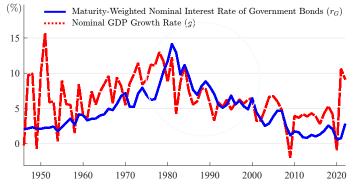
$\begin{array}{c} \text{Debt Sustainability} \\ \text{in a Stochastic } \mathbf{r}-\mathbf{g} \text{ Economy} \end{array}$

Masataka Eguchi, Masakazu Emoto, Kazuhiro Teramoto

August 29th, EEA 2024

Motivations

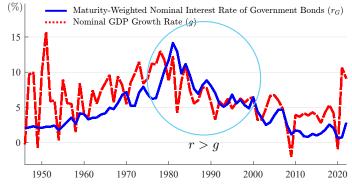
- Dynamics of r g is important for debt-GDP ratio
- In his influential book, Olivier Blanchard emphasizes
 - r-g < 0 (r < g) on average in advanced countries



Need for the debt sustainability analysis under stochastic r-g

Motivations

- Dynamics of r g is important for debt-GDP ratio
- In his influential book, Olivier Blanchard emphasizes
 - r-g < 0 (r < g) on average in advanced countries
 - r-g fluctuates a lot, and r > g is possible



Need for the debt sustainability analysis under stochastic r-g

What We Did

Explore the asymptotic distribution of debt-GDP ratio $(b_t = B_t/Y_t)$

(1)
$$b_t = (1 + (r_t - g_t))b_{t-1} + \eta_t$$
 ($\eta_t =$ primary deficit-GDP ratio)

• $r_t - g_t$ and η_t are random variables: (1) follows "Kesten process"

▶ Distribution for b_t converges to a fat-tail Pareto dist. \Rightarrow Tail risk in b

Microfounded model to study how the tail risk affects sustainability

- The Pareto tail index of b is related to IGBC.
- A novel empirical method to estimate the tail risk magnitude
 - We can assess debt sustainability from historical debt-GDP data.

Literature

Debt sustainability under low interest rates

- Blanchard (2019, 2023). Mian, Straub, & Sufi (2024); Miao & Su (2024); Kocherlakota (2022); Reis (2022); Mehrotra & Sergeyev (2021)
- Tail risk in debt accumulation
 - Mehrotra & Sergeyev (2021)
- Wealth inequality
 - Kesten process has been used to explain the observed Pareto tailed wealth distribution (Benhabib & Bisin).

Policy Analysis

SDSA (fan chart analysis based on future projection)

Asymptotic distribution of b_t

Asymptotic behavior of b_t that follows so-called "Kesten process"

$$b_t = a_t b_{t-1} + \eta_t,$$

where $a_t \approx 1 + (r_t - g_t)$ and $\eta_t > 0$ are random variables.

- Kesten-Goldie theorem (Kesten, 1973; Goldie, 1991): If
 - $\blacktriangleright \mathbb{E}\left[\log(a_t)\right] < 0$

The asymptotic dist of b_t is stationary and has a Pareto upper-tail:

$$\operatorname{Prob}(b_t > x) = cx^{-\kappa}, \qquad c > 0 \text{ as } t \to \infty$$

▶ Tail index $\kappa > 0$ is determined by process of a_t , i.e., $r_t - g_t$

Asymptotic distribution of b_t

Asymptotic behavior of b_t that follows so-called "Kesten process"

$$b_t = a_t b_{t-1} + \eta_t,$$

where $a_t \approx 1 + (r_t - g_t)$ and $\eta_t > 0$ are random variables.

Kesten-Goldie theorem (Kesten, 1973; Goldie, 1991): If

$$\mathbb{E} \left[\log(a_t) \right] < 0 \iff \mathbb{E} \left[r_t - g_t \right] < 0$$

$$\mathbb{E} \left[\log(a_t) \right] > 0 \iff \operatorname{Prob} \left(r_t - g_t > 0 \right) > 0$$

The asymptotic dist of b_t is stationary and has a Pareto upper-tail:

$$\operatorname{Prob}(b_t > x) = cx^{-\kappa}, \qquad c > 0 \text{ as } t \to \infty$$

▶ Tail index $\kappa > 0$ is determined by process of a_t , i.e., $r_t - g_t$

Asymptotic distribution of b_t

Asymptotic behavior of b_t that follows so-called "Kesten process"

$$b_t = a_t b_{t-1} + \eta_t,$$

where $a_t \approx 1 + (r_t - g_t)$ and $\eta_t > 0$ are random variables.

