, affects pitchers’ behaviour. However, it does not explore

the temporal effect of frustration accumulation. Ft can increase by the same amount over

one or several failures. If frustration has a temporal effect, then the marginal frustration

∆ft, as defined in equation (9), gained several failures ago should still affect pitches’ speed

in case of consecutive failures.

As such, I first construct a set of dummy variables indicating whether there were more

than 1,2 and up to 9+ consecutive failures. I then interact with the dummy, indicating

one or more failures with frustration gained last period, two or more failures with the

36Admittedly, the frustration measure has a negligible impact on the adjusted R2 of the remaining
variance to explain. This is unsurprising and similar to the explanatory power in causal identification
techniques after differencing away the trends.

37This is a sensible strategy as the frustration stock equals 0 in 80% of the sample)

26



Table 2: Effect of Frustration on Velocity and Quality

Dependent Variables: Velocity
Model: (1) (2)

Variables
Ft 0.1221∗∗∗ 0.1221∗∗∗

(0.0048) (0.0034)
# Failures 0.0189∗∗∗ 0.0189∗∗∗

(0.0014) (0.0008)
# Successes 0.0345∗∗∗ 0.0345∗∗∗

(0.0016) (0.0007)
Attempt -0.0143∗∗∗ -0.0143∗∗∗

(0.0012) (0.0003)
∆ Exp. 0.0270∗∗∗ 0.0270∗∗∗

(0.0071) (0.0062)
∆ Score 0.0007 0.0007

(0.0021) (0.0012)
∆ InScore -0.0887∗∗∗ -0.0887∗∗∗

(0.0075) (0.0060)

Fixed-effects
Pitch Type Yes Yes
Game State Yes Yes
Player × Game Yes Yes
Batter Yes Yes
Inning Yes Yes

Fit statistics
Observations 7,199,443 7,199,443
R2 0.91726 0.91726
Within R2 0.00235 0.00235

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Column (1) is clustered at the pitcher level, and column (2) at the game level. Ft measures the
change in the other team’s expected score during the current and (possibly empty) sequence of
consecutive failure. # Failures and # Successes count the number of successes and failures since
the beginning of the inning. Attempt measures the number of pitches the pitcher has thrown since
the start of the game. ∆ Exp measure the change in the opposing team’s expected score since
the beginning of the inning. ∆ Score measures the current difference in score, while ∆ InScore
measures the change in score since the beginning of the inning. Pitch Type is a categorical
variable indicating the pitch type. Game State is a categorical variable indicating the number
of batters out, the number of balls, strikes and whether a player is on base 1, 2 or 3. Player ×
Game indicates who is pitching during which game. Batter indicates who is currently facing the
pitcher.
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frustration gained two periods ago and so on. Generally, for an observation at time t, these

interactions are:

1[#Consecutive Failures ≥ n]×∆ft−n

These interactions allow the nth frustration lag to have an effect only if there were at

least nth consecutive failures. The n > 1 coefficients should be significant if frustration

accumulates over time. Moreover, if frustration decays with time, the magnitude of the

interactions’ coefficient should decrease with the number of lags. Indeed, if frustration

decays, it seems natural that frustration gained five pitches ago has a lower impact on

speed than the frustration stemming from the last failure.

Figure 4: Temporal Effect of Frustration
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Each dot on the graph represent the interaction term 1[#Consecutive Failures ≥ n]×∆ft−n for 1 ≤ n ≤
8. The 9th dot represents the interaction between lags of ∆f greater or equal to 9 and the dummy indicating
more than nine consecutive failures. The confidence interval displayed on the graph are associated with
5% confidence level. Clusters are at the player level.

Figure 4 represents the value of the coefficients of the interactions and their confidence

intervals (95%) for an OLS with these interactions, the dummy indicating the number of

cumulative failures and the set of control presented in table 3. Frustration seems to have

a temporal effect, with frustration from up to four failures ago still significantly impacting

speed (at a 5% significance level). Second, frustration also seems to decay as the coefficient

value gradually decreases with non-significant values if failures occurred more than three

throws ago, indicating a substantial decay rate of frustration over time.
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The mechanics of frustration: Emotional cost, Appraisal Tendencies or Con-

trollability of the environment?

Three factors can influence pitch speed: future potential emotional cost, the effect of speed

on the probability of success (γ) and appraisal tendencies µxf . According to the frustration

measure, the future potential emotional cost, U∗
ff , should not influence behaviour. Indeed,

the frustration level in case of failure is exogenous to the pitch’s speed. Varying pitch speed

should not affect his future emotional cost if he fails. As such, the anticipated emotional

cost should not influence the pitcher’s velocity decision.

We are left with two possible factors: appraisal tendencies of frustration and the effect

of speed on the probability of success, i.e. the controllability of the environment. Let us

start with the latter. Intuitively, faster pitches are more challenging to hit, so speed should

positively affect the odds of success and the chance of alleviating frustration. The following

regression tries to estimate the impact of speed on the probability of success, i.e. γ.

Table 3 presents the result of an OLS regressing the speed and the log of the speed of

pitches on the probability of success. Table 1’s footnotes describe all covariates. Speed has a

statistically significant but economically small effect on the likelihood of success. Increasing

the release speed by one per cent increases the chance of success by less than 0.0014%. To

compare this to natural speed variations in the data, one can consider the average game

and pitcher-specific standard deviation in speed at the inning level. Table 4 in Appendix

9.1 presents this standard deviation for different pitch types. The standard deviation is,

in general, around 1. As such, according to columns (3) and (4), a pitcher would need to

increase their pitch speed during an inning by a heroic five standard deviations to increase

their probability of success by 1%. Of course, this estimate should be considered as a local

effect, as pitchers cannot significantly increase their pitches’ speed without losing precision

or risking injury.

Given the low adjusted R2, velocity does not seem to be a credible explanatory factor

to predict success. Overall, Table 3 results are not surprising. MLB pitcher’s market is

competitive, making it hard to believe that a pitcher would not throw at the best of their

capabilities given the strategic environment.

