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Abstract

This study presents a novel approach for assessing debt sustainability by analyzing the
asymptotic behavior of the debt-GDP ratio in discrete-time frameworks that account
for uncertainties in the interest rate-growth differential (r−g) and primary deficit. Low
government bond yields typically lead to a right-skewed power-law distribution of the
debt-GDP ratio, with the upper tail index determined by the stochastic properties of
r−g. Our general equilibrium model shows that the intertemporal government budget
constraint is sufficiently met when the asymptotic distribution of the debt-GDP ratio
has a finite mean. We propose a particle filter-based technique to estimate tail risk
magnitude, finding that persistent fluctuations in r− g undermine debt sustainability,
while fiscal reaction rules enhance it.
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1 Introduction

Yields on government bonds (rG) have predominantly been lower than nominal GDP growth
(g), suggesting that fiscal deficits do not necessarily cause an explosive rise in the debt-
to-GDP ratio (Blanchard, 2019). However, the rG − g differential fluctuates significantly.
During the 1980s and 1990s in the United States, rG exceeded g, leading to a sharp increase
in the debt-to-GDP ratio (See Figure 1). Indeed, Hall and Sargent (2011) show that of the
28.3 percentage point rise in the U.S. debt-to-GDP ratio from 1981 to 1993, 17.8 points were
due to a higher budget deficit, with the rest from fluctuations in rG − g caused by changes
in nominal returns, inflation, and GDP growth. These observations highlight the need for
a stochastic framework to assess debt sustainability, accounting for uncertainties in rG − g

and the possibility of rG − g > 0.
This study investigates the dynamics and sustainability of debt under uncertainty through

both theoretical and empirical lenses. We employ a discrete-time stochastic model centered
on the fundamental equation for the evolution of the debt-to-GDP ratio (bt):

bt+1 =

(
1 + rG,t+1

1 + gt+1

)
bt − st+1, (1)

where st denotes the ratio of primary surplus to GDP. We begin with a theoretical analysis
of the asymptotic distribution of the debt-to-GDP ratio, focusing on its upper tail behavior.
We then develop a general equilibrium model linking the asymptotic behavior of the debt-to-
GDP ratio to debt sustainability. Finally, leveraging our theoretical findings, we introduce
an innovative methodology for empirically assessing debt sustainability using historical debt-
to-GDP ratio data.

Our theoretical analysis begins by examining the fundamental equation (1), which dis-
plays the characteristics of a Kesten multiplicative process when the primary deficit remains
positive—though this condition is relaxed in later analyses for broader applicability. Draw-
ing on the foundational work of Kesten (1973) and Goldie (1991), we find that if rG − g

is negative on average but occasionally turns positive, the debt-to-GDP ratio converges to
a stationary power-law distribution. This distribution is right-skewed with a Pareto upper
tail, indicating that the upper tail risks of the debt-to-GDP ratio increase disproportion-
ately over time. Moreover, the stochastic nature of rG− g significantly affects the tail index,

2



Figure 1: rG versus g in the United States: 1946-2022
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Note: All series are annual. The solid line represents the maturity-weighted nominal interest rate of
U.S. government bonds, while the dashed line depicts the U.S. nominal GDP growth rate. The
maturity-weighted nominal interest rate data is sourced from the database of Blanchard (2019) covering
the period from 1946 to 2017 and has been extended by the authors to include data until 2022.

emphasizing the need to consider the tail-risk magnitude arising from fluctuations in rG − g

when assessing debt sustainability.
We refine this analysis by exploring a generalized version of the Kesten process to account

for the observed persistence in fluctuations of rG−g, as extensively documented in empirical
research (e.g., Ball, Elmendorf, and Mankiw, 1998; Barrett, 2018).1 Drawing on insights
from de Saporta (2005) and Benhabib, Bisin, and Zhu (2011), we demonstrate that increased
persistence in rG− g results in a distribution with an even heavier tail—sometimes so heavy
that the mean becomes infinite.

We also explore the implications of fiscal policies that follow reaction rules as proposed
by Bohn (1998), leading to the generalized equation:

bt+1 = at+1bt + ηt+1, (2)

where fiscal policies modulate the stochastic processes of at ≈ 1+rG,t−gt−ϕ with ϕ reflecting
how the primary surplus responds to an increase in debt and ηt that represents the ratio of
the discretionary primary deficit to GDP. In the generalized fundamental equation (2), the

1In their work, Ball, Elmendorf, and Mankiw (1998) describe the statistical properties of rG − g in the
United States, estimating autoregressive coefficients between 0.21 and 0.59.
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dynamics of at are crucial in defining the tail index, enabling an analysis of how shifts in
fiscal policies affect the tail-risk magnitude the debt-to-GDP ratio.

To examine how the magnitude of tail risk is related to debt sustainability, we present
a general equilibrium nominal exchange economy that incorporates the liquidity and conve-
nience benefits of government bonds (Woodford, 1990; Krishnamurthy and Vissing-Jorgensen,
2012; Jiang, Lustig, Van Nieuwerburgh, and Xiaolan, 2024). This model provides a micro-
foundation for the stochastic processes governing at, resulting in a log(at) process that follows
a stationary autoregressive-moving average (ARMA) process. Within this infinite-horizon
general equilibrium model, we define debt sustainability as the fulfillment of the intertempo-
ral government budget constraint (IGBC)—namely, the alignment of the value of outstanding
debt with the expected present value of future primary surpluses and the convenience premia
of government bonds.

Given this definition, we first demonstrate that the existence of a stationary distribution
of the debt-to-GDP ratio does not ensure debt sustainability.2 This implies that a negative
average value of rG − g does not necessarily indicate debt sustainability in a stochastic en-
vironment. Then, by considering a power-law asymptotic distribution of the debt-to-GDP
ratio, we show that the fulfillment of the IGBC is sufficiently ensured if the asymptotic distri-
bution has a finite mean. This means that debt is considered sustainable if the distribution’s
Pareto tail index exceeds one.3 In summary, when taking tail risk into account, whether the
asymptotic distribution has a tail index exceeding one could be a reasonable condition for
debt sustainability.

We propose a novel method to estimate the tail index using debt-to-GDP ratio data for
empirically evaluating debt sustainability. Our approach involves developing a nonlinear,
non-Gaussian state-space model based on the fundamental equation (2) and the stochastic
processes for the latent variables at and ηt, with the debt-to-GDP ratio serving as the observ-
able variable. By applying historical debt-to-GDP ratio data and utilizing a particle filter
technique, we estimate the stochastic processes for at and ηt and determine the tail index of

2The existence of a stationary distribution of the debt-to-GDP ratio has been used as a practical definition
of debt sustainability in empirical studies (e.g., Hamilton and Flavin, 1986; Trehan and Walsh, 1988, 1991;
Quintos, 1995).

3When the tail index is below one, resulting in a divergent asymptotic mean of the debt-to-GDP ratio,
debt sustainability depends on the relationship between the divergence speed of the debt-to-GDP ratio and
debt holders’ discount rates. We analytically derive the divergence speed of the debt-to-GDP ratio when the
ratio follows (2) and at follows an ARMA process.
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the asymptotic distribution of the debt-to-GDP ratio.4

We apply this estimation method to data from the United States and the United King-
dom. The results reveal that the unconditional mean value of at is below 1 for both countries,
indicating the presence of a Pareto stationary distribution for the debt-to-GDP ratio. De-
spite significant variance and high autocorrelation in at, both countries exhibit stationary
distributions with a Pareto tail index greater than one, suggesting a finite mean and, thus,
sustainable debt. However, in the United States, the estimated tail index is close to one,
indicating that even minor relaxations in fiscal stabilization policies could quickly lead to un-
sustainable debt trajectories. Our estimates of latent variable trajectories suggest that since
the 1990s in the United Kingdom and the 2000s in the United States, the value of at has risen
to levels comparable to those observed during the World Wars. Recent trends show multiple
instances where at exceeded 1, implying that the recent increase in the debt-to-GDP ratio
is driven not only by temporary fiscal deficits from the Great Recession and the COVID-19
pandemic but also by a sustained increase in the interest rate-growth differential.

Our research adds to the extensive body of theoretical and empirical work on public debt
sustainability. Numerous empirical studies have investigated debt sustainability by testing
specific stationarity and co-integration conditions on fiscal variables such as debt and primary
deficits (e.g., Hamilton and Flavin, 1986; Trehan and Walsh, 1988, 1991; Quintos, 1995; Bohn,
2007).5 Building on the work of Bohn (1998), who highlighted the importance of the fiscal
rule in stabilizing the debt-to-GDP ratio, several empirical studies have estimated the form
of the fiscal reaction function (e.g., Mendoza and Ostry, 2008; Ghosh, Kim, Mendoza, Ostry,
and Qureshi, 2013). In our theoretical analysis, we revisit the implications of the fiscal
stabilization rule for debt sustainability in more complex settings.

Our study is also related to the evolving theoretical literature on the implications of
rG < g for public debt and fiscal policies. Various modeling approaches have been employed
to explore scenarios where rG < g, including models with overlapping generations in a pro-
duction economy (e.g., Bullard and Russell, 1999; Chalk, 2000; Blanchard, 2019), infinitely-
lived agents subject to uninsurable idiosyncratic risks (e.g., Kaas, 2016; Kocherlakota, 2023;

4Given that historical data indicate substantial primary deficits during periods of war or severe recessions,
our estimation model incorporates disaster shocks to account for significant stochastic fluctuations in ηt.

5Bohn (2007) demonstrate that assuming the government bond rate and the discount rate are identical and
constant, the IGBC is satisfied as long as the debt series is integrated at any finite order. For comprehensive
reviews, see D’Erasmo, Mendoza, and Zhang (2016) and Reis (2022).

5



Miao and Su, forthcoming), and infinitely-lived agents with a preference for liquid and safe
assets (Mehrotra and Sergeyev, 2021; Mian, Straub, and Sufi, 2022). Among them, the study
most closely aligned with ours is that of Mehrotra and Sergeyev (2021), who explore debt
dynamics using a continuous-time stochastic differential equation approach. They demon-
strate that under specific conditions, such as the presence of a lower reflection barrier in
the debt level, the debt-to-GDP ratio can exhibit a power-law distribution in the long run.
While our analysis primarily focuses on discrete-time stochastic processes, the continuous-
time counterparts of our model nest those examined by Mehrotra and Sergeyev (2021) as
special cases.6 Additionally, our findings indicate that the asymptotic distribution of the
debt-to-GDP ratio follows a power-law distribution in more general scenarios, even without
reflection barriers, especially when a permanent fiscal primary deficit is present. Further-
more, the use of discrete-time stochastic models enhances empirical tractability, enabling
the estimation of tail risk magnitude from historical debt-to-GDP data.7

The power-law distribution is a well-recognized characteristic in the distribution of in-
come, wealth, and firm sizes. Recently, several studies have developed equilibrium models
that lead to power-law distributions asymptotically (e.g., Gabaix, 1999; Nirei and Souma,
2007; Luttmer, 2007, 2011; Benhabib, Bisin, and Zhu, 2011, 2015; Toda, 2014; Gabaix, Lasry,
Lions, Moll, and Qu, 2016; Stachurski and Toda, 2019). We establish that in equilibrium
models incorporating commonly-used fiscal structures, the debt-to-GDP ratio can follow the
(generalized) Kesten process, resulting in a fat-tailed long-run distribution, similar to those
observed in distributions of income, wealth, or firm sizes.

The structure of this study is as follows: Section 2 introduces the stochastic dynamic
equation for the debt-to-GDP ratio and provides a definition of debt sustainability. Section 3
examines debt sustainability in a deterministic context. Section 4 explores the asymptotic be-
havior of the debt-to-GDP ratio under uncertainty, with a focus on upper-tail risk. Section 5
presents the equilibrium model underlying the stochastic dynamic equation and derives the
conditions for debt sustainability. Section 6 applies the model to empirical data. Section 7
addresses relevant discussions. Finally, Section 8 provides concluding remarks.

6See Supplementary Appendix D for an extensive discussion.
7Our theoretical framework closely aligns with those employed in empirical research on public finance

(e.g., Bohn, 1998; Ball, Elmendorf, and Mankiw, 1998; Mendoza and Ostry, 2008; Hall and Sargent, 2011)
and stochastic debt sustainability analysis (SDSA), a key instrument for policymakers in assessing debt sus-
tainability under uncertain conditions (see e.g., Celasun, Ostry, and Debrun, 2006; Barrett, 2018; Blanchard,
Leandro, and Zettelmeyer, 2021).
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2 Debt Dynamics and Definition of Debt Sustainability

This section presents the stochastic dynamic equation for the debt-to-GDP ratio and defines
the concept of debt sustainability as used in this paper.