Kesten-Goldie theorem (Kesten, 1973; Goldie, 1991): If

$$\mathbb{E} \left[\log(a_t) \right] < 0 \iff \mathbb{E} \left[r_t - g_t \right] < 0$$

$$\mathbb{E} \left[\log(a_t) \right] > 0 \iff \operatorname{Prob} \left(r_t - g_t > 0 \right) > 0$$

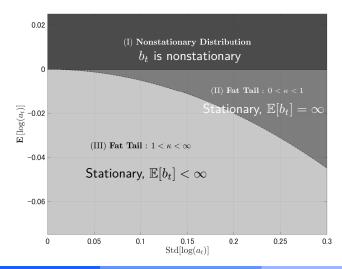
The asymptotic dist of b_t is stationary and has a Pareto upper-tail:

$$\operatorname{Prob}(b_t > x) = cx^{-\kappa}, \qquad c > 0 \text{ as } t \to \infty$$

▶ Tail index $\kappa > 0$ is determined by process of a_t , i.e., $r_t - g_t$

Asymptotic distribution of b_t : IID ($\mathbb{E}[a_t^{\kappa}] = 1$)

$$b_t = a_t b_{t-1} + \eta_t, \qquad \log(a_t) \stackrel{\text{iid}}{\sim} N(\mu_a, \sigma_{iid}^2), \quad a_t \perp \perp \eta_t$$



Asymptotic distribution of b_t : ARMA(1,1)

Recent math allows for Persistent fluctuations in $\log(a_t)pprox r_t-g_t$

$$b_t = a_t b_{t-1} + \eta_t$$

 $\log\left(a_{t}\right) = \left(1 - \rho_{a}\right)\mu_{a} + \rho_{a}\log\left(a_{t-1}\right) + \varepsilon_{a,t} + \frac{\theta_{a}}{\varepsilon_{a,t-1}}, \quad \varepsilon_{a,t} \stackrel{\text{iid}}{\sim} N(0, \sigma_{\epsilon}^{2})$ $\rightarrow \theta_a$ $\rho_{\alpha} = 0; \theta_{\alpha} = 0$ $\rho_a = 0; \theta_a = 0.6$ $\rho_a = 0; \theta_a = 1.2$ 0.02 0.02 0.02 _[©] −0.02 -0.04 (III) -0.04 -0.04-0.06 -0.06-0.06 0 0.1 0.2 0.2 0.3 0 01 0.2 0.3 $\rho_{\alpha} = 0.4; \theta_{\alpha} = 0$ $\rho_{e} = 0.4; \theta_{e} = 0.6$ $\rho_{\alpha} = 0.4; \theta_{\alpha} = 1.2$ 0.02 0.02 ुः -0.02 -0.04-0.04-0.04-0.06 -0.06 -0.06 0 0.1 0.2 0.3 n 0.1 0.2 0.3 0 0.1 0.2 0.3 σ. σ. $\rho_{\alpha} = 0.8; \theta_{\alpha} = 0$ $\rho_{\alpha} = 0.8; \theta_{\alpha} = 0.6$ $\rho_0 = 0.8; \theta_c = 1.2$ 0.02 0.02 ್ಷ -0.02 ुः -0.02 -0.04-0.04-0.04-0.06-0.06 -0.06 ρ_a 0 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0 0 σ.

As $\log(a_t)$ (i.e., $r_r - g_t$) becomes more persistent, the tail of b_t is fatter.

Kazuhiro Teramoto

Model

General equilibrium model that yields

 $b_t = a_t b_{t-1} + \eta_t$, $\log(a_t)$ follows ARMA(1,1)

Microfoundation for (generalized) Kesten process for debt-GDP ratio

 Intertemporal government budget constraint (IGBC) to evaluate sustainability of debt

Model

Exchange economy with the representative household

Random growth of household endowment

$$\log\left(\frac{Y_{t+1}}{Y_t}\right) = g - \frac{\sigma_g^2}{2} + \sigma_g \varepsilon_{g,t+1}, \qquad \varepsilon_{g,t} \stackrel{\text{iid}}{\sim} N(0,1)$$

Household preference and budget $\mathbb{E}_t \left[\sum_{k=0}^{\infty} \exp(-\rho)^k \left(\frac{C_{t+k}^{1-\gamma} - 1}{1-\gamma} + \underbrace{\nu(B_{t+k})} \right) \right],$ $C_t + B_t + A_t \leq Y_t - T_t + (1 + r_{G,t-1}) B_{t-1} + (1 + r_{F,t-1}) A_t,$

Two risk-free assets

A_t private bonds (net supply =0): r_F is discount rate for asset pricing

▶ B_t government bonds: $r_G < r_F$ due to convenience benefits

Model: Equilibrium Condition

Convenience benefits: linear random coefficient $\nu(B_t) = \varrho_t B_t$ with $\varrho_t = u'(\bar{C}_t) (1 - \exp(z_t)^{-1})$; $z_t = (1 - \rho_z)\mu_z + \rho_z z_{t-1} + \sigma_z \varepsilon_{z,t}$,

Equilibrium interest rates

$$r_{F,t} =
ho + \gamma g - rac{\gamma(\gamma+1)}{2}\sigma_g^2,$$

$$r_{G,t} = r_{F,t} - z_t.$$

If $\gamma > 1$ and μ_z is sufficiently large, $r_G < g < r_F$ in steady state.