Moreover, Appendix 9.3 shows a regression result measuring how frustration affects the

quality of the pitches.38 In general, pitch quality tends to decrease with higher frustration

38The quality of the pitches is determined using a machine learning algorithm. I use the physical
characteristics of the throw as an ex-ante predictor of success to measure their quality. See appendix 9.2
for more details on this.
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Table 3: Effect of Speed on probability of success

Dependent Variable: P (Success)
Model: (1) (2) (3) (4)

Variables
Speed 0.1463∗∗∗ 0.1463∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗

(0.0283) (0.0097) (0.0003) (0.0001)
# Failures 0.0193∗∗∗ 0.0193∗∗∗ 0.0193∗∗∗ 0.0193∗∗∗

(0.0006) (0.0002) (0.0006) (0.0002)
# Successes -0.0176∗∗∗ -0.0176∗∗∗ -0.0177∗∗∗ -0.0177∗∗∗

(0.0007) (0.0002) (0.0007) (0.0002)
Attempt 0.0058∗∗∗ 0.0058∗∗∗ 0.0058∗∗∗ 0.0058∗∗∗

(0.0004) (8.77× 10−5) (0.0004) (8.78× 10−5)
∆ Exp. -0.0209∗∗∗ -0.0209∗∗∗ -0.0210∗∗∗ -0.0210∗∗∗

(0.0027) (0.0015) (0.0027) (0.0015)
∆ Score -0.0050∗∗∗ -0.0050∗∗∗ -0.0050∗∗∗ -0.0050∗∗∗

(0.0005) (0.0003) (0.0005) (0.0003)
∆ Inning Score 0.0081∗∗∗ 0.0081∗∗∗ 0.0081∗∗∗ 0.0081∗∗∗

(0.0027) (0.0015) (0.0027) (0.0015)

Fixed-effects
Pitch Type Yes Yes Yes Yes
Game State Yes Yes Yes Yes
Player × Game Yes Yes Yes Yes
Batter Yes Yes Yes Yes
Inning Yes Yes Yes Yes

Fit statistics
Observations 7,199,443 7,199,443 7,199,443 7,199,443
R2 0.05682 0.05682 0.05683 0.05683
Within R2 0.00781 0.00781 0.00782 0.00782

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Columns (1) and (3) are clustered at the pitcher level and columns (2) and (4) are
clustered at the game level. Columns (1) and (3) Speed measure is the pitch’s velocity
when released by the pitcher in mph. Columns (3) and (4) Speed measure is the nat-
ural logarithm of the same variable. # Failures and # Successes count the number of
successes and failures since the beginning of the inning. Attempt measures the number
of pitches the pitcher has thrown since the beginning of the game. ∆ Exp measure the
change in the opposing team’s expected score since the beginning of the inning. ∆ Score
measures the current difference in score, while ∆ Inning Score measures the change in
score since the beginning of the inning. Pitch Type is a categorical variable indicating
the pitch type. Game State is a categorical variable indicating the number of batters
out, the number of balls, strikes and whether a player is on base 1, 2 or 3. Player ×
Game indicates who is pitching during which game. Batter indicates who is currently
facing the pitcher.
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levels. As such, the controllability of the environment does not seem to be the main driver

of the emotional reaction, as frustration would increase pitch quality in that case.

Empirical conclusion:

Overall, the analysis points to appraisal tendencies as the main culprit behind the emotional

reaction. Frustrated pitchers throw faster simply because they have a higher marginal

utility to do so. This also seems to translate into a loss in efficiency as the quality of their

pitches tends to decrease. In Appendix 9.5, I carry out the same analysis at the individual

level and take a closer look at frustration’s effect on the pitches’ quality. A higher effect of

frustration on speed is associated with a more negative impact on quality. This rules out

any rationale for saying that frustration motivates pitchers to reach a better optimum and

strengthens the conclusion that appraisal tendencies are the source of the changes. In the

same appendix, I show that frustration’s effect on quality also seems to translate to lower

career-level performance statistics. This indicates that frustration accumulation is more

than an interesting behavioural phenomenon and could have labour market implications

by affecting pitchers’ productivity.

5 Conclusion and Discussion

This paper establishes a framework to study the inter-temporal effects of emotions on

investment. I find that the impact of frustration depends mainly on the relative force of

the negative emotional shock induced by the frustrating events, its appraisal tendencies and

the decision-makers control over her environment. More importantly, negative emotions

do not always trigger negative consequences in terms of investment, and positive appraisal

tendencies stemming from them are not necessary nor sufficient to have a positive effect of

frustration on motivation.

Overall, the empirical investigations seem to confirm that pitcher’s behaviour is influ-

enced by frustration and that frustration accumulates and decays. Frustration appears

to increase pitches’ speed at the average and individual levels and decrease their qual-

ity. A strong enough effect of frustration on quality can reduce a pitcher’s career-level

performance and productivity. This highlights the relevance of studying the dynamics of

emotions in economics.

All models presented here assume a forward forward-looking and time-consistent decision-

maker. This assumption is not innocuous but standard in the literature as most emotion
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models work exclusively regarding expected emotion (Loomes and Sugden, 1982; Bell, 1982,

1985; Loomes and Sugden, 1986; Caplin and Leahy, 2001). Yet, while individuals anticipate

their emotions reasonably well, they are also prone to systematic mistakes (Loewenstein,

1999). Similarly, individuals only seem to be partially aware that the appraisal tendencies

of their emotions are present. Moreover, their effect tends to diminish when they become

aware of their existence. However, in the context of this paper, the deactivation of the

appraisal tendencies seems to be more the exception than the rule, as they tend to persist

when the emotional goal (a success) has not been fulfilled (Han et al., 2007).

Nonetheless, the mechanisms and trade-offs put forward here are surprisingly intuitive,

albeit stylised. They also show to what extent ”forward-lookingness” must be present to

get very intuitive behaviour. For example, if an agent cannot predict that her frustration

will disappear after a success, investing more effort to solve the problem would not make

sense. Similarly, not anticipating the potential emotional cost of an action is a natural way

of limiting the effect of appraisal tendencies effects on behaviour. In other words, emotions

must be understood as dynamic processes. Going into models with several selves defined

by their frustration could bring interesting results and could be pursued in further research

to see how sophisticated time-inconsistent decision-makers could behave.
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6 Models solutions

6.1 Solving the General model

To make the problem more tractable, let us introduce the following state variable: Φt =

ϕ(xt, t) =
∫ t

0
γxsds + rt, where r is the time invariant discount rate, that might include a

Poisson law fixed arrival rate π. In Section 3.1, we have γ = 0 and r = ρ + π. In section

3.2, γ > 0 and r = ρ. We can then rewrite the maximisation problem in the following way:

V = max
xt

∫ ∞

0

e−ΦtU(xt, ft)dt

ḟt = xt − δft

Φ̇t = γ · xt + r

ft0 given

Φ0 = 0

The Hamiltonian of this problem is:

H̃(xt, ft, λ̃t, µ̃t) = e−ΦtU(xt, ft)− λ̃t(xt − δft)− µ̃t(γ · xt + r)

H̃x(·) = e−ΦtUx(xt, ft)− λ̃t − µ̃tγ = 0

H̃f (·) = e−ΦtUf (xt, ft) + δλ̃t =
˙̃λt

H̃Φ(·) = −e−ΦtU(xt, ft) = ˙̃µt

lim
t→∞

H̃(·) = 0

Where the last equation is a general transversality condition suited for endogenously

discounted inter-temporal maximisation problem see (Michel, 1982; Barro and Sala-i Mar-

tin, 2004). Next, notice that:

dH̃(·)
dt

= ẋtH̃xt(·) + ḟtH̃ft(·) +
˙̃ΦtH̃Φt(·)− ˙̃µtΦ̇t − λ̇tḟt = 0

Together with the transversality condition, this means that on the optimal path, the
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maximised Hamiltonian H̃∗(·) is always equal to 0. As such, we can rewrite:

µ̃t =
e−ΦtU(xt, ft)− λ̃t(xt − δft)

γ · xt + r

Let me introduce the following variables : µ̃t = e−Φtµt and λ̃t = e−Φtλt.