2.1 Debt Dynamics

In this study, we employ a discrete-time setting, with periods labeled t = 0, 1, 2 . . . . Through-
out this paper, let Yt denote the real GDP in period t, Bt denote the real value of government
debt at the end of period t, and St denote the real primary fiscal surplus during period t.
The evolution of Bt is governed by

Bt+1 = (1 + rG,t+1)Bt − St+1, (3)

where rG,t+1 is the real interest rate on government bonds due in period t+1 and the initial
real stock of debt is assumed to be B0 > 0.

Let rM,t+j represent the random variable for the debt holder’s discount rate on payoffs
j periods ahead in period t. Note that our study does not assume the discount rate equals
the government bond rate. By iterating (3) forward and taking expectations, we obtain8

Bt = lim
k→∞


Et

k∑
j=1

(
j∏

i=1

1

1 + rM,t+i

)
[St+j + (rM,t+j − rG,t+j)Bt+j−1]

+Et

(
k∏

j=1

1

1 + rM,t+j

)
Bt+k

 . (4)

Debt-to-GDP Ratio By dividing (3) by real GDP, Yt, we derive the law of motion for
the debt-to-GDP ratio, bt = Bt/Yt:

bt+1 =

(
1 + rG,t+1

1 + gt+1

)
bt − st+1,

8See Supplementary Appendix C.1 for the derivation. In deriving (4), we have assumed that limits and
expectations are interchangeable.
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where gt+1 is the net GDP growth rate between t and t + 1 and st = St/Yt is the primary
surplus-to-GDP ratio. This equation, referred to as the fundamental equation for the debt-
to-GDP ratio, forms the basis of our analysis.

Fiscal Policy We consider a fiscal policy where the primary surplus-to-GDP ratio follows:

st = ϕbt−1 − ηt, (5)

where the first component represents a rule-based fiscal policy with ϕ indicating how the
primary surplus-to-GDP ratio adjusts in response to fluctuations in the debt-to-GDP ratio,
and the latter accounts for the ratio of the discretionary fiscal deficit to GDP. We note that
ϕ may assume a negative value; in such a case, the government opts to elevate the primary
deficit-to-GDP ratio in response to an increase in the debt-to-GDP ratio.

Given the fiscal rule in (5), the law of motion for the debt-to-GDP ratio is given by

bt+1 = at+1bt + ηt+1, (6)

where
at+1 =

1 + rG,t+1

1 + gt+1

− ϕ ≈ rG,t+1 − gt+1 − ϕ. (7)

Intertemporal Government Budget Constraint The intertemporal government bud-
get constraint (IGBC) stipulates that the value of debt must equal the expected present
value of future government net revenues. Under the conventional assumption that the in-
vestors’ discount rate equals the government bond rate, the IGBC is satisfied if the value of
debt matches the expected present value of the primary fiscal surplus. However, our analysis
incorporates the convenience yield of government bonds, arising from liquidity and safety
premia, resulting in the government bond rate rG being lower than the investors’ discount
rate rM . Below, we define the IGBC considering the convenience yield of government bonds.

Definition 1 (Intertemporal Government Budget Constraint). The IGBC is satisfied if

Bt = Et

k∑
j=1

(
j∏

i=1

1

1 + rM,t+i

)
[St+j + (rM,t+j − rG,t+j)Bt+j−1] ∈ [0,∞). (8)
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According to definition 1, the IGBC stipulates that the sum of the discounted present
value of the stream of primary surpluses and the convenience yields of government bonds
must equal the value of the outstanding government bonds. Notably, given (4), Definition 1
implies that the IGBC is equivalent to

lim
k→∞

Et

(
k∏

j=1

1

1 + rM,t+j

)
Bt+k = 0, (9)

which means that the discounted present value of future government debt converges to zero.

2.2 Debt Sustainability: Definition

In this study, we use the conventional definition of debt sustainability as employed in a large
body of work on debt sustainability and empirical tests of fiscal solvency:

Definition 2 (Debt Sustainability). Debt is considered sustainable if the IGBC is satisfied.

Definition 2 implies that debt sustainability is satisfied is condition (9) holds. In later
section, we show that condition (9) corresponds to the transversality condition (TVC) for
the infinitely-lived investors in a complete market model with the stochastic discount factor
Mt,t+1 = 1/(1 + rM,t+1). Therefore, unless (9) holds, the government cannot find buyers for
its debt, and the debt will be unsustainable.

3 Debt Sustainability under Certainty

The central aim of this paper is to investigate debt sustainability in uncertain environments.
Before addressing the primary topic, we first examine debt dynamics and sustainability under
certainty, where the government bond rate, the discount rate, and the GDP growth rate are
all constant: rG,t = rG, rM,t = rM , and gt = g, and the ratio of the discretionary fiscal deficit
to GDP ηt is constant: ηt = η > 0. For empirical relevance, we restrict our attention to the
following case:

rM > g > rG, and η > 0.

Specifically, (i) the debt holders’ discount rate is higher than the growth rate, (ii) the gov-
ernment bond rate is lower than the growth rate, and (iii) the discretionary fiscal deficit is
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positive.
In this deterministic environment, the IGBC simplifies to:

Bt =
∞∑
j=1

(
1

1 + rM

)j

[St+j + (rM − rG)Bt+j−1] ,

accompanied by the terminal condition:

lim
k→∞

(
1

1 + rM

)k

Bt+k = lim
k→∞

(
1 + g

1 + rM

)k

bt+k = 0. (10)

This illustrates that the terminal condition is met if the debt-to-GDP ratio grows at a rate
below (1+rM)/(1+g) > 1, indicating that stabilizing the debt-to-GDP ratio at a finite level
is sufficient for meeting the IGBC. The law of motion for the debt-to-GDP ratio (6) is given
by

bt+1 = abt + η; a =
1 + rG
1 + g

− ϕ > 0

This confirms that (10) is satisfied if and only if

a <
1 + rM
1 + g

, or 1 + rG
1 + g

− ϕ <
1 + rM
1 + g

.

Note that in a deterministic context, under rM > g > rG, debt is sustainable even without
fiscal stabilization policies (ϕ = 0).9 This implies that the government can sustain un-
backed deficit finance as long as rM > g > rG (Blanchard, 2019; Blanchard, Leandro, and
Zettelmeyer, 2021; Blanchard, 2023). The following sections explore these dynamics in a
stochastic context where rM > g > rG holds on average.

4 Debt Dynamics under Uncertainty

In this section, we explore the dynamics of debt under uncertainty. As outlined in Section 2.1,
the evolution of the debt-to-GDP ratio is given by

bt+1 = at+1bt + ηt+1,

9In this case, the debt-to-GDP ratio converges to −η(1 + g)/(rG − g) > 0.
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where at and ηt are random variables.

4.1 Tail Thickness

To examine the tail dynamics of the debt-to-GDP ratio, we begin by rigorously defining the
thickness of the tails in probability distributions. Consistent with its established definition,
we characterize a heavy-tailed distribution as follows:

Definition 3 (Heavy tail). A random variable X has a heavy upper tail if the moment
generating function of X, MX(ϑ), is infinite for all ϑ > 0, i.e., E

[
eϑX
]
= ∞ for all ϑ > 0.

Otherwise, X has a light upper tail.

Definition 3 indicates that heavily-tailed distributions feature tail probabilities Prob(X >

x) that decay more slowly than any exponential function, i.e., limx→∞ eϑxProb(X > x) = ∞

for all ϑ > 0. Conversely, light-tailed distributions exhibit tail probabilities that decay at a
rate faster than or equal to that of an exponential function. Examples of light-tailed distribu-
tions include bounded distributions, Gaussian distributions, and exponential distributions.

We further provide a formal definition of a fat-tailed distribution:

Definition 4 (Fat tail). We say that the distribution of X has a fat upper tail if there is a
positive exponent α > 0 such that Prob(X > x) ∼ x−α as x → ∞.

Since the decay rate of a fat-tailed distribution is slower than that of any exponential
function, every fat-tailed distribution is heavy-tailed, but not vice versa.10

Remark 1. A log-normal distribution is a heavy-tailed but not a fat-tailed distribution.

4.2 Debt-to-GDP Ratio in the Long Run

This section presents a detailed examination of the existence, uniqueness, and characteristics
of the asymptotic distribution of bt. In our study, we establish the following assumptions for
the random variables at and ηt.

Assumption 1. at is positive for all t, i.e., at > 0 for all t.

Assumption 2. ηt is positive and exhibits a light upper tail.
10See, for example, Stachurski and Toda (2019) for the formal proof.
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Let Et denote the conditional expectation based on information available up to t. We posit
a mild constraint on the upper bound of at:

Assumption 3. Et[at+1 | gt+1] < ∞.

For the analysis below, we mainly focus on the case where the logarithm of at follows a
stationary first-order autoregressive and first-order moving-average (ARMA(1,1)) process

log(at) = (1− ρa)µa + ρa log(at−1) + εa,t + θaεa,t−1, (11)

where |ρa| < 1 and εa,t is an independently and identically distributed (IID) random variable.
Parameter µa presents the unconditional mean of log(at): E [log(at)] = µa.

4.2.1 at Is IID: Kesten Multiplicative Process

We begin our analysis with a specific case where at is an IID random variable, aligning with
the case of ρa = θa = 0 in (11). In this situation, the stochastic process (6) is recognized
as the Kesten multiplicative process, whose asymptotic behavior is well-documented by the
Kesten–Goldie theorem (Kesten, 1973; Goldie, 1991). Specifically, under Assumptions 1 and
2, the asymptotic distribution of bt is characterized as follows:

(i) If E [log(at)] ≥ 0, the asymptotic distribution is nonstationary and E[bt] increases
explosively.11

(ii) If E [log(at)] < 0, a unique stationary distribution of bt exists, which:

(ii-a) Is fat-tailed with a Pareto tail index κ, satisfying E [aκt ] = 1 if sup(at) > 1.

(ii-b) Is light-tailed if sup(at) ≤ 1.

Consequently, the Kesten–Goldie theorem indicates that under the conditions: (i) a negative
average net growth rate of b (i.e., E [log(at)] < 0), (ii) the existence of a positive probability
of at > 1 (∃κ > 0 such that E [aκt ] = 1), and (iii) a positive primary deficit-to-GDP ratio for

11In this case, the asymptotic distribution is explicitly written as bt = b0 exp
(
µat+

√
tνZ + o(

√
t)
)
, where

µa = E [log(at)], ν = Var(log(at)), Z ∼ N(0, 1), and o(
√
t)/

√
t → 0 as t → ∞. See Hitczenko and Wesołowski

(2011) and Forbes and Grosskinsky (2021).
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Figure 2: Characteristics of the asymptotic distribution of bt: IID

all t (i.e., ηt > 0), the debt-to-GDP ratio dynamics converges to a stationary distribution
with a Pareto law:

Prob
(
bt > b̄

)
∼ kb̄−κ, k > 0.

Here, the tail index κ depends exclusively on the at process, independent of the ηt process.12

For instance, assume that log(at) is independently and normally distributed with mean
µiid and standard deviation σiid > 0, i.e., log(at)

iid∼ N(µiid, σ
2
iid). In this case, log(at) is

unbounded above (i.e. it has no upper bound), sup(at) > 1 clearly (see Section 4.2.3 for
the case with bounded processes). Therefore, according to the Kesten–Goldie theorem, if
µiid < 0, bt asymptotically converges to the Pareto distribution with the tail index condition
satisfying

1 = E [aκt ] = E [exp(κ log(at))] = exp

(
κµiid +

κ2σ2
iid

2

)
.

12More precisely, the Kesten–Goldie theorem indicates that the stationary distribution has fat tails char-
acterized by a Pareto tail index κ, satisfying E [aκt ] = 1 if E [ηκt ] < ∞. In our study, we assume that ηt has
a light upper tail (Assumption 2), ensuring that E [ηκt ] < ∞ for all κ > 0.
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Namely, the tail index κ > 0 is given by

κ = − µiid

σ2
iid/2

.

Figure 2 illustrates the nature of the asymptotic distribution. We highlight the asymptotic
distribution can be categorized into three distinct types:

(I) Nonstationary asymptotic distribution if µiid ≥ 0 (Region (I) in Figure 2): The debt-
to-GDP ratio grows explosively.

(II) Fat-tailed stationary distribution with an infinite mean if −σ2
iid/2 < µiid < 0 (Region

(II) in Figure 2): A unique stationary distribution exists with a power-law upper tail
index 0 < κ < 1

(III) Fat-tailed stationary distribution with a finite mean if µiid ≤ −σ2
iid/2 (Region (III) in

Figure 2): A unique stationary distribution exists with a power-law upper tail index
1 ≤ κ.