Model: Equilibrium Condition

Convenience benefits: linear random coefficient $\nu(B_t) = \varrho_t B_t$ with $\varrho_t = u'(\bar{C}_t) (1 - \exp(z_t)^{-1})$; $z_t = (1 - \rho_z)\mu_z + \rho_z z_{t-1} + \sigma_z \varepsilon_{z,t}$,

Equilibrium interest rates

$$r_{F,t} = \rho + \gamma g - \frac{\gamma(\gamma+1)}{2}\sigma_g^2,$$

$$r_{G,t} = r_{F,t} - z_t$$

If $\gamma > 1$ and μ_z is sufficiently large, $r_G < g < r_F$ in steady state.

Debt-GDP ratio: $b_t = a_t b_{t-1} + \eta_t$ where

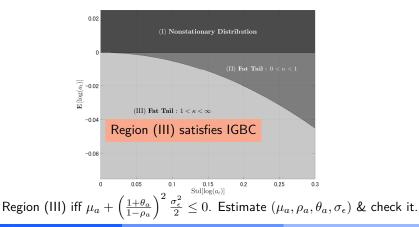
 $\log(a_{t+1}) = (1 - \rho_z)\bar{m} + \rho_z \log(a_t) + \tilde{\varepsilon}_{t+1} + \theta \tilde{\varepsilon}_t; \quad \text{(See paper)}$

IGBC is satisfied:
$$\lim_{k \to \infty} \mathbb{E}_t \left[e^{-\rho t} \left(\frac{Y_{n+k}}{Y_t} \right)^{1-\gamma} B_{t+k} \right] = 0 \text{ (TVC)}$$

Model: Debt Sustainability

Theorem

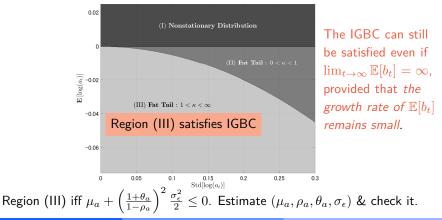
IGBC is satisfied if the Pareto index κ of asymptotic distribution of debt-GDP ratio is $\kappa \geq 1$. (i.e., $\lim_{t\to\infty} \mathbb{E}[b_t] < \infty \Rightarrow IGBC$)



Model: Debt Sustainability

Theorem

IGBC is satisfied if the Pareto index κ of asymptotic distribution of debt-GDP ratio is $\kappa \geq 1$. (i.e., $\lim_{t\to\infty} \mathbb{E}[b_t] < \infty \Rightarrow IGBC$)



Estimation Method

Estimate stochastic process for $r_G - g$ without $r_G - g$ data

r_G is difficult to measure due to a various forms of debt

Nonlinear Non-Gaussian State-Space Model

$$\begin{cases} \log (a_t) = (1 - \rho_a) \mu_a + \rho_a \log (a_{t-1}) + \varepsilon_{a,t} + \theta_a \varepsilon_{a,t-1} \\ b_t = a_t b_{t-1} + \eta_t, \end{cases}$$

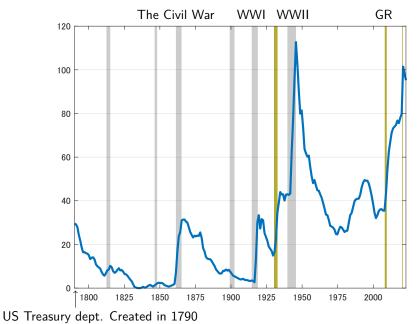
- Observable variable: b_t (Debt-GDP ratio)
- Latent state variable: $a_t \approx 1 + (r_{G,t} g_t)$
- Shock: $\varepsilon_{a,t} \sim N(0, \sigma_{\epsilon})$
- Measurement error: $\eta_t > 0$ (primary deficit GDP ratio)

$$\eta_t = \bar{\eta}_t + \xi_t > 0$$

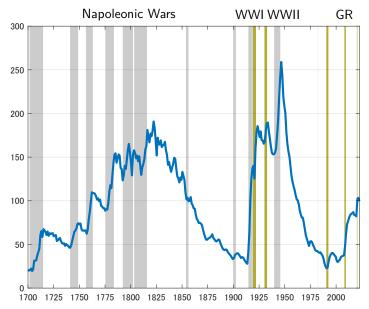
• $\bar{\eta}_t \sim exp(1/\bar{\eta})$ (normal times); ξ_t disaster shocks