The first order conditions become:

Ux(xt, ft)− λt − µtγ = 0 (A.1)

Uf (xt, ft) + (δ + r + γ · xt)λt = λ̇t (A.2)

− U(xt, ft) + (γ · xt + r)µt = µ̇t (A.3)

lim
t→∞

H̃(·) = 0 (A.4)

The transversality condition (A.4) then implies that:

µt =
U(xt, ft)− λt(xt − δft)

γ · xt + r
(B.1)

To make the following computations more tractable let me drop the time index and

the argument of the expected utility U(·) and of its derivatives. Inserting (B.1) in the first

order condition (A.1) yields:

Ux = λ+ γ
U − λ(x− δf)

γ · x+ r

⇐⇒ (γ · x+ r)Ux = (γ · x+ r)λ+ γ (U − λ(x− δf))

⇐⇒ (γ · x+ r)Ux − γU = (γ · x+ r − γ(x− δf))λ

⇐⇒ λ =
(γ · x+ r)Ux − γU

r + γδf
(B.2)
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If I insert this result back in (B.1):

µ =
U − λ(x− δf)

γ · x+ r

=
U

γ · x+ r
− (x− δf)

γ · x+ r
λ

=
U(γ · x+ r)− (x− δf)(γ · x+ r)Ux

(r + γδf)(γ · x+ r)

=
U − (x− δf)Ux

(r + γδf)

As such, we can now get the re-express the co-state law of motion µ described in (A.3)

as:

µ̇ = −U + (γ · x+ r)
U − (x− δf)Ux

r + γδf

=
−U(r + γδf) + (γ · x+ r)(U − Uxḟ)

r + γδf

= −
γU(x− δf)− (γ · x+ r)

(
Uxḟ

)
r + γδf

µ̇ = −λḟ (B.3)

Let us now differentiate the first order condition A.1 with regards to time to get the

Euler equation :

Uxxẋ− λ̇− γµ̇+ ḟUxf = 0

⇐⇒ ẋ =
1

Uxx

(
λ̇+ γµ̇− Uxf ḟ

)
(EE)

The Euler equation (EE), together with the frustration law of motion (2) form the

canonical system of the inter-temporal maximisation problem. Next, let us linearise the

system around the steady state to study its dynamics. These are given by(
˙̂xt

˙̂
ft

)
= J∗

(
x̂t

f̂t

)
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Where the variables denoted by hats are the rescaled investment and frustration, such

that steady state value are normalized to 0. J∗ is the Jacobian of the canonical system

evaluated at the steady-state (x∗, f ∗):

J∗ =

(
∂ẋ(x,f)

∂x
∂ẋ(x,f)

∂f
∂ḟ(x,f)

∂x
∂ḟ(x,f)

∂f

)∣∣∣∣∣
(x,f)=(x∗,f∗)

To get the expression of J∗, we need to compute the value of the derivative of λ in

(B.2) with regard to f and x at the steady state:

∂λ

∂f

∣∣∣∣
(x∗,f∗)

=
∂

∂f

(
(γ · x+ r)Ux − γU

r + γδf

)∣∣∣∣
(x∗,f∗)

= U∗
xf −

γ
(
U∗
f + δλ∗)

(r + γ · x∗)
(B.3)

∂λ

∂x

∣∣∣∣
(x∗,f∗)

= U∗
xx (B.4)

Next using (B.3) and (B.4), we can differentiate the co-state law of motion (A.2) with

regards to x and f

∂λ̇

∂f

∣∣∣∣∣
(x∗,f∗)

=
∂

∂f
(Uf + (δ + r + γ · x∗)λ)

= U∗
ff + (δ + r + γ · x∗)

∂λ

∂f

= U∗
ff + (r + δ + γ · x∗)

(
U∗
xf −

γ
(
U∗
f + δλ∗)

(r + γ · x∗)

)
∂λ̇

∂x

∣∣∣∣∣
(x∗,f∗)

=
∂

∂x
(Uf + (δ + r + γ · x)λ)

= U∗
xf + γλ+ (r + δ + γ · x∗)U∗

xx

We can finally compute the elements of Jacobian matrix J∗ using equations (B.2)-(B.4):
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∂ẋ

∂f

∣∣∣∣
(x∗,f∗)

=

(
Uxx

∂
∂f

(
λ̇+ γµ̇− Uxf ḟ

)
− Uxxf · (0)

)
U2
xx

=
1

U∗
xx

(
∂

∂f

(
λ̇+ γµ̇− Uxf ḟ

))
=

1

U∗
xx

(
U∗
ff + (δ + r + γ · x∗)

∂λ

∂f
+ γδλ∗ + δU∗

xf

)
=

1

U∗
xx

(
U∗
ff + (r + δ + γ · x∗)

(
U∗
xf −

γ
(
U∗
f + δλ∗)

(r + γ · x∗)

)
+ γδλ∗ + δU∗

xf

)

=
1

U∗
xx

(
U∗
ff + (r + γ · x∗ + 2δ)

(
U∗
xf −

γU∗
f

r + γ · x∗ + δ

))
Where I insert λ∗’s steady-state value determined by (A.2) in the two last lines. Similarly,

I take the derivative of the Euler equation at the steady state with regard to investment.

∂ẋ

∂x

∣∣∣∣
(x∗,f∗)

=

(
Uxx

∂
∂x

(
λ̇+ γµ̇+ Uxf ḟ

)
− Uxxx · (0)

)
(Uxx)

2

=
U∗
xx

(
U∗
xf + γλ+ (r + δ + γ · x∗)U∗

xx − γλ− U∗
xf

)
U∗
xx

2

= r + δ + γ · x∗

Let Ω∗
f = ∂ẋ(x,f)

∂f

∣∣∣
(x∗,f∗)

. Putting everything together the Jacobian of the system evalu-

ated at the steady-state is:

J∗ =

(
r + δ + γ · x∗ Ω∗

f

1 −δ

)
The eigenvalue of the Jacobian are given by:

µ1,2 =
tr(J∗)±

√
tr(J∗)2 − 4∇(J∗)

2

=
(γ · x∗ + r)±

√
(γ · x∗ + r + 2δ)2 + 4Ω∗

f

2

Where∇(J∗) is the determinant of the Jacobian matrix J evaluated at the steady-state.
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7 Proofs