Consequently, we note that although the condition for the existence of a stationary distri-
bution is µiid < 0, the requirement for this distribution to have a finite mean (i.e., 1 ≤ κ) is
more stringent, specified as

µiid +
σ2
iid

2
≤ 0.

Furthermore, the following proposition describes the growth rate of mean of the asymp-
totic debt-to-GDP ratio:

Theorem 1. As t → ∞, the mean of the debt-to-GDP ratio E[bt] is infinite if µiid+σ2
iid/2 > 0.

In this case, E[bt] grows at the rate of µiid + σ2
iid/2 > 0.

Proof of Theorem 1. See Supplementary Appendix B.1.

This theorem indicates that the mean of the debt-to-GDP ratio converges to a certain
value if µiid + σ2

iid/2 ≤ 0, while it grows at the rate of µiid + σ2
iid/2 in long run otherwise. In

conclusion, depending of µiid and σiid, the debt-to-GDP ratio follows three distinct paths, as
summarized in Table 1.
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Table 1: The asymptotic distribution of bt: log(at)
iid∼ N(µiid, σ

2
iid)

Condition Stationarity Tail index mean of bt Growth rate of mean of bt Figure 2

µiid ≥ 0 No — ∞ µiid +
σ2
iid

2
Region (I)

−σ2
iid

2
< µiid < 0 Yes 0 < κ < 1 ∞ µiid +

σ2
iid

2
Region (II)

µiid ≤ −σ2
iid

2
Yes κ ≥ 1 Finite 0 Region (III)

4.2.2 Generalized Processes for at

Expanding our scope, we move beyond the assumption of an IID process for at, adopting a
more empirically relevant stochastic process where log(at) follows the stationary ARMA(1,1)
process (11). Intriguingly, even when log(at) deviates from an IID random variable, the
criteria for the existence and uniqueness of its stationary distribution still align with the
Kesten-Goldie theorem (Brandt, 1986). As evidenced by de Saporta (2005) and Benhabib,
Bisin, and Zhu (2011), when log(at) is a non-IID random variable, the prerequisite for the
Pareto tail index is modified as:

lim
n→+∞

1

n
log

(
E

[(
n∏

t=0

at

)κ])
= 0. (12)

The lemma below specifies the Pareto tail index condition when log(at) follows the stationary
ARMA(1,1) process.

Lemma 1. Under the stationary ARMA(1,1) process (11) for log(at), the tail condition (12)
is formulated as:

E
[
exp

(
κ

(
1 + θa
1− ρa

εa,t + µa

))]
= 1. (13)

Proof of Lemma 1. See Supplementary Appendix C.2.13

Notably, when ρa = θa = 0 (implying that log(at) is IID), the tail condition (13) reduces
to E [exp(κ log(at))] = E [aκt ] = 1, aligning with the tail condition in the Kesten-Goldie
theorem. Furthermore, Lemma 1 implies that when log(at) follows an ARMA(1,1) process
with Gaussian innovations εa,t

iid∼ N(0, σ2
ϵ ), the Pareto tail index is given by

κ = −
(
1− ρa
1 + θa

)2(
µa

σ2
ϵ/2

)
> 0. (14)

13See also Benhabib, Bisin, and Zhu (2011, Proposition 4).
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Figure 3: Characteristics of the asymptotic distribution of bt: ARMA(1,1) process

Note: Each panel illustrates the characteristics of the asymptotic distribution of bt when log(at) follows an
ARMA(1,1) process (11).

This formulation indicates that the asymptotic behavior of the debt-to-GDP ratio depends
on parameters µa, σϵ, ρa, and θa. In particular, (14) implies that, given the distributional
assumptions for εa,t, the Pareto tail index κ diminishes (indicating augmented tail risk)
as ρa and θa increase. Consequently, increased persistence in the log(at) process leads to a
heavier tail in the asymptotic debt-to-GDP ratio, which in turn suggests that more persistent
fluctuations in the interest rate-growth differential can significantly elevate the risk of extreme
debt levels.

Figure 3 depicts the nature of the asymptotic distribution. The condition for achieving
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Table 2: The asymptotic distribution of bt: log(at) follows ARMA(1,1)

Condition Stationarity Tail index mean of bt Growth rate of mean of bt Figure 3

µa ≥ 0 No — ∞ µa +
(

1+θa
1−ρa

)2
σ2
ϵ

2
Region (I)

−
(

1+θa
1−ρa

)2
σ2
ϵ

2
< µa < 0 Yes 0 < κ < 1 ∞ µa +

(
1+θa
1−ρa

)2
σ2
ϵ

2
Region (II)

µa ≤ −
(

1+θa
1−ρa

)2
σ2
ϵ

2
Yes κ ≥ 1 Finite 0 Region (III)

Note: log(at) follows an ARMA(1,1) process: log(at) = (1− ρa)µa + ρa log(at−1) + εa,t + θaεa,t−1, where
εa,t

iid∼ N(0, σ2
ϵ ).

an asymptotic finite mean (κ ≥ 1) is:

µa +

(
1 + θa
1− ρa

)2
σ2
ϵ

2
≤ 0,

showing that higher values of ρa or θa expand Region (II), characterized by an infinite mean,
and compress Region (III), where the mean is finite. Similar to Theorem 1, the long-run
growth rate of the mean of the debt-to-GDP ratio is given by

∆ log(E[bt]) =


µa +

(
1+θa
1−ρa

)2
σ2
ϵ

2
if µa +

(
1+θa
1−ρa

)2
σ2
ϵ

2
> 0

0 otherwise
,

as t → ∞. Table 2 summarizes the asymptotic distribution of bt.

4.2.3 Further Discussions

In Sections 4.2.1 and 4.2.2, we discussed the asymptotic behavior of the debt-to-GDP ratio
using examples with Gaussian innovations. Here, we briefly describe the generality of these
arguments.

Firstly, we note that the debt-to-GDP ratio exhibits a power-law stationary distribution
even if log(at) is bounded, as long as sup(at) > 1 and E [log(at)] < 0. This imply that the tail
risk exists even with a discrete-space Markov chain for at. In Supplementary Appendix E, we
provide a detailed discussion for the case of bounded log(at), considering a uniform random
variable.

Secondly, we have assumed that at and ηt are independent random variables. Recent
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studies regarding Kesten process have shown that a power-law stationary distribution exists
even when at and ηt are correlated under some regularity conditions (de Saporta, 2005). We
will detail the impact of the correlation on the tail risk magnitude in Section 7.

5 Debt Sustainability under Uncertainty

This section analyzes sustainability of public debt in the presence of aggregate shocks. To
define sustainability of public debt and study the linkage between the tail risk magnitude of
debt-to-GDP ratio and sustainability of public debt, we develop an equilibrium model that
provide a microfoundation of the fundamental equation (6) and the stochastic process (11).

5.1 Model

We introduce a general equilibrium model of an infinite-horizon, complete-market exchange
economy with government sector. A distinctive feature of this model is its incorporation
of safety and liquidity benefits associated with holding government bonds (Sidrauski, 1967;
Krishnamurthy and Vissing-Jorgensen, 2012; Fisher, 2015). This results in a convenience
yield for government bonds.

Let Pt denote the nominal price of final goods. The growth rate of price level, i.e.,
inflation rate, is assumed to follow an exogenous process:

Pt+1

Pt

= exp

(
π − σ2

π

2
+ σπεπ,t+1

)
, (15)

where π = log(E[Pt+1/Pt]), σπ > 0 and επ,t is an IID standard Gaussian random variable.

Household There exists a unit mass of identical households, each earning an income of Yt

in each period t. The growth rate of income is assumed to follow:

1 + gt+1 ≡
Yt+1

Yt

= exp

(
ĝ −

σ2
g

2
+ σgεg,t+1

)
,

where ĝ = log(E[Yt+1/Yt]), σg > 0 is the standard deviation of the earnings growth rate, and
εg,t is an IID standard Gaussian random variable. We assume ĝ > σ2

g , which ensures that
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the average growth rate 1 + g ≡ E[(1 + gt)
−1]−1 = exp

(
ĝ − σ2

g

)
> 1.

In every period, each household determines its consumption Ct, nominal government
bond holdings Bn

t , and safe bond holdings At to maximize the expected utility function:

Et

[
∞∑
k=0

exp(−ρ)k
[
u(Ct+k) + ν

(
Bn

t+k

Pt+k

)]]
,

where ρ > 0 is the subject discount rate. The utility from consumption u(Ct) is given by

u(Ct) =
C1−γ

t − 1

1− γ
; γ > 1,

and ν(Bn
t /Pt) denotes the liquidity benefits derived from holding government bonds. We

posit a linear utility from holding bonds with exogenous shifts in the marginal utility:14

ν

(
Bn

t

Pt

)
= ϱt

Bn
t

Pt

; ϱt = u′(C̄t)
(
1− exp(zt)

−1) ,
where C̄t represents the mean consumption among households at time t and zt represents an
exogenous preference shifter. We assume that zt follows

zt = (1− ρz)µz + ρzzt−1 + σzεz,t,

where µz > 0, |ρz| < 1, σz > 0, and εz,t is an IID standard Gaussian random variable. We
impose the following parametric assumption:

Assumption 4 (Average convenience benefits). The value for µz is sufficiently high so that

µz > ρ+ (γ − 1)ĝ +

[
1− γ(γ + 1)

2

]
σ2
g .

The household’s budget constraint is given by

Ct +
Bn

t

Pt

+ At ≤ Yt − Tt +
(
1 + rnG,t−1

) Bn
t−1

Pt

+ (1 + rF,t−1)At−1,

where Tt is the lump-sum tax, and rnG,t−1 is the nominal interest rate on government bond,
14See Kocherlakota (2023) for a mircofoundation of a linear utility from holding bonds.
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and rF,t−1 is the real interest rates on safe assets.
In this study, to ensure a positive equilibrium risk-free rate, we impose

Assumption 5 (Small income volatility). The variance of the earnings growth rate σ2
g is

small so that
(γ + 1)

σ2
g

2
< ĝ.

Government In each period t, the government finances its spending Gt by lump-sum
tax Tt and issuing short-term government bonds, Bt. The government debt’s evolution is
described by

Bn
t

Pt

= (1 + rnG,t−1)
Bn

t−1

Pt

− St, (16)

where St = Tt −Gt is the real primary surplus.
The government keeps government spending as a share of GDP constant Gt/Yt = γg and

adjusts the primary surplus-to-GDP ratio st = St/Yt according to the fiscal rule presented
in Bohn (1998): st = ϕbt−1 − ηt where ηt = η + εη,t represents the discretionary primary
deficit-to-GDP ratio and εη,t is an IID shock. We make the assumption:

Assumption 6 (Discretionary Primary Deficit). η > 0 and inf εη,t ≥ −η, indicating the
discretionary primary deficit is positive ηt = η + εη,t > 0 for all t.

Equilibrium conditions The net supply of safe bonds is zero: At = 0. In equilibrium,
all final goods are used for private consumption Ct and for government spending Gt, subject
to the resource constraint Ct +Gt = Yt. The growth rate of consumption equals the growth
rate of GDP, i.e., Ct+1/Ct = Yt+1/Yt since Gt/Yt is constant.

5.2 Equilibrium Analysis

The household’s optimal conditions, along with the principle of aggregation (Ct = C̄t) and
the equilibrium conditions, determine the equilibrium interest rates as follows:

rF,t ≈ log(1 + rF,t) = ρ+ γĝ − γ(γ + 1)

2
σ2
g ≡ rF > 0, (17)

and
rnG,t − π ≈ log

(
1 + rnG,t

)
− π = rF − σ2

π − zt. (18)
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From (17), it follows that the equilibrium real risk-free rate is constant. Conversely, (18)
indicates that the equilibrium expected real interest rate of government bonds, rnG,t − π,
fluctuates over time and averages lower than the risk-free rate rF , given that E[zt] = µz > 0.

The transversality condition is given by

lim
k→∞

Et [Mt,t+kBt+k] = 0, (19)

where Bt = Bn
t /Pt represents the real stock of government bonds and Mt,t+k is the stochastic

discount factor between period t and t+k. For convenience, we define the stochastic discount
rate rM,t+1 as Mt,t+1 = 1/(1 + rM,t+1). Then, we can obtain the following:

Lemma 2. In equilibrium, it holds that

Mt,t+k =
k∏

j=t

1

1 + rM,t+j

; where 1 + rM,t+1 = exp

(
ρ+ γ

(
ĝ −

σ2
g

2
+ σgεg,t+1

))
.

The average discount rate rM , defined as the harmonic mean of 1 + rM,t, is given by

1 + rM ≡ (E[1 + rM,t]
−1)−1 = 1 + rF .

Proof of Lemma 2. See Supplementary Appendix C.3.