Particle filter for maximum likelihood estimation: $(\bar{\eta}, \mu_a, \rho_a, \theta_a, \sigma_\epsilon)$

Data: Debt-GDP ratio in US: 1790-2023

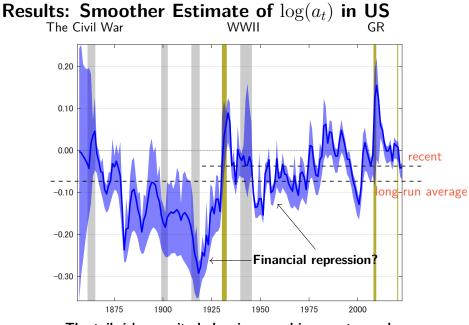


Data: Debt-GDP ratio in UK: 1700-2023



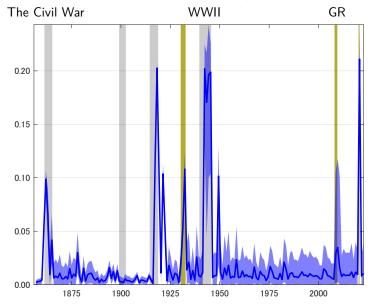
Results: Parameter Estimate

Parameter	Description	Values	
		US	UK
Estimated Parameters			
μ_a	mean of $\log(a_t)$	-0.0703	-0.0168
$ ho_a$	first-order autoregressive coefficient of $\log(a_t)$	0.8333	0.5556
$ heta_a$	moving-average coefficient of $\log(a_t)$	-0.0278	-0.0167
σ_ϵ	standard deviation of innovations to $\log(a_t)$	0.0468	0.0489
$\bar{\eta}$	mean of the ratio of discretionary fiscal deficits to \ensuremath{GDP}	0.0100	0.0073
Externally Assigned Parameters			
p_1	probability of a disaster	0.050	0.050
p_2	probability of a large disaster	0.017	0.017
ξ_d	additional fiscal deficit during a disaster	0.10	0.10
${\xi_d \over \hat{\xi}_d}$	additional fiscal deficit during a large disaster	0.20	0.20
Tail Index			
κ	Pareto tail index	1.887	2.870

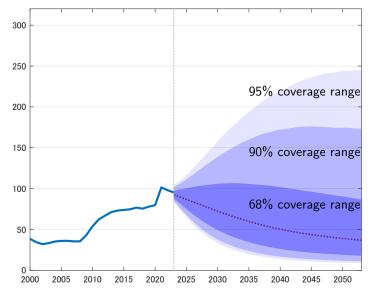


The tail-risk magnitude has increased in recent years!

Results: Smoother Estimate of η_t in US



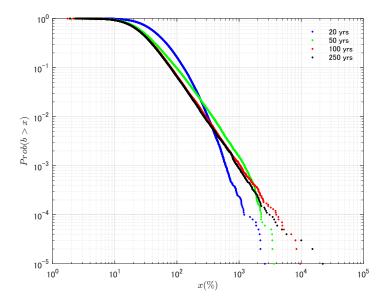
Future Projections for Debt-GDP Ratio (%)



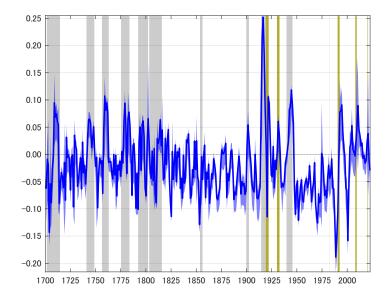
The upper risk of the debt-to-GDP ratio disproportionately escalates!

Kazuhiro Teramoto

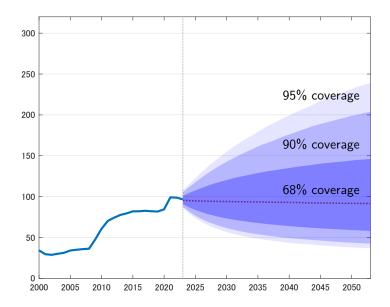
Future Debt-GDP Ratio: Upper-Tail Probability



Results: Smoother Estimate of $log(a_t)$ **in UK**



Future Projections for Debt-GDP Ratio (UK)



Summary

 A novel empirical method to evaluate public debt sustainability based on Kesten process:

$$b_t = a_t b_{t-1} + \eta_t$$
 $(a_t = 1 + r_t - g_t)$

- It considers tail risk in debt accumulation due to risks of r > g.
- Estimate the Pareto tail index of the debt-to-GDP ratio using the historical data of the ratio.