7.1 Proposition 1

Let us set γ = 0 and r = π + ρ in Appendix 6.1. I get,

µ1,2 =
r ±

√
(r + 2δ)2 + 4Ω∗

f

2

In this special case, we have Ω∗
f = Ω∗

A = 1
Uxx

(Uff + (r + 2δ)Uxf )

For (1), consider the optimal path of the frustration associated with the smallest eigen-

value µ1.

f̂t = keµ1t (10)

˙̂
ft = kµ1e

µ1t (11)

Where k < 0, because ft0 < f ∗. Using the frustration law of motion to express xt and

substituting (10) and (11) yields

x̂t = (δ + µ1)k · f̂t

k · f̂t > 0, as such, x̂t, will be increasing in f̂t if

(δ + µ1) > 0

⇐⇒
r + 2δ −

√
(r + 2δ)2 + 4Ω∗

A

2
> 0 ⇐⇒ Ω∗

A < 0

And similarly x̂t, will be decreasing in f̂t if Ω
∗
A > 0. For (2), saddle path stability requires

one positive and one negative eigenvalue. The highest eigenvalue will always be positive.

On the other hand, the lowest will be negative if and only if:

r <
√

(r + 2δ)2 + 4Ω∗
A

⇐⇒ r2 − r2 − 4δ(r + δ)− 4Ω∗
A < 0

⇐⇒ −δ(r + δ) < Ω∗
A
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7.2 Proposition 2

It is a special case of the general model. It follows the same logic as the proof of Proposition

1, with γ > 0, r = ρ.

8 Non-monotonic reactions to frustrating events

In real-life scenarios, successive failures are often accompanied by several inter-temporal

dynamics, such as Bayesian updating or learning-by-doing. As such, if one wants to look at

the effect of frustration accumulation on personal motivation, one might end up looking at

a mix of different dynamics. This section studies the interaction one can get when several

dynamics are present. In particular, I study the combined effect of learning-by-doing and

frustration accumulation on investment and characterise when non-monotonicities of the

optimal path can arise.

With that in mind, let us introduce a learning-by-doing mechanism in our system. Let

wt represent the stock of experience accumulated at time t. I assume that wt follows a

logistic growth: ẇt = wt(a − bwt) where a > b > 0. The experience growth rate is slow

when the decision-maker discovers the task, then increases when she tries to solve it and

finally decreases as she perfects her solving mechanism. I suppose that the discount rate

of frustration δ is not too large relative to the effect of a trial on experience δ < a. Notice

that experience only depends on time and not the agent’s investment.39 The expected

instantaneous utility of the agent is:

U(xt, ft, wt) = πu(xt, ft)− v(ft)− c(wt, xt)

Learning by doing reduces the marginal cost of investment: cxw(x,w) < 0 and has

decreasing returns cww > 0, or alternatively Uww(x, f, w) < 0. Finally, I focus on the case

with negative appraisal effects Uxf ≤ 0, which is the most interesting case.40

The inter-temporal optimisation problem is

39It is possible to develop the model with a learning-by-doing process that depends on investment.
However, this involves solving a 3rd degree polynomial to get the eigenvalues of the Jacobian, which
greatly complicates any further analysis.

40Or at least, a case where non-monotonicities arise
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V (t0, ft0 , wt0) = max
xt

∫ ∞

0

e−(ρ+π)tU(xt, ft, wt)dt

ḟt = xt − δft

ẇt = wt(a− bwt)

ft0 , wt0 given

I apply the same regularity conditions as before.41 Let X(t) be the optimal investment

path functional solving this maximisation problem. The law of motion of experience is not

affected by frustration and investment; it evolves independently.

The system optimisation follows the same lines as before. We can similarly characterise

the canonical system and linearise it around the steady-state. This yields the following

three-dimensional system. As before, one law of motion describes the evolution of the opti-

mal investment, and the two other reiterates the law of motions of the two-state variables,

frustration f̂t and experience ŵt.

˙̂xt = (ρ+ π + δ)x̂t + Ω∗
Af̂ + Ω∗

wŵt (12a)

˙̂
ft = x̂t − δf̂t (12b)

˙̂wt = −aŵt (12c)

Where Ω∗
A is define as in (6), Ω∗

w = (ρ+π+δ+a)U∗
xw

U∗
xx

< 0 characterise the temporal comple-

mentarity between x̂t and ŵt in the same way Ω∗
A does for x̂t and f̂t. The main difference

with the system developed in section 3.1, besides the new learning-by-doing law of motion

(12c), resides in this added term to the investment Euler equation (12a). Since Ω∗
w < 0,

any additional experience below the steady-state level ŵt < 0, increases the investment

level. For example, a ŵt of one unit below the steady-state, increases the investment level

by Ω∗
w

In order to get a picture of how the dynamics play out, let us study the system us-

ing the phase diagrams in Figure 5. We are looking for conditions characterising non-

monotonicities of the optimal investment path, that is, the cases where X ′(t) changes sign.

The learning-by-doing effect is represented by a shift of the ˙̂xt(w) = 0 locus to the right,

indicated by the thick dashed arrow on the graph, from ˙̂xt(wt0) = 0, to ˙̂xt(w
∗) = 0, its

41That is, the Inada conditions and concavity of the Hamiltonian.

40



steady-state position.

Let us define the two zones, I (Increasing investment) and D (Decreasing investment)

in Figure 5. Zone D is the area above the
˙̂
ft = 0 and below the ˙̂xt(wt) = 0 loci, where

investment decreases and frustration increases. Zone I is the area above the
˙̂
ft = 0 locus

and between ˙̂xt(wt) = 0’s current position and its steady state position. Both investment

and frustration increase in zone I. Notice that zone I is gradually replaced by zone D

because the investment locus shifts to the right to its steady state position. So a point

that is initially in zone I would end up in Zone D when the ˙̂xt(wt0) = 0 locus reaches its

steady state position. This means that the sign of dynamics characterising the evolution

of xt might change when experience increases. Alternatively, their dynamic would change

if the optimal investment at time t goes from one zone to another at t′ > t.

Of course, such two-dimensional phase diagram analysis only partially shows how the

system evolves because it cannot represent the dynamics’ temporal speed. For example,

suppose the initial values of the system are in zone I. In that case, will the optimal in-

vestment increase until it reaches the steady-state as in Casee 1 depicted in Figure5? Or

will it first increase and then decrease, as depicted in Case 1 of figure 5. Understanding

the behaviour of the optimal path X(t) through time ultimately boils down to figuring

out f̂t and ŵt’s relative convergence speed and their relative effect on x̂t. Overall, all the

different temporal behaviours of the system can be predicted by looking at whether the

initial experience-frustration ratio f̂0
ŵ0

is above or below a certain threshold Θ.42 I focus on

the “hump-shaped” investment path thereafter.