The government budget constraint (16) induces

Bt+1 = (1 + rG,t+1)Bt − St+1,

where 1 + rG,t+1 ≡ (1 + rnG,t)Pt/Pt+1 represents the (realized) gross real interest rate of
government bond. From (15) and (18), 1 + rG,t+1 = exp(rF − zt − σ2

π/2− σπεπ,t+1). Thus,
the average real interest rate of government bond, defined as 1 + rG ≡ E[(1 + rG,t)

−1]−1, is
given by 1 + rG = exp(rF − µz − σ2

π − (σ2
z/2)/(1− ρz)).

Proposition 1. The debt-to-GDP ratio bt = Bt/Yt follows

bt+1 = at+1bt + ηt+1,
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where
at =

1 + rG,t

1 + gt
− ϕ ≈ rG,t − gt − ϕ. (20)

Furthermore, log(at) also follows an ARMA(1,1) process:

log(at+1) = (1− ρa)µa + ρa log(at) + εa,t+1 + θaεa,t.

where µa = ρ + (γ − 1)ĝ + [1− γ(γ + 1)] σ2
g/2 − σ2

π/2 − µz − ϕ < 0, ρa = ρz, θa =√
σ2
z + ρ2z(σ

2
g + σ2

π)/
√

σ2
g + σ2

π and εa,t ∼ N(0, σ2
ϵ ) with σϵ =

√
σ2
g + σ2

π.

Proof of Proposition 1. See Supplementary Appendix C.3.

The following proposition summarizes the relationship between the average discount rate,
growth rate, interest rate on government bond.

Proposition 2. Under γ > 1 and Assumptions 4 and 5, (i) the average discount rate is
equal to the average interest rate on private bonds, (ii) the average discount rate is strictly
greater than the average growth rate, and (iii) the average growth rate is strictly greater than
the average interest rate on government bond. Namely, rM = rF > g > rG.

Proof of Proposition 2. See Supplementary Appendix C.4.

5.3 Sustainability of Debt

According to Definition 2, debt sustainability is achieved when (8) is met. As discussed in
Section 2, satisfying (8) is equivalent to satisfying (19).

The following theorem provides the sufficient condition for debt sustainability

Theorem 2. When at is a random variable following an ARMA(1,1) process (20), debt is
sustainable according to Definition 2 if

µa +

(
1 + θa
1− ρa

)2
σ2
ϵ

2
< ρ+ (γ − 1)

(
ĝ − γ

σ2
g

2

)
.

Proof of Theorem 2. See Appendix B.2.
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Given that ρ + (γ − 1)
(
ĝ − γσ2

g/2
)
> 0 (Assumption 5), Theorem 2 implies that, debt

sustainability is definitely satisfied if

µa +

(
1 + θa
1− ρa

)2
σ2
ϵ

2
≤ 0. (21)

Recalling the arguments in Section 4.2.2, this condition corresponds to the condition of
achieving an asymptotic finite mean (κ ≥ 1). Hence, satisfying (21), which implies Pareto
tail index κ ≥ 1, can be considered a sufficient condition for debt sustainability.15

Figure 4 illustrates the condition for debt sustainability, along with the characteristics
of the asymptotic distribution of bt. It shows that region (III), where the asymptotic dis-
tribution is stationary with a finite mean, satisfies the conditions for debt sustainability.
Additionally, debt sustainability can be satisfied in parts of region (I), where the asymptotic
distribution is non-stationary, and region (II), where the asymptotic distribution is station-
ary with an infinite mean. This is because, even if the mean of bt diverges, the IGBC can be
met as long as the asymptotic growth rate of the mean debt-to-GDP ratio is less than the
threshold value (see Theorem 2). Notably, when log(at) is more persistent (i.e., ρa is larger),
debt sustainability is less likely to be achieved in regions (I) and (II). Therefore, achieving
an asymptotic finite mean (κ ≥ 1) is a reasonable condition for debt sustainability when
log(at) is highly persistent.

6 Estimation and Empirical Analyses

In the previous sections, we have investigated the asymptotic distribution of the debt-to-
GDP ratio that is governed by the stochastic process described by (6) and (11). This section
employs historical data on the debt-to-GDP ratio from both the United States and the
United Kingdom to estimate the statistical model and evaluate the sustainability of public
debt of these countries.

15More precisely, Theorem 2 states that debt sustainability is satisfied if the asymptotic growth rate of
the mean debt-to-GDP ratio is less than ρ + (γ − 1)

(
ĝ − γσ2

g/2
)
> 0. However, the threshold depends on

the time preference rate and the elasticity of intertemporal substitution (EIS), in addition to the parameters
underlying the GDP growth rate process. Notably, the range of estimates for the EIS is quite broad.
Specifically, when EIS equals 1, the threshold is ρ, which is very small. Therefore, a finite average (i.e., zero
asymptotic growth rate) is considered a reasonable condition for debt sustainability.
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Figure 4: The Asymptotic Distribution of bt and Debt Sustainability

Note: The IGBC is satisfied in the red dotted region. We set ρ = 0.01, ĝ = 0.0284, and γ = 1.5, and
σg = 0.0290.

6.1 Estimation Methodology

We first describe the estimation strategy. The model we estimate is as follows:

 log (at) = (1− ρa)µa + ρa log (at−1) + εa,t + θaεa,t−1; |ρa| < 1, µa < 0

bt = atbt−1 + ηt,
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where εa,t represents an IID Gaussian random variable with a mean of zero and a standard
deviation of σϵ and ηt an error term embodying discretionary fiscal deficits. We assert:

ηt = η̄t + ξt,

where η̄t is an IID exponential random variable with an mean of η̄ > 0, indicating the
normal-times ratio of discretionary fiscal deficits to GDP as ηt ∼ exp(1/η̄). Meanwhile, ξt,
termed as a disaster shock, is a discrete IID random variable, representing infrequent but
extraordinary fiscal expansions, such as wars, financial crises, and disasters. Specifically, we
posit the following probability mass function for ξt:

p(ξ) =


1− (p1 + p2) ξ = 0

p1 ξ = ξd > 0

p2 ξ = ξ̂d > ξd

.

We note that the debt-to-GDP ratio bt is observable, while at, η̄t, and ξt are latent
variables. This specification allows us to derive the following nonlinear and non-Gaussian
state-space representation:


log(at)

εa,t

1

 =


ρa θa (1− ρa)µa

0 0 0

0 0 1




log(at−1)

εa,t−1

1

+


1

1

0

 εa,t,

and

bt =

[
bt−1 0 0

]
exp(log(at))

εa,t

1

+ η̄t + ξt.

Using the state-space model described above, we obtain the maximum likelihood es-
timator of Θ = (µa, ρa, θa, σϵ, η̄)

′. Specifically, in the estimation, we externally calibrate
the values for the disaster shock parameters (p1, p2, ξd, ξ̂d) to address the identification issue.

25



Given these disaster shock parameters, we apply particle filter methods with 25, 000 particles
to the state-space model to approximate the conditional likelihood L(bk | b1:k−1; Θ).

6.2 Data

For our estimation, we use historical debt-to-GDP ratio data from the United States and
the United Kingdom. Figure 5 depicts the debt held by the public as a percentage of GDP.
Detailed historical overviews and datasets for the debt-to-GDP ratios in these countries are
provided in Supplementary Appendix F. The U.S. sample covers the period from 1856 to
2022, as our estimation method is not applicable for the years before 1856 when there was
no outstanding debt. For the United Kingdom, the analysis spans the entire dataset from
1700 to 2022.

6.3 Estimate Results

Table 3 presents the estimated values alongside the externally assigned disaster shock param-
eters. The parameters µa, ρa, θa, and σϵ describe the statistical properties of log(at). In both
the United States and the United Kingdom, the mean of log(at) is negative (µa < 0), indi-
cating that the asymptotic distribution of the debt-to-GDP ratio is stationary and follows a
power-law distribution. The United States shows a significantly lower mean of log(at) com-
pared to the United Kingdom, suggesting a more favorable long-term interest rate-growth
differential. The autoregressive coefficient ρa and the moving-average coefficient θa vary
between the two countries, reflecting differences in persistence and moving-average effects.
The estimates suggest that interest rate-growth differentials in the United States are more
persistent than in the United Kingdom. Additionally, the standard deviation of innovations
to log(at) (σϵ) is similar across both countries, indicating comparable volatility in εa,t.

The average ratio of discretionary fiscal deficits to GDP during normal periods (η̄) is
estimated to be slightly higher for the United States compared to the United Kingdom.
The externally assigned parameters, including the probabilities of a disaster (p1) and a large
disaster (p2), as well as the additional fiscal deficits during these events (ξd and ξ̂d), are
assumed to be identical for both countries. In our benchmark scenario, we assume that a
disaster shock leading to a fiscal deficit-to-GDP ratio of 10% occurs once every 20 years on
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Figure 5: Debt Held by the Public as Percentage of GDP (%)

(a) United States: 1790-2022
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Source: Federal Debt Held by the Public, 1790 to
2000 (Congressional Budget Office, 2010); the Debt
to the Penny dataset (the U.S. Department of the
Treasury).

(b) United Kingdom: 1700-2022
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Source: Bank of England’s ‘A Millennium of
Macroeconomic Data’ (Thomas and Dimsdale,
2017); Public sector finances data (the Office for
National Statistics).

Note: The debt level is assessed based on the face value of the total federal debt held by the public at the
end of each calendar year. Shaded areas indicate the duration of major wars and deep recessions: In Panel
(a), these are the War of 1812 (1812–15), Mexican-American War (1846–48), American Civil War (1861-65),
Philippine–American War (1899–1902), World War I (1914–18), Great Depression (1930-32), World War II
(1939–45), Great Recession (2008-09), and COVID-19 recession (2020). In Panel (b), these periods include
the War of the Spanish Succession (1701-14), War of the Austrian Succession (1740-48), Seven Years’ War
(1756-63), American War of Independence (1775-83), French Revolutionary Wars (1792-1802), Napoleonic
Wars (1803–15), Crimean War (1853–56), Second Boer War (1899–1902), World War I (1914–18),
post-WWI recession (1919-21), Great Depression (1930-32), World War II (1939–45), Falklands War
(1982), early 1990s recession (1990-92), Great Recession (2008-09), and COVID-19 recession (2020).

average, and a large disaster shock causing a 20% ratio occurs about once every 60 years.
In Section 6.6, we assess the robustness of estimation results, particularly examining the
impact of the selected disaster shock parameters.

The bottom of Table 3 displays the implied Pareto tail index (κ) for the asymptotic
distribution of the debt-to-GDP ratio. As previously discussed, the asymptotic distribution
has a finite mean, and debt sustainability is assured if κ ≥ 1. Our estimates reveal that
while the tail index exceeds 1 in both the United States and the United Kingdom, it is
closer to 1 in the United States (κ = 1.59). This finding indicates a higher risk of extreme
values in the debt-to-GDP ratio distribution for the United States compared to the United
Kingdom. In summary, our results show that although the United States has benefited from
a low long-term interest rate-growth differential, the highly persistent fluctuations in this
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Table 3: Parameter Value and Implied Pareto Index

Parameter Description Values
US UK

Estimated Parameters
µa mean of log(at) −0.0703 −0.0168
ρa first-order autoregressive coefficient of log(at) 0.8333 0.5556
θa moving-average coefficient of log(at) −0.0278 −0.0167
σϵ standard deviation of innovations to log(at) 0.0468 0.0489
η̄ mean of the ratio of discretionary fiscal deficits to GDP in normal times 0.0100 0.0073

Externally Assigned Parameters
p1 probability of a disaster 0.050 0.050
p2 probability of a large disaster 0.017 0.017
ξd additional fiscal deficit during a disaster 0.10 0.10

ξ̂d additional fiscal deficit during a large disaster 0.20 0.20

Tail Index
κ Pareto tail index 1.887 2.870

Note: The Pareto tail index is given by κ = −
(

1−ρa

1+θa

)2 (
µa

σ2
ϵ/2

)
.

differential increase the tail risk in debt accumulation.

6.4 Historical Path of log(at) and ηt

We estimate the historical trajectories of the latent variables log(at) and ηt using the particle
smoothing method.16 Recall that fluctuations in log(at) can arise due to changes in the
interest rate-growth differential or fiscal stabilization rules (see (7)).