Let the frustration-experience ratio be low, with f̂0
ŵ0

≥ Θ. This can be interpreted as

experience being “far enough” from its steady-state value, relative to frustration, given

both state variables’ effect and convergence speed. For these starting values, (x̂0, f̂0) will

be in zone I, with x̂0 ∈ X(0). Since the point is above the ˙̂xt(wt0) = 0 and
˙̂
ft = 0 loci,

frustration and investment increase. But, remember that zone I is gradually replaced by

zone D. As such, there are two possibilities:

(1) If Ω∗
A is low43, Ω∗

A < −δ(ρ+π+δ)−a(ρ+π+a), learning-by-doing’s effect dominates

all the way and frustration’s negative effect is never revealed through the dynamics. In

that case, the optimal investment X(t) stays in zone I as in Case 4 in Figure 5.

(2) If Ω∗
A is large, Ω∗

A > −δ(ρ+ π + δ)− a(ρ+ π + a), frustration’s effect dominates in

the long run but not in the short run, and the optimal investment path is hump-shaped.

Intuitively, the task is relatively easy to grapple with, and there is a lot to learn: the

42See appendix for the definition of Θ.
43Remember that Ω∗

A > 0 with negative appraisal tendencies.
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Case 1

I

D

x̂t

f̂t

˙̂xt(wt0
) = 0

˙̂xt(w
∗) = 0

˙̂
ft = 0

x̂0

f̂0

0

0

Case 2

I

D

x̂t

f̂t

˙̂xt(wt0
) = 0

˙̂xt(w
∗) = 0

˙̂
ft = 0

x̂0

f̂0

0

0

Case 3

I

D

x̂t

f̂t

˙̂xt(wt0
) = 0

˙̂xt(w
∗) = 0

˙̂
ft = 0

x̂0

f̂0

0

0

Case 4

I

D

x̂t

f̂t

˙̂xt(wt0
) = 0

˙̂xt(w
∗) = 0

˙̂
ft = 0

x̂0

f̂0

0

0

Figure 5: Examples of non-monotonic optimal investment paths a frustration-investment
phase diagram.
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learning process is rapid and decreases the marginal cost relatively quickly and significantly.

However, once most of the learning occurred, the negative effect of frustration catches up,

and investment decreases to its steady-state value. Graphically, the optimal investment

level was in zone I before a specific t′ > 0 and is in zone D afterwards, yielding a humped-

shaped optimal investment path X(t), I as in Case 2 in Figure 5.

A final and perhaps more surprising case happens when the effect of frustration on in-

vestment is moderate Ω∗
A < −δ(ρ+π+ δ)−a(ρ+π+a), but the initial value of frustration

is far from its steady-state value relative to ŵ0. Investment first decreases quickly because

of the emotional cost but is caught up by the learning mechanism. In this case, the optimal

investment path is U-shaped. At first, the agent lowers her investment level because of the

overwhelming frustration effect and the slow learning-by-doing mechanism. However, with

time, the accumulation of experience becomes dominant relative to frustration, and invest-

ment provision increases to its steady-state level. The following proposition summarises

the different cases.

Proposition 3. Let ft0 and wt0 be below their steady-state values, then:

� if Ω∗
A > −δ(ρ+ π + δ)− a(ρ+ π + a), and f̂0

ŵ0
≥ Θ the optimal investment path X(t)

is monotone decreasing in time,

� if Ω∗
A > −δ(ρ+ π + δ)− a(ρ+ π + a), and f̂0

ŵ0
< Θ the optimal investment path X(t)

is first increasing and then decreasing in time,

� if Ω∗
A < −δ(ρ+ π + δ)− a(ρ+ π + a), and f̂0

ŵ0
< Θ the optimal investment path X(t)

is monotone increasing in time,

� if Ω∗
A < −δ(ρ+ π + δ)− a(ρ+ π + a), and f̂0

ŵ0
≥ Θ the optimal investment path X(t)

is first decreasing and then increasing in time.

8.1 Proof of Proposition 3

Let r = ρ+ π. The current value Hamiltonian of this problem is:

H(xt, ft, wt, λt, ) = U(xt, ft, wt)− λt(xt − δft)

The first-order conditions of the system are{
Ux(xt, ft, wt) = λt

λ̇t = Uf (xt, ft, wt) + (r + δ)λt

(13)
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Differentiating the the first equation of (13) with regards to time and inserting the law

of motion of the costate yields the canonical system:
ẋt =

1

Uxx(xt, ft, wt)

(
(λ̇t − ẇt · Uxw(xt, ft, wt)− ḟt · Uxf (xt, ft, wt)

)
ḟt = x∗

t − δft

ẇt = wt(a− bwt)

The Jacobian of the system at the steady-state is:

J(x∗, f ∗, w∗) =


∂ẋ(x,f,w)

∂x
∂ẋ(x,f,w)

∂f
(∂ẋ(x,f,w)

∂w
∂ḟ(x,f,w)

∂x
∂ḟ(x,f,w)

∂f
∂ḟ(x,f,w)

∂w
∂ẇ(x,f,w)

∂x
∂ẇ(x,f,w)

∂f
∂ẇ(x,f,w)

∂w


∣∣∣∣∣∣∣∣
(x,f,w)=(x∗,f∗,w∗)

=

r + δ Ω∗
f (r + δ + a)U

∗
xw

U∗
xx

1 −δ 0

0 0 −a

 .

The eigenvalues of this system are µ1 and µ2, defined as in Section 7.1 and µ3 = −a.

Let us define wlog that µ1 < µ2.

We can now compute the eigenvector u1 = (u1
1, u

2
1, u

3
1)

′ and u3 = (u1
3, u

2
3, u

3
3)

′ associated

to the negative eigenvalues µ1 and µ3. These are found by solving the system (J∗ − µi ×
I) ∗ ui = 0, where I is the 3 by 3 identity matrix, i = 1, 3:

(r + δ − µi)u
1
i + Ω∗

fu
2
i + (r + δ + a)U

∗
xw

U∗
xx
u3
i = 0

u1
i + (−δ − µi)u

2
i = 0

(−a− µi)u
3
i = 0

(14)

For µ1, given the third row of the system, u3
1 = 0 since µ1 ̸= −a. Using the second row,

it is easy to find that u2
1 =

µ1
1

δ+µ1
. As such, (u1

1, u
2
1, u

3
1) = (1, 1

δ+µ1
, 0) is one of the solutions

of the system.

Next, for µ3, normalise u1
3 to 1 and use the second row of the system to get u2

3 =
1

δ+µ3
.
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As for u3
3, we can plug the previous result into the first row to get:

−u3
3(r + δ − µ3)

U∗
xw

U∗
xx

=

(
(r + δ − µ3) +

Ω∗
f

δ + µ3

)
u1
3

=

(
(r + δ − µ3)(δ + µ3) + Ω∗

f

δ + µ3

)
=

1

δ + µ3

(
Ω∗

f + δ(r + δ) + µ3(r − µ3)
)

=
1

δ + µ3

(
1

4

(
r2 − r2 + 4(Ω∗

f + δ(r + δ))
)
+ µ3(r − µ3)

)
=

1

δ + µ3

(
1

4

((√
r2 + 4(Ω∗

f + δ(r + δ))
)2

− r2
)
+ µ3(r − µ3)

)

=
1

δ + µ3

−µ1

r − r +
r +

√
r2 − 4(Ω∗

f + δ(r + δ))

2

+ µ3(r − µ3)


=

1

δ + µ3

(µ3(r − µ3)− µ1 (r − µ1))

=
1

δ + µ3

(µ3 − µ1)(r − µ3 − µ1)

⇐⇒ u3
3 =

U∗
xx

U∗
xw

(µ1 − µ3)(r − µ3 − µ1)

(r + δ − µ3)(δ + µ3)

Given the eigenvalues and associated eigenvectors, we can express the solution of our

system as: 
x̂t = k1e

µ1t + k3e
µ3t

f̂t = k1u
2
1e

µ1t + k3u
2
3e

µ3t

ŵt = k3u
3
3e

µ3t

(15)

Where the initial values of the system determine k1 and k3. For what follows, it is

important to note that we have δ + µ3 < 0 by assumption and since Ω∗
A > 0 and thus

δ + µ1 < 044, as we are considering negative appraisal tendencies. Notice that:

f̂0 < 0 ⇐⇒ k1 > −k3
µ1 + δ

µ3 + δ
(16)

The following result gives conditions for system (15)’s investment path x̂t to be non-

monotonic in time:

44As shown Appendix 7.1
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Lemma 1. A system defined as in (15) with two negative eigenvalues µ1 and µ3, exhibits

a non-monotonic optimal investment path x̂t with regards to time if and only if k1 and

k3 have opposite signs and either −k1
k3

µ1

µ3
< 1 and µ3 < µ1 or −k1

k3

µ1

µ3
> 1 and µ3 > µ1.

Moreover, ˙̂xt only changes sign once.

Proof. A necessary condition for the optimal investment path to be non-monotonic is that

at some t′, ˙̂xt′ = k1µ1e
µ1t + k3µ3e

µ3t = 0. This happens if and only if there is a positive t′

solving:

ln

(
−k1
k3

µ1

µ3

)
1

µ3 − µ1

= t′

Since µ1 and µ3 are negative, this equation is well defined if k1 and k3 have opposite

signs. Moreover, t′ will be positive if either −k1
k3

µ1

µ3
< 1 and µ3 < µ1 or −k1

k3

µ1

µ3
> 1 and

µ3 > µ1. Notice that there is only one t′ satisfying this equation. As such, if t′ characterises

an extremum, it is unique.

For sufficiency, we need to verify that t′ is an extremum, not an inflexion point. This

can be easily checked by looking at the sign of the second derivative of x̂t

¨̂xt = µ2
1k1e

µ1t + µ2
3k3e

µ1t

x̂t will change its curvature at the possible inflexion point t′′ if ¨̂xt′′ = 0. If t′′ exists, it

is defined by:

t′′ = ln

(
−2

k1
k3

µ1

µ3

)
1

µ3 − µ1

> t′

As such, t′ is not an inflexion point.

Let us now prove the result of the proposition. First, as shown before, we have that:

u3
3 =

U∗
xx

U∗
xw

·
−Ω∗

f − δ(r + δ)− a(r + a)

(δ + µ3)(r + δ − µ3)
(17)

=
U∗
xx

U∗
xw

· (µ1 − µ3)(r − µ1 − µ3)

(δ + µ3)(r + δ − µ3)
(18)

Equation 17-18 tell us that −Ω∗
f − δ(r + δ)− a(r + a) has the same sign as (µ1 − µ3).

Next, let us define the threshold of Θ of the proposition as:
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Θ =
U∗
xw

U∗
xx

· (δ + µ1 + µ3)(r + δ − µ3)

µ1(δ + µ1)(r − µ1 − µ3)
> 0 (19)

I can, therefore express u3
3 in the following way:

u3
3 =

1

Θ

(µ1 − µ3)(δ + µ1 + µ3)

µ1(δ + µ1)(δ + µ3)

When t = 0, it is possible to give an expression to k1 and k3:

k3 =
wt0

u3
3

=
µ1(δ + µ1)(δ + µ3)

(µ1 − µ3)(δ + µ1 + µ3)
Θwt0

k1 =
1

u2
1

(
ft0 − u2

3 · k3
)
= (δ + µ1)

(
ft0 −

µ1(δ + µ1)

(µ1 − µ3)(δ + µ1 + µ3)
Θwt0

)

Next, notice that if ft0 ≥ Θwt0 , (and similarly for ft0 < Θwt0):

ft0 ≥ Θwt0

⇐⇒ ft0 ≥
(µ1 − µ3)(δ + µ1 + µ3)

(µ1 − µ3)(δ + µ1 + µ3)
Θwt0

⇐⇒ ft0 −
µ1(δ + µ1)

(µ1 − µ3)(δ + µ1 + µ3)
Θwt0 ≥ − µ3(δ + µ3)

(µ1 − µ3)(δ + µ1 + µ3)
Θwt0

⇐⇒ k1 ≤ −k3
µ3

µ1

The inequality switches on the first line because wt0 is below its steady-state value. As

such:

ft0
wt0

≤ (>)Θ ⇐⇒ k1 ≤ (>)− k3
µ3

µ1

(20)

I can now use the equivalence relation (20) and Lemma 1 to determine when non-monotonicities

arise.

� If Ω∗
f > −δ(r + δ) − a(r + a), by expression (17)-(18), we have that µ3 > µ1 and

u3
3 < 0. Since wt0 < 0, it must be that k3 > 0 because wt0 = k3u

3
3. Now given that

ft0 < 0, there are two cases:
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1. f̂0
ŵ0

< Θ from expressions (20) and (16), k1 is in
(
−k3

µ1+δ
µ3+δ

,−k3
µ3

µ1

)
, and k1 < 0.

Then −k1
k3

µ1

µ3
> 1. By Lemma 1, the optimal path is non-monotonic. We have

that:
˙̂x0 = µ1k1 + µ3k3 > −k3

µ3

µ1

µ1 + µ3k3 = 0

Also, by Lemma 1, ˙̂xt only changes sign once. As such, the optimal investment

path is first increasing and then decreasing.

2. f̂0
ŵ0

≥ Θ, from expression (20), k1 ≥ −k3
µ3

µ1
,then −k1

k3

µ1

µ3
≤ 1 .By Lemma 2, the

optimal path is monotone Since ẋ0 = k1µ1 + k3µ3 ≤ 0, the optimal path is

monotone decreasing.