The United States Figure 6 displays the estimated historical paths of log(at) (Panel (a))
and ηt (Panel (b)) for the United States. It can be seen that from the Civil War until World
War I (WWI), the United States did not experience significant discretionary budget deficits
(Panel (b)), and the value of at consistently remained below 1 (Panel (a)), indicating low
interest rates relative to the growth rate and effective fiscal stabilization policies. During
WWI, the debt-to-GDP ratio surged with high discretionary budget deficits (Panel (b)), but
at remained low (Panel (a)). This pattern indicates that, in the WWI period, the United
States benefited from high GDP growth rates, enabling it to finance substantial deficits at
relatively low costs. This advantageous debt-financing environment helped reduce the debt-

16In implementing particle smoothing, we use algorithms proposed by Klaas, Briers, De Freitas, Doucet,
Maskell, and Lang (2006).
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to-GDP ratio post-WWI. From the Great Depression through WWII, fiscal deficits escalated,
and at increased significantly, suggesting periods where at > 1 (Panel (a)). Post-WWII to
the early 1970s, the growth rate mostly exceeded interest rates, reducing the debt-to-GDP
ratio. In the late 1970s, interest rates began to exceed growth rates, raising at around or
above 1 until the early 1990s (Panel (a)). After temporarily falling below 1, the Great
Recession pushed at to unprecedented levels. Since then, at has remained around 1. During
the COVID-19 recession, the United States incurred discretionary fiscal deficits similar to
those in WWI and WWII.

The United Kingdom Figure 7 displays the estimated historical paths of log(at) (Panel
(a)) and ηt (Panel (b)) for the United Kingdom. Panel (a) shows that while log(at) was
predominantly negative (i.e., at < 1), it experienced significant fluctuations, notably surging
during wartime and major recessions, resulting in substantial periods of positive log(at).
Remarkably, at reached exceptionally high levels during WWI and the Great Recession. Our
estimates suggest that at remained chronically high during three distinct periods: the 18th
century, the World Wars era (1914-45), and from the 1990s onwards, coinciding with uptrends
in the debt-to-GDP ratio. In contrast, during the 1950s-70s, when the ratio was significantly
reduced, at remained well below 1. Panel (b) shows that while the discretionary fiscal deficit
typically remained under 1 percent of GDP during normal periods, disaster shocks occurred
during significant historical events such as the War of the Spanish Succession, the Napoleonic
Wars and their aftermath, WWI and the ensuing recession, the Great Recession, and the
COVID-19 recession. In summary, the United Kingdom has repeatedly experienced explosive
debt-to-GDP dynamics (at > 1) and is thus at tail risk given the historical fiscal environment.
Particularly, the last 30 years have increased the likelihood of this risk materializing.

6.5 Future Projection of the Debt-to-GDP Ratio

Figure 8 presents the future projection of the debt-to-GDP ratio for the United States (Panel
(a)) and the United Kingdom (Panel (b)) over the period from 2023 to 2053. The projections
are illustrated using a fan chart analysis.

For the United States, the median forecast indicates a steady decline in the debt-to-
GDP ratio, while the 95% coverage range reveals a potential risk of the ratio rising to 250%
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Figure 6: Estimates of log(at) and ηt in the United States

(a) Estimates of log(at)
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Note: Each panel presents estimates obtained through particle smoothing using 25,000 particles. The solid
line represents the mean value, while the accompanying band illustrates the 95% interval, spanning from
the 2.5th to the 97.5th percentiles. Shaded areas indicate the duration of major wars and deep recessions:
War of 1812 (1812–15); Mexican-American War (1846–48); American Civil War (1861–65);
Philippine–American War (1899–1902); WWI (1914–18); Great Depression (1930–32); WWII (1939–45);
Great Recession (2008–09); and COVID-19 recession (2020).
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Figure 7: Estimates of log(at) and ηt in the United Kingdom

(a) Estimates of log(at)
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Note: Each panel presents estimates obtained through particle smoothing using 25,000 particles. The solid
line represents the mean value, while the accompanying band illustrates the 95% interval, spanning from
the 2.5th to the 97.5th percentiles. Shaded regions mark the periods of major wars and deep recessions:
the War of the Spanish Succession (1701-14); the War of the Austrian Succession (1740-48); Seven Years’
War (1756-63); American War of Independence (1775-83); the French Revolutionary Wars (1792-1802); the
Napoleonic Wars (1803–15); Crimean War (1853–56); Second Boer War (1899–1902); World War I
(1914–18); the post–World War I recession (1919-21); Great Depression (1930-32); World War II (1939–45);
Falklands War (1982); Early 1990s recession (1990-92); Great Recession (2008-09); COVID-19 recession
(2020). 31



Figure 8: Debt-to-GDP Ratio (%): Future Projection

(a) United States
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Note: The dotted line indicates the median forecast, the dark band illustrates the forecast within the 68%
coverage range, the middle band represents the forecast within the 90% coverage range, and the light band
denotes the forecast within the 95% coverage range.

by 2050. For the United Kingdom, the median forecast suggests a stable debt-to-GDP
ratio, with the 95% coverage range indicating a potential risk of the ratio rising to 250%
by 2050. Notably, the distributional forecasts exhibit an asymmetry between upside and
downside risks, which becomes more pronounced as the coverage range increases, resulting
in disproportionately escalating upward risks over time. This asymmetric risk reflects the
distribution of the debt-to-GDP ratio approaching a right-skewed, fat-tailed distribution.

Figure 9 presents the complementary cumulative distribution function (CDF) of the
simulated debt-to-GDP ratio on a log-log scale. The complementary CDF exhibits a linear
log-log relationship characteristic of a Pareto distribution in the long run, with the slope
flattening over time for both countries. This indicates that while the simulated debt-to-GDP
ratio initially has thin tails, its upper tail gradually thickens. Notably, the convergence rate
to the Pareto stationary distribution is relatively swift, particularly for the United States,
suggesting that a tail event could materialize within this century.
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Figure 9: Complementary CDF of the Simulated Debt-to-GDP Ratio
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Note: The horizontal axis represents the debt-to-GDP ratio, while the vertical axis shows the
corresponding complementary cumulative distribution function.

6.6 Robustness of Estimation Results

This section evaluates the robustness of the estimation results. Table A.1 in Appendix A
presents the parameter and tail index estimates using alternative disaster shock parameters
from those in Table 3. The results demonstrate that the estimates remain robust across a
range of plausible disaster shock scenarios.

7 Discussions

This section addresses additional relevant topics.

7.1 Continuous-Time Framework

In this study, we developed a discrete-time model for debt dynamics. In Supplementary
Appendix D, we introduce a continuous-time counterpart, building on the work of Mehrotra
and Sergeyev (2021). We demonstrate the broad applicability of our model and, using
Luttmer (2016)’s theorem, show that the debt-to-GDP ratio follows a power-law asymptotic
distribution under specific assumptions, similar to Assumptions 2 and 4.
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7.2 Correlation of rG − g and Fiscal Deficit

While various stochastic processes for at have been examined, we have assumed that they
are independent of ηt. This section relaxes this assumption. To apply the mathematical
theorem de Saporta (2005), we follow Benhabib, Bisin, and Zhu (2011) and consider a
Markov modulated chain, defined as

Definition 5 (Markov Modulated Chain). The stochastic process (at, ηt)t is a real, aperi-
odic, irreducible, stationary Markov chain with finite state space a × η := {ā1, . . . , ām} ×

{η̄1, . . . , η̄l}. It is a Markov modulated chain if Prob (at, ηt | at−1, ηt−1) = Prob (at, ηt | at−1)

where Prob (at, ηt | at−1, ηt−1) denotes the conditional probability of (at, ηt) given (at−1, ηt−1).

Markov modulated chains allow for autocorrelation of ηt and correlation between at

and ηt. Benhabib, Bisin, and Zhu (2011) demonstrate that a modulated chain (at, ηt)t >

0 satisfying the following conditions results in an asymptotic Pareto distribution with an
upper tail index determined by (12): (i) E [at | at−1] < 1 for any at−1, (ii) āi > 1 for some
i = 1, . . . ,m, and (iii) the diagonal elements of the transition matrix of at are positive.17

This implies that the autocorrelation in ηt and the correlation between at and ηt do not
influence the tail index of bt. Table 4 confirms this through stochastic simulations of Markov
modulated chains with varying autocorrelation in ηt and correlation between at and ηt.18

7.3 Fiscal Stabilization Rule

This section examines the roles of the activeness of the fiscal stabilization rule ϕ in debt dy-
namics and sustainability. We first explore the deterministic environment and then proceed
to the stochastic environment. Recall that, in the absence of uncertainty, (6) is given by
bt+1 = abt + η with a = (1 + rG)/(1 + g) − ϕ. The following proposition summarizes the
interconnection between the fiscal reaction function, the stabilization of the debt-to-GDP
ratio, and the IGBC.

Proposition 3 (Bohn’s Condition under Certainty). Under rM > g > rG and η > 0, the
IGBC is satisfied if the growth rate of the debt-to-GDP ratio (1 + rG)/(1 + g) − ϕ does not

17See Appendix B in Benhabib, Bisin, and Zhu (2011).
18Table 4 reports the ratio of the top 0.01 percentile to the top 0.1 percentile of the 250,000 simulated

debt-to-GDP ratios over 1,000 years. For a Pareto distribution with an upper tail index κ, this ratio is 101/κ.
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Table 4: Stochastic Simulation Results: Markov Modulated Chain

The United States
E[at] σ(at) corr(at, at−1) E[ηt] σ(ηt) corr(ηt, ηt−1) corr(at, ηt) 0.01%/0.1%
0.94 0.08 0.82 0.02 0.04 0.00 0.00 2.84
0.94 0.08 0.82 0.02 0.04 0.05 0.15 2.92
0.94 0.08 0.82 0.02 0.04 0.18 0.30 2.94
0.94 0.08 0.82 0.02 0.04 0.39 0.44 2.97
0.94 0.08 0.82 0.02 0.04 0.68 0.58 3.00

The United Kingdom
E[at] σ(at) corr(at, at−1) E[ηt] σ(ηt) corr(ηt, ηt−1) corr(at, ηt) 0.01%/0.1%
0.99 0.06 0.54 0.01 0.03 0.00 -0.00 2.35
0.99 0.06 0.54 0.01 0.03 0.02 0.09 2.34
0.99 0.06 0.54 0.02 0.03 0.09 0.19 2.34
0.99 0.06 0.54 0.02 0.03 0.21 0.28 2.32
0.99 0.06 0.54 0.02 0.03 0.37 0.37 2.33

Note: 0.01%/0.1% represents the ratio of the top 0.01 percentile to the top 0.1 percentile value. For a
Pareto distribution F (α, κ), where α > 0 is the scale parameter and κ > 0 is the shape parameter, this
ratio is calculated as 101/κ.

exceed (1 + rS)/(1 + g), or
ϕ > −rM − rG

1 + g
. (22)

In addition, the debt-to-GDP ratio converges to a finite value if

ϕ > −g − rG
1 + g

. (23)

Proof of Proposition 3. See Section 3.

We emphasize that condition (22) indicates that when the discount rate equals the gov-
ernment bond rate, rM = rG (a conventional assumption in existing literature), a positive ϕ

is necessary to satisfy the IGBC (Bohn, 1998).19 Conversely, if the government bond rate
is lower than the discount rate, it is possible to meet the IGBC even with a negative ϕ.
Similarly, (23) implies that when g > rG, the stabilization of the debt-to-GDP ratio can
achieved even with a negative ϕ. In sum, under rM > g > rG, even seemingly irresponsible

19This condition is often imposed to obtain a stable or unique determinate solution of locally approximated
dynamic stochastic general equilibrium models.
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policies to increase the deficit in response to rising debt can guarantee the IGBC.
In a stochastic environment, we have demonstrated that fluctuations in log(at) ≈ rG,t −

gt−ϕ determine the magnitude of tail risk in debt accumulation, impacting debt sustainabil-
ity. Specifically, when log(at) follows an ARMA(1,1) process, a higher fiscal policy parameter
ϕ decreases the mean of log(at), µa = ρ+(γ− 1)ĝ+ [1− γ(γ + 1)] σ2

g/2+ σ2
π/2−µz −ϕ (see

Proposition 1). The IGBC is satisfied when µa +
(

1+θa
1−ρa

)2
σ2
ϵ

2
< ρ + (γ − 1)

(
ĝ − γ

σ2
g

2

)
(see

Theorem 2). Therefore, the condition for ϕ to satisfy the IGBC is:

Proposition 4 (Bohn’s Condition under Uncertainty).

ϕ > −(rM − rG) +
1

1− ρz

σ2
z

2
+

[
1 + 2γ +

(
1 + θa
1− ρa

)2
]
σ2
g

2
−

[
1−

(
1 + θa
1− ρa

)2
]
σ2
π

2
.

Proof of Proposition 4. See Supplementary Appendix C.5.

7.4 Fiscal Limit

This paper has examined debt sustainability based on the fulfillment of the IGBC. As
Reis (2022) described, however, recent studies such as Mendoza, Tesar, and Zhang (2014),
D’Erasmo, Mendoza, and Zhang (2016), and Mian, Straub, and Sufi (2022) focus on the
feasible maximum value of the right-hand side of the IGBC (8), leading to threshold levels
of the debt-to-GDP, called “fiscal limit”. Here, we briefly discuss how the fiscal limit relates
to our analysis.