� If Ω∗
f < −δ(r − δ) − a(r + a) then, µ1 > µ3, u

3
3 > 0 and k3 < 0. We then have two

possibilities:

1. f̂0
ŵ0

≤ Θ, as such, k1 ∈
(
−k3

µ1+δ
µ3+δ

,−k3
µ3

µ1

]
, then −k1

k3

µ1

µ3
≤ 1. By Lemma 1, the

optimal path is monotonic. Since ẋ0 ≥ 0. It is first monotone increasing.

2. f̂0
ŵ0

> Θ , as such, k1 > −k3
µ3

µ1
then ẋ0 < 0 and −k1

k3

µ1

µ3
< 1 and µ1 > µ3, by

Lemma 1, the optimal path is non-monotonic: it is first decreasing and then

increasing.
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9 Empirical Appendix

9.1 Standard Deviation of Speed per pitch type

Table 4: Standard deviation of Speed of pitches

Pitch Type SD Speed Number of Obs

Sinker 0.91 1549913
Slider 1.08 1103659
4-Seam Fastball 0.92 2505992
Split-Finger 0.96 110276
Cutter 0.94 412864
Changeup 0.95 742088
Curveball 1.09 587691
Knuckle Curve 1.06 151197

The first column indicates the pitch type. I only
keep pitches that represent more than 1% of the ob-
servation of the dataset. The second column indi-
cates the average standard deviation of the speed of
a pitch type during a game × inning at the player
level. The third column indicates the number of
throws for each pitch type in the cleaned dataset.

Table 4 presents the standard speed variation for all pitches representing at least one per

cent of the cleaned sample. The standard deviations are computed for each pitch type at

the player-game-inning level. Table 4 presents these standard deviations’ averages over the

entire sample for each pitch type. The standard deviations are remarkably homogeneous

and vary from 0.91 to 1.08 mph.
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9.2 Machine learning algorithm to measure the quality of pitches

The pitch quality measure is the result of an estimation predicting pitches predictive suc-

cess given by the physical characteristics of the motion of the throw. I use the eXtreme

Gradient Boosting (XGBoost) algorithm (Chen and Guestrin, 2016) to do this. XGBoost

is a gradient-boosting model based on decision tree ensembles. The tree ensemble is a set of

classification trees where each leaf is assigned a prediction score. XGBoost then aggregates

the prediction of all the trees to get the final prediction. The main difference with random

forest models, which are also based on tree ensembles, is how each tree is optimised.

New trees aim to minimise the residual errors in the predictions from the existing

sequence of trees. Each tree is sequentially learned by optimising a binary logistic objective

function. I use the 2020-2021 seasons as a training dataset. I set the number of trees to

100. I tuned the algorithm’s hyper-parameters using a random grid search and a 5-fold

cross-validation. I focus on two hyperparameters. The first is the learning rate η ∈ (0, 1],

which reduces the weight of new features in the predictions to avoid over-fitting. The

second controls the L2 regularisation term. Table 5 describes the features used in the

machine learning algorithm. I train a separate algorithm for each pitch for which I have

more than 10,000 observations in the training dataset.

Table 5: Features used in the estimation of the Success Probability

Features

Velocity of the pitch, in x, y and z-dimension, at y=50 feet.

The acceleration of the pitch in x, y and z-dimension, determined at y=50 feet.

Horizontal & vertical ball position when it crosses home plate (catcher’s perspective).

Horizontal & vertical movement in feet from the catcher’s perspective.

Out-of-hand pitch velocities.

Horizontal & vertical Release Position of the ball measured in feet(catcher’s perspective).

Release position of pitch measured in feet (catcher’s perspective).

Acceleration of the pitch, in feet per second per second, in x, y and z-dimension.

Top & bottom of the batter’s strike zone when the ball is halfway to the plate.

Table 6 show the result of the machine learning algorithm when applied to the main

dataset (2010-2019). I measure the accuracy as the proportion of observation in the dataset
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for which the algorithm predicts a probability of more than 0.5 for the event that actually

happened (Success or Failure). The first column shows that the algorithm’s accuracy is

between 0.81 and 0.75, depending on the pitch type. The next two columns indicate the

average probability predicted given the (ex-post) outcome. This shows that the algorithm

does a good job differentiating the outcome.45

Table 6: Predictive Statistics of the Machine learning algorithm

Pitch name Accuracy Mean(Pred.prob(S)|S) Mean(Pred.prob(S)|F)

Fastball 0.8096 0.7602 0.2722

Changeup 0.7637 0.7035 0.2938

Curveball 0.7741 0.7218 0.2885

Cutter 0.7794 0.7227 0.3008

Sinker 0.7914 0.7474 0.3065

Slider 0.7558 0.6959 0.2937

Split-Finger 0.7530 0.6790 0.3114

Knuckle Curve 0.7661 0.6862 0.2911

The first column indicates the pitch type for which the algorithm ran. The second

indicates the proportion of observations for which the predicted probability tilted

towards the right pitch outcome. That is the proportion of observation for which

the pitches ended up in a failure ( or success) and where the predicted probability of

success was greater (or lower) than 0.5. The third and fourth columns indicate the

average predicted probability of success given the outcome of the pitch ((S)uccess or

(F)ailure).

9.3 Frustration effect on pitch quality

Let me comment on the effect of frustration on pitch quality. Overall, table 9.3 shows that

one unit of frustration decreases the predictive probability of success by half a percentage

point. Although this effect is substantial, the control strategy is less successful for these

regressions. Indeed, the adjusted R2 is much lower and around 8%. At the pitch level,

45Instead of glorified coin-toss machine-learning algorithm predicting successes or failures with proba-
bility 0.51.
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Table 7: Effect of Frustration on Velocity and Quality

Dependent Variables: Quality
Model: (1) (2)

Variables
Ft -0.0048∗∗∗ -0.0048∗∗∗

(0.0007) (0.0007)
# Failures 0.0138∗∗∗ 0.0138∗∗∗

(0.0004) (0.0001)
# Successes -0.0091∗∗∗ -0.0091∗∗∗

(0.0003) (0.0001)
Attempt 0.0030∗∗∗ 0.0030∗∗∗

(0.0002) (5.19× 10−5)
∆ Exp. -0.0252∗∗∗ -0.0252∗∗∗

(0.0012) (0.0010)
∆ Score 0.0039∗∗∗ 0.0039∗∗∗

(0.0003) (0.0002)
∆ Inning Score 0.0032∗∗∗ 0.0032∗∗∗

(0.0011) (0.0010)

Fixed-effects
Pitch Type Yes Yes
Game State Yes Yes
Player × Game Yes Yes
Batter Yes Yes
Inning Yes Yes

Fit statistics
Observations 7,163,516 7,163,516
R2 0.07660 0.07660
Within R2 0.00438 0.00438

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Column (1) is clustered at the pitcher level, and column
(2) is clustered at the game level. Ft measures the change
in the other team’s expected score during the current and
(possibly empty) sequence of consecutive failure. # Fail-
ures and # Successes count the number of successes and
failures since the beginning of the inning. Attempt mea-
sures the number of pitches the pitcher has thrown since
the beginning of the game. ∆ Exp measure the change
in the opposing team’s expected score since the beginning
of the inning. ∆ Score measures the current difference in
score, while ∆ Inning Score measures the change in score
since the beginning of the inning. Pitch Type is a cat-
egorical variable indicating the pitch type. Game State
is a categorical variable indicating the number of batters
out, the number of balls, strikes and whether a player is
on base 1, 2 or 3. Player × Game indicates who is pitch-
ing during which game. Batter indicates who is currently
facing the pitcher.