Let s̄ denote the maximum value of the primary surplus-to-GDP ratio, and assume s̄ = 0.
Since the discretionary primary deficit-to-GDP ratio η is positive from Assumption 2, s̄ =
0 if the coefficient of the fiscal reaction function ϕ = 0. In this case, at = 1+rG,t

1+gt
. As long as

at satisfies Assumptions 1, 3, the results of our study for the asymptotic properties of the
debt-to-GDP ratio do not change.20 As shown in Bohn (1991) and Mehrotra and Sergeyev
(2021), however, if the primary surplus-to-GDP ratio is bounded above, threshold levels of
the debt-to-GDP ratio exist. In this case, having a finite mean of debt-to-GDP ratio would
not be sufficient to ensure debt sustainability. The unconditional mean of the debt-to-GDP
ratio is no longer an issue, and the probability of reaching a threshold debt level is calculated

20It is possible to consider cases where η is negative or where the fiscal reaction function is nonlinear, but
it will not be possible to show the properties of the asymptotic distribution analytically.
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for assessing debt sustainability in the presence of fiscal limits.21 Even in such an analysis,
our finding of asymmetric expansion of upside risk to the debt-to-GDP ratio over time would
be useful.

8 Concluding Remarks

This study explores debt sustainability under uncertainty arising from the interest rate-
growth differential and fiscal primary surplus within discrete-time stochastic frameworks.
Our theoretical analysis shows that the debt-to-GDP ratio can follow significantly different
paths depending on the stochastic nature of the interest rate-growth differential. Specifically,
we demonstrate that while a stationary asymptotic distribution is present when the growth
rate generally exceeds the government bond rate, the risk of a temporary reversal—such
as that experienced in the United States during the 1980s and 1990s—can lead to a right-
skewed Pareto distribution. This outcome can result in an upper tail so heavy that the mean
debt-to-GDP ratio diverges.

To assess how tail risk influences debt sustainability, we develop a general equilibrium
model that incorporates the liquidity and convenience benefits of holding government debt.
This model provides a microfoundation for the stochastic process of the interest rate-growth
differential discussed earlier, enabling us to evaluate debt sustainability based on the in-
tertemporal government budget constraint (IGBC). We derive a sufficient condition, demon-
strating that the magnitude of tail risk, as measured by the Pareto index, is crucial for
meeting these conditions. Notably, the IGBC may not be satisfied even if the debt-to-GDP
ratio has a stationary asymptotic distribution; however, it is certainly satisfied when the
mean of the ratio converges. Based on this analysis, we propose that a finite mean of the
long-run debt-to-GDP ratio should be the criterion for debt sustainability.

On the empirical side, we introduce a novel method to estimate tail risk and assess debt
sustainability using historical debt-to-GDP data. By transforming the dynamic equation of
the debt-to-GDP ratio with stochastic shocks into a non-linear, non-Gaussian state-space
model, we apply particle filter techniques for maximum likelihood estimation. Our analysis
of 200-300 years of U.S. and U.K. data indicates that both countries’ debts generally meet

21See, Davig, Leeper, and Walker (2010), Bi (2012), Bi, Leeper, and Leith (2013), Matsuoka (2015)
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the finite mean condition for sustainability. However, in the United States, this condition
is only marginally satisfied, with significant tail risk. Moreover, since the Great Recession,
refinancing costs have escalated to levels comparable to those during the World Wars, exac-
erbating recent debt challenges in both countries.

References
Ball, Laurence, Douglas W. Elmendorf, and N. Gregory Mankiw. 1998. “The Deficit Gamble.”

Journal of Money, Credit and Banking 30 (4):699–720.

Barrett, Philip. 2018. “Interest-Growth Differentials and Debt Limits in Advanced
Economies.” IMF Working Papers 2018/082, International Monetary Fund.

Benhabib, Jess, Alberto Bisin, and Shenghao Zhu. 2011. “The Distribution of Wealth and
Fiscal Policy in Economies with Finitely Lived Agents.” Econometrica 79 (1):123–157.

———. 2015. “The Wealth Distribution in Bewley Economies with Capital Income Risk.”
Journal of Economic Theory 159:489–515.

Bi, Huixin. 2012. “Sovereign Default Risk Premia, Fiscal Limits, and Fiscal Policy.” European
Economic Review 56 (3):389–410.

Bi, Huixin, Eric M. Leeper, and Campbell Leith. 2013. “Uncertain Fiscal Consolidations.”
The Economic Journal 123 (566):F31–F63.

Blanchard, Olivier J. 2019. “Public Debt and Low Interest Rates.” American Economic
Review 109 (4):1197–1229.

———. 2023. Fiscal Policy under Low Interest Rates. MIT Press.

Blanchard, Olivier J., Alvaro Leandro, and Jeromin Zettelmeyer. 2021. “Redesigning EU
Fiscal Rules: From Rules to Standards.” Economic Policy 36 (106):195–236.

Bohn, Henning. 1991. “The Sustainability of Budget Deficits with Lump-Sum and with
Income-Based Taxation.” Journal of Money, Credit and Banking 23 (3):580–604.

———. 1998. “The Behavior of US Public Debt and Deficits.” Quarterly Journal of Eco-
nomics 113 (3):949–963.

———. 2007. “Are Stationarity and Cointegration Restrictions Really Necessary for the
Intertemporal Budget Constraint?” Journal of Monetary Economics 54 (7):1837–1847.

Brandt, Andreas. 1986. “The Stochastic Equation Yn+1 = AnYn + Bn with Stationary
Coefficients.” Advances in Applied Probability 18 (1):211–220.

Bullard, James and Steven Russell. 1999. “An Empirically Plausible Model of Low Real Inter-
est Rates and Unbacked Government Debt.” Journal of Monetary Economics 44 (3):477–
508.

Celasun, Oya, Jonathan D. Ostry, and Xavier Debrun. 2006. “Primary Surplus Behavior and
Risks to Fiscal Sustainability in Emerging Market Countries: A “Fan-Chart” Approach.”
IMF Staff Papers 53:401–425.

38



Chalk, Nigel A. 2000. “The Sustainability of Bond-Financed Deficits: An Overlapping Gen-
erations Approach.” Journal of Monetary Economics 45 (2):293–328.

Congressional Budget Office. 2010. “Historical Data on Federal Debt Held by the Public.”
Washington, DC: CBO.

Davig, Troy, Eric M. Leeper, and Todd B. Walker. 2010. ““Unfunded Liabilities” and Un-
certain Fiscal Financing.” Journal of Monetary Economics 57 (5):600–619.

de Saporta, Benoı̂te. 2005. “Tail of the Stationary Solution of the Stochastic Equation
Yn+1 = anYn+bn with Markovian Coefficients.” Stochastic Processes and their Applications
115 (12):1954–1978.

D’Erasmo, Pablo, Enrique G. Mendoza, and Jing Zhang. 2016. “What Is a Sustainable
Public Debt?” In Handbook of Macroeconomics, vol. 2. Elsevier, 2493–2597.

Fisher, Jonas D.M. 2015. “On the Structural Interpretation of the Smets–Wouters “Risk
Premium” Shock.” Journal of Money, Credit and Banking 47 (2-3):511–516.

Forbes, Samuel H. and Stefan Grosskinsky. 2021. “A Study of UK Household Wealth through
Empirical Analysis and A Non-Linear Kesten Process.” PLoS ONE 17.

Gabaix, Xavier. 1999. “Zipf’s Law for Cities: An Explanation.” Quarterly Journal of Eco-
nomics 114 (3):739–767.

Gabaix, Xavier, Jean-Michel Lasry, Pierre-Louis Lions, Benjamin Moll, and Zhaonan Qu.
2016. “The Dynamics of Inequality.” Econometrica 84 (6):2071–2111.

Ghosh, Atish R., Jun I. Kim, Enrique G. Mendoza, Jonathan D. Ostry, and Mahvash S.
Qureshi. 2013. “Fiscal Fatigue, Fiscal Space and Debt Sustainability in Advanced
Economies.” The Economic Journal 123 (566):F4–F30.

Goldie, Charles M. 1991. “Implicit Renewal Theory and Tails of Solutions of Random
Equations.” The Annals of Applied Probability 1 (1):126–166.

Hall, George J. and Thomas J. Sargent. 2011. “Interest Rate Risk and Other Determi-
nants of Post-WWII US Government Debt/GDP Dynamics.” American Economic Journal:
Macroeconomics 3 (3):192–214.

Hamilton, James D. and Marjorie A. Flavin. 1986. “On the Limitations of Government
Borrowing: A Framework for Empirical Testing.” American Economic Review 76 (4):808–
819.

Hitczenko, Paweł and Jacek Wesołowski. 2011. “Renorming Divergent Perpetuities.”
Bernoulli 17 (3):880 – 894.

Jiang, Zhengyang, Hanno Lustig, Stijn Van Nieuwerburgh, and Mindy Z. Xiaolan. 2024.
“The U.S. Public Debt Valuation Puzzle.” Econometrica 92 (4):1309–1347.

Kaas, Leo. 2016. “Public Debt and Total Factor Productivity.” Economic Theory 61 (2):309–
333.

Kesten, Harry. 1973. “Random Difference Equations and Renewal Theory for Products of
Random Matrices.” Acta Math 131:207–248.

39



Klaas, Mike, Mark Briers, Nando De Freitas, Arnaud Doucet, Simon Maskell, and Dustin
Lang. 2006. “Fast Particle Smoothing: If I Had a Million Oarticles.” In Proceedings of the
23rd International Conference on Machine Learning. 481–488.

Kocherlakota, Narayana R. 2023. “Public Debt Bubbles In Heterogeneous Agent Models
With Tail Risk.” International Economic Review 64 (2):491–509.

Krishnamurthy, Arvind and Annette Vissing-Jorgensen. 2012. “The Aggregate Demand for
Treasury Debt.” Journal of Political Economy 120 (2):233–267.

Luttmer, Erzo G. J. 2007. “Selection, Growth, and the Size Distribution of Firms.” The
Quarterly Journal of Economics 122 (3):1103–1144.

———. 2011. “On the Mechanics of Firm Growth.” Review of Economic Studies 78 (3):1042–
1068.

———. 2016. “Further Notes on Micro Heterogeneity and Macro Slow Conver-
gence.” Available Online at: http://users.econ.umn.edu/~{}luttmer/research/
MicroHeterogeneityMacroSlowConvergence.pdf.

Matsuoka, Hideaki. 2015. “Fiscal Limits and Sovereign Default Risk in Japan.” Journal of
the Japanese and International Economies 38:13–30.

Mehrotra, Neil R. and Dmitriy Sergeyev. 2021. “Debt Sustainability in a Low Interest Rate
World.” Journal of Monetary Economics 124:S1–S18.

Mendoza, Enrique G. and Jonathan D. Ostry. 2008. “International Evidence on Fiscal
Solvency: Is Fiscal Policy “Responsible”?” Journal of Monetary Economics 55 (6):1081–
1093.

Mendoza, Enrique G., Linda L. Tesar, and Jing Zhang. 2014. “Saving Europe?: The Un-
pleasant Arithmetic of Fiscal Austerity in Integrated Economies.” Tech. rep., National
Bureau of Economic Research.

Mian, Atif R., Ludwig Straub, and Amir Sufi. 2022. “A Goldilocks Theory of Fiscal Deficits.”
Tech. rep., National Bureau of Economic Research.

Miao, Jianjun and Dongling Su. forthcoming. “Fiscal and Monetary Policy Interactions in
a Model with Low Interest Rates.” American Economic Journal: Macroeconomics .

Nirei, Makoto and Wataru Souma. 2007. “A Two Factor Model of Income Distribution
Dynamics.” Review of Income and Wealth 53 (3):440–459.

Quintos, Carmela E. 1995. “Sustainability of the Deficit Process with Structural Shifts.”
Journal of Business & Economic Statistics 13 (4):409–417.

Reis, Ricardo. 2022. “Debt Revenue and the Sustainability of Public Debt.” Journal of
Economic Perspectives 36 (4):103–124.

Sidrauski, Miguel. 1967. “Rational Choice and Patterns of Growth in a Monetary Economy.”
American Economic Review 57 (2):534–544.

Stachurski, John and Alexis Akira Toda. 2019. “An Impossibility Theorem for Wealth in
Heterogeneous-Agent Models with Limited Heterogeneity.” Journal of Economic Theory
182:1–24.

Thomas, Ryland and Nicholas Dimsdale. 2017. “A Millennium of UK Data.” Bank of England
OBRA Dataset .

40

http://users. econ. umn. edu/~{} luttmer/research/MicroHeterogeneityMacroSlowConvergence. pdf
http://users. econ. umn. edu/~{} luttmer/research/MicroHeterogeneityMacroSlowConvergence. pdf


Toda, Alexis Akira. 2014. “Incomplete Market Dynamics and Cross-Sectional Distributions.”
Journal of Economic Theory 154 (C):310–348.

Trehan, Bharat and Carl E. Walsh. 1988. “Common Trends, the Government’s Budget
Constraint, and Revenue Smoothing.” Journal of Economic Dynamics and Control 12 (2-
3):425–444.

———. 1991. “Testing Intertemporal Budget Constraints: Theory and Applications to US
Federal Budget and Current Account Deficits.” Journal of Money, Credit and Banking
23 (2):206–223.

Woodford, Michael. 1990. “Public Debt as Private Liquidity.” American Economic Review
80 (2):382–388.

Appendices
APPENDIX A Robustness of Estimation Results

Table A.1: Parameter Estimates: Robustness

The United States The United Kingdom
µa -0.059 -0.078 -0.067 -0.078 -0.052 -0.081 -0.014 -0.017 -0.009 -0.017 -0.007 -0.024
ρa 0.780 0.833 0.780 0.807 0.780 0.833 0.473 0.556 0.556 0.556 0.514 0.473
θa 0.156 0.094 0.217 0.217 0.094 -0.028 -0.017 -0.017 -0.017 -0.078 0.044 -0.017
σϵ 0.047 0.047 0.044 0.050 0.050 0.047 0.053 0.049 0.049 0.049 0.053 0.049
η̄ 0.010 0.010 0.010 0.010 0.007 0.015 0.007 0.008 0.006 0.007 0.007 0.012
p1 0.025 0.075 0.050 0.050 0.050 0.050 0.025 0.075 0.050 0.050 0.050 0.050
p2 0.008 0.025 0.025 0.013 0.017 0.017 0.008 0.025 0.025 0.013 0.017 0.017
ξd 0.100 0.100 0.100 0.100 0.050 0.150 0.100 0.100 0.100 0.100 0.050 0.150
ξ̂d 0.200 0.200 0.200 0.200 0.100 0.300 0.200 0.200 0.200 0.200 0.100 0.300
κ 1.966 1.646 2.298 1.569 1.681 2.185 2.891 2.868 1.614 3.261 1.064 5.788
log(L(Θ)) 385.471 386.483 387.833 386.741 377.870 371.508 508.633 508.885 509.523 510.060 496.226 503.793

Note: log(L(Θ)) represents the log likelihood.
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Supplementary Appendix (Not for Publication)

APPENDIX B Proof of Theorems

B.1 Proof of Theorem 1

As discussed in Section 4.2.1, the distribution of bt converges to a Pareto distribution with a
finite mean if µiid+σ2

iid/2 ≤ 0. This clearly indicates that ∆ log (E [bt]) → 0 as t → ∞ under
the condition µiid + σ2

iid/2 ≤ 0. Otherwise, E[bt] diverges to infinity as t → ∞. We examine
the long-run growth rate of E[bt] for the case µiid + σ2

iid/2 > 0 by dividing it into two cases.
First, we consider the case where µiid ≥ 0. In this scenario, as demonstrated by Hitczenko

and Wesołowski (2011) and Forbes and Grosskinsky (2021), the asymptotic distribution of
bt is nonstationary and can be explicitly expressed as:

bt = b0 exp
(
µat+

√
tνZ + o(

√
t)
)
,

where µa = E [log(at)], ν = Var(log(at)), Z ∼ N(0, 1), and o(
√
t)/

√
t → 0 as t → ∞. Thus,

as t → ∞, E[bt] = b0E
[
exp

(
µiidt+

√
tσ2

iidZ
)]

= b0 exp ((µiid + σ2
iid/2)t). This implies

∆ log(E[bt]) = µiid + σ2
iid/2.

Second, we examine the case where −σ2
iid/2 < µiid < 0 (i.e., µiid < 0 and µiid+σ2

iid/2 > 0),
in which the asymptotic distribution of bt is stationary and Pareto-tailed with an infinite
mean. To compute the long-run growth rate of E[bt] for this case, following the approach
proposed by Sornette and Cont (1997), we introduce a new variable b̃t defined as

b̃t = exp(−ζt)bt; ζ > 0. (B.1)

Using b̃t, (6) can be written by

b̃t+1 = ãt+1b̃t + η̃t+1; ãt+1 = exp(−ζ)at+1, η̃t+1 = exp(−ζ(t+ 1))ηt+1. (B.2)

We note that (B.2) is also a Kesten process with 0 < E[ãt] < E[at] as exp(−ζ) ∈ (0, 1).
As E[ãκ̃t ] = E[exp(κ̃ log(ãt))] = E[exp(κ̃(log(at)− ζ))] = exp(κ̃(µiid + κ̃σ2

iid/2− ζ)), the
tail index for the asymptotic distribution of b̃t is given by

κ̃ = −µiid − ζ

σ2
iid/2

.

This implies limt→∞ E[b̃t] < ∞ if ζ ≥ µiid+σ2
iid/2 > 0. In particular, setting ζ = µiid+σ2

iid/2
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implies limt→∞ E[b̃t] < ∞ and E[ãt] = 1. Since E[η̃t] → 0 as t → ∞, ∆ log
(
E[b̃t]

)
→ 0.

Hence, using (B.1) that implies that bt = exp(ζt)b̃t, the mean of bt grows exponentially at
the rate of ζ = µiid + σ2

iid/2.

B.2 Proof of Theorem 2

Let L be defined as L = limt→∞ exp(−ρt)E
[
(Yt/Y0)

−γ Bt+1

]
. Assuming Y0 = 1 without loss

of generality, it follows that:

L = lim
t→∞

exp(−ρt)E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ
Yt+1

Yt

bt+1

]
,

where the debt-to-GDP ratio is given by:

bt+1 = at+1bt + ηt+1 =
t∏

n=0

an+1b0 +
t∑

n=1

(
t∏

m=n

am+1

)
ηn + ηt+1.

Following the proof of Theorem 1, we introduce a new variable b̃t defined as

b̃t = exp(−ζt)bt; ζ ≥ 0.

Using b̃t, (6) can be rewritten as:

b̃t+1 = ãt+1b̃t + η̃t+1,

where ãt = exp(−ζ)at and η̃t = exp(−ζt)ηt. Note that ãt ≤ at as exp(−ζ) ∈ (0, 1]. With
these variables, L can be rewritten as:

L = lim
t→∞

exp(−(ρ− ζ)t) exp(ζ)E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ
Yt+1

Yt

b̃t+1

]
, (B.3)

where

b̃t+1 =
t∏

n=0

ãn+1b0 +
t∑

n=1

(
t∏

m=n

ãm+1

)
η̃n + η̃t+1. (B.4)

As shown above, by setting ζ such that

ζ ≥ max

{
0, µa +

(
1 + θa
1− ρa

)2
σ2
ϵ

2

}
,
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there exists κ > 1 for which

lim
n→+∞

1

n
log

(
E

[(
t−1∏
n=0

ãn+1

)κ])
= 0. (B.5)

This implies that under the condition

µa +

(
1 + θa
1− ρa

)2
σ2
ϵ

2
< ρ+ (γ − 1)

(
ĝ − γ

σ2
g

2

)
,

there exists a ζ < ρ + (γ − 1)
(
ĝ − γσ2

g/2
)

such that ãt = exp(−ζ)at satisfies (B.5). Below,
we consider such ζ.

By substituting (B.4) into (B.3), decompose L into L = L1 + L2 + L3, where

L1 = lim
t→∞

exp(−(ρ− ζ)t)E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ
Yt+1

Yt

t∏
n=0

ãn+1

]
b0 ≥ 0,

L2 = lim
t→∞

exp(−(ρ− ζ)t)E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ
Yt+1

Yt

t∑
k=1

(
t∏

m=k

ãm+1

)
η̃k

]
≥ 0,

L3 = lim
t→∞

exp(−(ρ− ζ)t)E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ
Yt+1

Yt

η̃t+1

]
≥ 0.

We proceed to show that L1 = L2 = L3 = 0 if

µa +

(
1 + θa
1− ρa

)2
σ2
ϵ

2
< ρ+ (γ − 1)

(
ĝ − γ

σ2
g

2

)
.

For later use, we present two lemmas:

Lemma B.1. For any q > 0,

exp(−ρt)

(
E

[(
t−1∏
n=0

(
Yn+1

Yn

)1−γ
)q]) 1

q

= exp(−vt)

where
v = ρ+ (γ − 1)ĝ − γ(γ − 1)

2
σ2
g > 0.
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Proof.

Et

[(
Yt+1

Yt

)1−γ
]
=exp

(
(1− γ)

(
ĝ −

σ2
g

2

))
E [exp((1− γ)σgεg,t+1)]

= exp

(
(1− γ)

(
ĝ −

σ2
g

2

))
exp

(
(1− γ)2σ2

g

2

)
=exp

(
−(γ − 1)

(
ĝ − γ

σ2
g

2

))
.

Lemma B.2. If there exists κ > 1 for which

lim
n→+∞

1

n
log

(
E

[(
t−1∏
n=0

an+1

)κ])
= 0, (B.6)

there exist a p ≥ 1 such that

(
E

[(
t−1∏
n=0

an+1

)p]) 1
p

< t.

Proof. (B.6) implies that for any κ̃ ∈ (0, κ),

lim
n→+∞

1

n
log

E

( t−1∏
n=0

an+1

)κ̃
 < 0 ⇐⇒ lim

n→+∞

1

n
E

( t−1∏
n=0

an+1

)κ̃
 < 1.

Therefore, for large t, a p ∈ [1, κ) exists such that E
[(∏t−1

n=0 an+1

)p]
< t, leading to(

E
[(∏t−1

n=0 an+1

)p]) 1
p
< t

1
p < t.

We start with showing L3 = 0. Given that ηt > 0 is an IID random variable with
E [ηt] < ∞, and Lemma B.1, we have

L3 = lim
t→∞

exp(−(ρ− ζ)t)E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ
Yt+1

Yt

η̃t+1

]

= lim
t→∞

exp(−ρt)
t−1∏
n=0

E

[(
Yn+1

Yn

)1−γ
]
E
[
Yt+1

Yt

]
E [ηt+1]

= lim
t→∞

exp(−vt) exp(g)E [ηt+1] = 0.

45



We proceed to show that L1 = 0. Consider the expression

L1 = lim
t→∞

exp(−(ρ− ζ)t)E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ
Yt+1

Yt

t∏
n=0

ãn+1

]
b0

= lim
t→∞

exp(−(ρ− ζ)t)E

[
t−1∏
n=0

(
ãn+1

(
Yn+1

Yn

)1−γ
)
Et

[(
Yt+1

Yt

)
ãt+1

]]
b0

≤ lim
t→∞

exp(−(ρ− ζ)t)E

[
t−1∏
n=0

(
ãn+1

(
Yn+1

Yn

)1−γ
)]

Sb0,

where S ≡ supEt [(Yt+1/Yt) ãt+1] < ∞ by Assumption 3. Applying Hölder’s inequality, we
obtain

E

[
t−1∏
n=0

(
an+1

(
Yn+1

Yn

)1−γ
)]

≤

(
E

[(
t−1∏
n=0

ãn+1

)p]) 1
p
(
E

[(
t−1∏
n=0

(
Yn+1

Yn

)1−γ
)q]) 1

q

for 1 ≤ p, q ≤ ∞ with 1
p
+ 1

q
= 1. Hence, using Lemma B.1, we obtain

L1 ≤ lim
t→∞

exp(−(v − ζ)t)

(
E

[(
t−1∏
n=0

ãn+1

)p]) 1
p

for any 1 ≤ p. Using Lemma B.2, for large t, there exists a p ∈ (1, κ) such that

(
E

[(
t−1∏
n=0

ãn+1

)p]) 1
p

< t.

Therefore, we have:
L1 ≤ lim

t→∞
exp(−(v − ζ)t)tSb0.

Recall that we have assumed ãt = exp(−ζ)at such that ζ < ρ + (γ − 1)
(
ĝ − γσ2

g/2
)
= v.