52



frustration significantly affects the most popular pitch type. However, it fails to do so for

pitches with fewer observations46.

9.4 Effect of frustration per pitch type

Table 8: Effect of frustration per pitch type

Dependent Variables: log(Speed) Quality Observations
Model: (1) (2) (3) (4)

Type of pitch
Slider 0.0014∗∗∗ 0.0014∗∗∗ -0.0032∗ -0.0032∗ 1,103,659

(0.0001) (8.59× 10−5) (0.0017) (0.0017)
4-Seam Fastball 0.0017∗∗∗ 0.0017∗∗∗ -0.0041∗∗∗ -0.0041∗∗∗ 2,505,992

(5.73× 10−5) (4× 10−5) (0.0012) (0.0011)
Split-Finger 0.0009∗∗ 0.0009∗∗∗ -0.0103 -0.0103∗ 110,276

(0.0004) (0.0003) (0.0063) (0.0055)
Cutter 0.0012∗∗∗ 0.0012∗∗∗ -0.0032 -0.0032 412,864

(0.0001) (0.0001) (0.0033) (0.0027)
Changeup 0.0008∗∗∗ 0.0008∗∗∗ -0.0027 -0.0027 742,088

(0.0001) (9.11× 10−5) (0.0021) (0.0021)
Curveball 0.0012∗∗∗ 0.0012∗∗∗ -0.0016 -0.0016 587,691

(0.0002) (0.0001) (0.0024) (0.0024)
Knuckle Curve 0.0017∗∗∗ 0.0017∗∗∗ 0.0006 0.0006 151,197

(0.0002) (0.0002) (0.0047) (0.0046)

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

The table’s first column indicates which pitch type the regression was performed. The columns
indicated by (1) and (2) display the OLS coefficient for frustration when the log of pitch speed,
controlling for all fixed effects present in Table 2. The columns indicated by (3) and (4) perform the
same regression but with Quality as its dependent variable. Columns (1) and (3) are clustered at the
pitcher level, and columns (2) and (4) are clustered at the game level.

The effect of frustration on speed is robust whether you look at the effect at the pitch

type level or at the aggregate level. For quality, though, one only observes a significant

effect for the two most popular pitch types. This is quite natural as the quality of the

machine learning algorithm decreases with sample size. Moreover, the quality OLS is still

much noisier than the speed ones.

46Note that the quality of the machine learning algorithm measuring the quality of the pitches also
decreases with sample size.
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9.5 Individual level Analysis

Let me introduce an individual-level analysis of pitchers’ reactions to frustration. I first

select all pitchers for which I have more than 2000 registered pitches, for a total of 859

pitchers47. My first exercise is to perform the same regression as in column 1 of table 2 in

the main text and 7 in Appendix 9.3.

Table 9 shows that more than one-third of the sample show a significant effect of frus-

tration accumulation on their behaviours regarding pitch velocity. Note that frustration

accumulation at a high level remains rare. As such, estimating a significant impact on

a smaller sample size is much more challenging. The effects are also remarkably homo-

geneous. 98% of the significant frustration coefficients are positive. Regarding quality,

the results are more modest, and only 8.6% of the sample exhibit a significant effect of

frustration on the quality of the pitches. For the majority of pitchers, this effect is negative.

Table 9: Individual-level sensitivity to frustration

Pos. Coeff. Neg. Coef

Speed 0.379 0.006
Quality 0.020 0.066

The first row represents the proportion of
pitchers displaying a significant effect of
frustration on speed for positive and nega-
tive coefficients. The second row displays
the same results for the Quality regres-
sions.

Table 10 shows correlations for the individual-level coefficients. There is a significant

and negative correlation between the effect of frustration on speed and its impact on pitch

quality. A higher effect of frustration on speed is associated with a more negative impact

on quality. This rules out any rationale for saying that frustration motivates pitchers to

reach a better optimum. It seems that frustration increases the dis-alignment of emotional

and performance incentives. For some players, this is limited to a slight change in speed

when frustrated. For others, the effect on speed (among other things) decreases the quality

of pitches. Overall, this goes towards the appraisal tendencies’ interpretation of the results.

Next, I look at whether frustration sensitivity impacts performance at the career level.

47This creates some selection bias because I am effectively selecting for the most competitive pitchers in
MLB. Table 9 shows the results.
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I use two traditional measures of a pitcher’s performance to do this. The first is ERA

”Earned run average”, which measures the average number of runs the pitcher allows

during the last nine innings. Since the pitcher is a defensive player and wants to prevent

the other team from scoring runs, a lower ERA means a better pitcher. Although it is

arguably the most popular measure of a pitcher’s performance, it also has some pitfalls.

Foremost, it does not factor in the responsibility of the rest of its team in the number of

runs allowed. As such, it is possible to have an excellent pitcher with a very high ERA if

he is in a miserable team.

Table 10: Frustration coefficient: correlations

Speed. Quality ERA xFIP

Speed 1 -0.097∗∗∗ -0.030 -0.058
Quality -0.097∗∗∗ 1 0.105∗∗∗ 0.149∗∗∗

The first row represents different correlations between the frus-
tration coefficient for the Speed OLS. In contrast, the second row
displays the same information for the Quality OLS. The first two
columns provide the correlations between the coefficients of the
different types of OLS. The two last columns display the coef-
ficient correlations stemming from the two types of OLS and
skills measures. ERA, ”Earned run average”, measures the av-
erage number of runs the pitcher allowed during the nine last
innings. xFIP is a similar measure that focuses on the outcomes
over which the pitchers have the most control.

To account for this, I complement the analysis using xFIP, which is short for Expected

Fielding Independent Pitching. xFIP is similar to ERA but focuses on events a pitcher has

the most control over, such as strikeouts, home runs, walks, or hit by pitches48.

Table 10 shows the results. On its own, frustration’s impact on speed cannot translate

into a general performance decrease. However, frustration’s influence on behaviour can be

high enough to trigger negative consequences on pitch quality. In that case, frustration

seems to be associated with a career-level decrease in the pitcher’s performance.

48It also corrects for the Home-run-to-fly-ball rate season’s league average.
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