Hence, exp(−(v − ζ)t)t = 0 as t → ∞, and therefore L1 ≤ 0.
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We finally show that L2 = 0. Observe that

L2 = lim
t→∞

exp(−(ρ− ζ)t)E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ
Yt+1

Yt

t∑
k=1

(
t∏

m=k

ãm+1

)
η̃k

]

= lim
t→∞

exp(−(ρ− ζ)t)E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ t−1∑
k=1

(
t−1∏
m=k

ãm+1

)
η̃kEt

[(
Yt+1

Yt

)
ãt+1

]]

≤ lim
t→∞

exp(−(ρ− ζ)t)
t−1∑
k=1

E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ
(

t−1∏
m=k

ãm+1

)]
t−1∑
k=1

E[η̃k]S

≤ lim
t→∞

exp(−(ρ− ζ)t)
t−1∑
k=1

E

[
t−1∏
n=0

(
Yn+1

Yn

)1−γ
(

t−1∏
m=k

ãm+1

)]
E[η]

1− exp(−ζ)
S

≤ lim
t→∞

exp(−(v − ζ)t)
t−1∑
k=1

(
E

[(
t−1∏
m=k

ãm+1

)p]) 1
p E[η]
1− exp(−ζ)

S

for any 1 ≤ p. Using Lemma B.2, for large t, there exists a p ∈ (1, κ) such that E
[(∏t−1

n=0 ãn+1

)p]
<

t, resulting in
(
E
[(∏t−1

n=0 ãn+1

)p]) 1
p
< t

1
p and

t−1∑
k=1

(
E

[(
t−1∏
m=k

ãm+1

)p]) 1
p

<
t−1∑
k=1

k
1
p <

t−1∑
k=1

k =
t(t− 1)

2
.

As a result, we have

L2 ≤ lim
t→∞

exp(−(v − ζ)t)
t(t− 1)

2
S

E[η]
1− exp(−ζ)

= 0.

Recall that we have assumed ãt = exp(−ζ)at such that ζ < ρ+ (γ − 1)
(
ĝ − γσ2

g/2
)
= v.

Hence, exp(−(v − ζ)t)t(t− 1) → 0 as t → ∞, and therefore L2 ≤ 0.

APPENDIX C Proofs and Derivations

C.1 Derivation of Equation (4)

We begin with the government budget constraint:

Bt+1 = (1 + rG,t+1)Bt − St+1.
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By adding and subtracting rM,t+1Bt from the right-hand side, we obtain

Bt+1 = (1 + rM,t+1)Bt + (rG,t+1 − rM,t+1)Bt − St+1

Hence, we have

Bt =
1

1 + rM,t+1

[St+1 + (rM,t+1 − rG,t+1)Bt] +
1

1 + rM,t+1

Bt+1

=
1

1 + rM,t+1

[St+1 + (rM,t+1 − rG,t+1)Bt]

+
1

1 + rM,t+1

1

1 + rM,t+2

[St+2 + (rM,t+2 − rG,t+2)Bt+1]

+
1

1 + rM,t+1

1

1 + rM,t+2

Bt+2.

Iterating forward, we obtain

Bt = lim
k→∞


k∑

j=1

(
j∏

i=1

1

1 + rM,t+i

)
[St+j + (rM,t+j − rG,t+j)Bt+j−1]

+

(
k∏

j=1

1

1 + rM,t+j

)
Bt+k

 .

Taking conditional expectations and assuming that limits and expectations are interchangable,
we have

Bt = lim
k→∞


Et

k∑
j=1

(
j∏

i=1

1

1 + rM,t+i

)
[St+j + (rM,t+j − rG,t+j)Bt+j−1]

+Et

(
k∏

j=1

1

1 + rM,t+j

)
Bt+k

 .

C.2 Proof of Lemma 1

We have

lim
n→+∞

1

n
log

(
E

(
n∏

t=0

at

)κ)
= lim

n→+∞

1

n
log

(
E exp

(
κ

n∑
t=0

log(at)

))
. (C.1)
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We obtain the expression for
∑n

t=0 log(at). Using

log(at) = (1− ρa)µa

t∑
s=0

ρsa + εa,t +
t∑

s=1

ρs−1
a (ρa + θa) εa,t−s + ρt+1

a log (a−1)

=µa(1− ρta) + ρt+1
a log (a−1) + εa,t + (ρa + θa)

t−1∑
k=0

ρt−k−1
a εa,k,

we have

n∑
t=0

log(at) =µa

(
n+

1− ρna
1− ρa

)
+

ρa(1− ρna)

1− ρa
log(a−1) +

n∑
t=0

εa,n +
n−1∑
t=0

(ρa + θa)
n−1−t∑
k=0

ρkaεa,t

=µa

(
n+

1− ρna
1− ρa

)
+

ρa(1− ρna)

1− ρa
log(a−1) + εa,n +

n−1∑
t=0

[
1 + (ρa + θa)

n−1−t∑
k=0

ρka

]
εa,t

=µa

(
n+

1− ρna
1− ρa

)
+

ρa(1− ρna)

1− ρa
log(a−1) + εa,n +

n−1∑
t=0

[
1 + θa − (ρa + θa)ρ

n−t
a

1− ρa

]
εa,t.

Substituting the above expression into (C.1) yields

lim
n→+∞

1

n
log

(
E

(
n∏

t=0

at

)κ)

= lim
n→+∞

1

n
log

(
E exp

(
κ

n∑
t=0

log(at)

))

= lim
n→+∞

1

n
logE exp

(
κµa

(
n+

1− ρna
1− ρa

)
+ κ

n−1∑
t=0

(1 + θa − (θa + ρa)ρ
n−t
a )

1− ρa
εa,t

)

= log(exp(κµa)) + lim
n→+∞

1

n

n−1∑
t=0

logE exp

(
(1 + θa − (θa + ρa)ρ

n−t
a )

1− ρa
κεa,t

)
= log

(
E
[
exp(κµa) exp

(
1 + θa
1− ρa

κεa,t

)])
= log

(
E
[
exp

(
κ

(
1 + θa
1− ρa

εa,t + µa

))])
,

where the fourth line is obtained since εa,t is independent.
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C.3 Proofs of Lemma 2 and Proposition 1

Recall that Pt and Yt follow

log (1 + πt+1) ≡ log

(
Pt+1

Pt

)
= π − σ2

π

2
+ σπεπ,t+1.

log (1 + gt+1) ≡ log

(
Yt+1

Yt

)
= ĝ −

σ2
g

2
+ σgεg,t+1.

The optimization problem of the representative household is given by

max
{Ct+k,B

n
t+k,At+k}

Et

[
∞∑
k=0

exp(−ρ)k
(
C1−γ

t+k − 1

1− γ
+ ν

(
Bn

t+k

Pt+k

))]
; with ν (Bn

t /Pt) = ϱtBt/Pt,

subject to

Ct +
Bn

t

Pt

+ At ≤ Yt − Tt +
(
1 + rnG,t−1

) Bn
t−1

Pt

+ (1 + rF,t−1)At−1.

The first order necessary conditions are given by

Ct : exp(−ρt)C−γ
t − λt = 0,

At :− λt + (1 + rF,t)Etλt+1 = 0,

Bt : exp(−ρt)ϱt − λt +
(
1 + rnG,t

)
Et

[
λt+1

Pt

Pt+1

]
= 0.

Euler equation for risk-free asset At is given by

exp(−ρ) (1 + rF,t) =

[
Et

(
Ct+1

Ct

)−γ
]−1

.

In equilibrium, the growth rate of consumption is

Ct+1

Ct

=
Yt+1

Yt

= exp

(
ĝ −

σ2
g

2
+ σgεg,t+1

)
= exp

(
ĝ −

σ2
g

2

)
exp(σgεg,t+1).

Thus, we obtain

Et

[(
Yt+1

Yt

)−γ
]
= exp

(
−γ

(
ĝ −

σ2
g

2

))
exp

(
γ2σ2

g

2

)
= exp

(
−γ

(
ĝ − (1 + γ)

σ2
g

2

))
.
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Hence, for all t, we have rF,t = rF such that

1 + rF = exp

(
ρ+ γ

(
ĝ − (γ + 1)

σ2
g

2

))
.

Taking log

rF ≈ log (1 + rF ) = ρ+ γ

(
ĝ − (γ + 1)

σ2
g

2

)
.

Euler equation for government bond Bn
t is given by

exp(−ρ)
(
1 + rnG,t

)
Et

[
C−γ

t+1

Pt

Pt+1

]
= C−γ

t − C̄−γ
t (1− exp(−zt))

In equilibrium, Ct = C̄t and Ct+1/Ct = Yt+1/Yt,

1 + rnG,t =exp(−zt) exp(ρ)

(
Et

[(
Yt+1

Yt

)−γ
Pt

Pt+1

])−1

=exp(−zt) exp(ρ)

[
Et

(
Yt+1

Yt

)−γ
]−1 [

Et

(
Pt+1

Pt

)−1
]−1

=exp(−zt) (1 + rF )

[
Et exp

(
−π +

σ2
π

2
− σπεπ,t+1

)]−1

=(1 + rF ) exp
(
π − σ2

π − zt
)
.

Thus, the real interest rate of government bond is given by

1 + rG,t+1 =(1 + rnG,t)

(
Pt

Pt+1

)
=(1 + rnG,t) exp

(
−
(
π − σ2

π

2
+ σπεπ,t+1

))
=(1 + rF ) exp

(
−zt −

σ2
π

2
− σπεπ,t+1

)
.

• The derivation of at+1. Recall that

at+1 =
1 + rG,t+1

1 + gt+1

=⇒ log(at+1) = log(1 + rG,t+1)− log (1 + gt+1) .

Hence,
log(at+1) = m0 − zt − σπεπ,t+1 − σgεg,t+1,

where m0 ≡ log (1 + rF ) − ĝ + (σ2
g − σ2

π)/2. Let us define εgπ,t ≡ σπεπ,t + σgεg,t. As
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εgπ,t ∼ N(0, σ2
g + σ2

π), we can write εgπ,t =
√

σ2
g + σ2

πεt where εt ∼ N(0, 1). Using this,
we obtain

log(at+1) = m0 − zt −
√
σ2
g + σ2

πεt+1,

and
ρz log(at) = ρzm0 − ρzzt−1 − ρz

√
σ2
g + σ2

πεt.

Taking difference, we obtain

log(at+1)−ρz log(at)

=(1− ρz)µa −
√

σ2
g + σ2

πεt+1 − σzεz,t + ρz

√
σ2
g + σ2

πεt.

where µa = m0 − µz. As εz,t ∼ N(0, 1) and εt ∼ N(0, 1), −σzεz,t + ρz
√

σ2
g + σ2

πεt ∼
N(0, σ2

z + ρ2z(σ
2
g + σ2

π)). As a result, log(at) follows an ARMA(1,1) process:

log(at+1) = (1− ρz)µa + ρz log(at) + εa,t+1 + θaεa,t,

with µa = ρ+(γ−1)ĝ+[1− γ(γ + 1)] σ2
g/2−σ2

π/2−µz, θa =
√

σ2
z + ρ2z(σ

2
g + σ2

π)/
√
σ2
g + σ2

π

and εa,t ∼ N(0, σ2
g + σ2

π). Assumption 4 ensures that µa < 0.

• The stochastic discount factor is given by

Mt,t+1 =exp(−ρ)

(
Yt+1

Yt

)−γ

=exp

(
−ρ− γ

(
ĝ −

σ2
g

2
+ σgεg,t+1

))
=

1

exp
(
ρ+ γ

(
ĝ − σ2

g

2
+ σgεg,t+1

)) .
Hence,

E [Mt,t+1]
−1 = 1 + rF .

C.4 Proof of Proposition 2

Using Lemma 2 and (17),

log(1 + rM) = log(1 + rF ) = ρ+ γĝ − γ(γ + 1)

2
σ2
g .
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As log(1 + g) = ĝ − σ2
g ,

log(1 + rF )− log(1 + g) = ρ+ (γ − 1)ĝ +

(
1− γ(γ + 1)

2

)
σ2
g > 0

by Assumption 5. Finally, log(1 + rG) is given by

log(1 + rG) = ρ+ γĝ − γ(γ + 1)

2
σ2
g − σ2

π − µz −
σ2
z/2

1− ρz
.

So,

log(1 + g)− log(1 + rG) =−
[
ρ+ (γ − 1)ĝ +

(
1− γ(γ + 1)

2

)
σ2
g

]
+ µz + σ2

π +
σ2
z/2

1− ρz

>µz −
[
ρ+ (γ − 1)ĝ +

(
1− γ(γ + 1)

2

)
σ2
g

]
> 0

by Assumption 4.

C.5 Proof of Proposition 4

The condition for debt sustainability is given by

µa +

(
1 + θa
1− ρa

)2
σ2
ϵ

2
< ρ+ (γ − 1)

(
ĝ − γ

σ2
g

2

)
, (C.2)

where

µa = ρ+ (γ − 1)ĝ + [1− γ(γ + 1)]
σ2
g

2
− σ2

π

2
− µz − ϕ,

σ2
ϵ = σ2

g + σ2
π.

Thus, (C.2) is given by(
1 + θa
1− ρa

)2
σ2
ϵ

2
+

σ2
g

2
− σ2

π

2
− µz − ϕ < [−(γ − 1)γ + γ(γ + 1)]

σ2
g

2
,

and hence

ϕ > −µz +

[
1 + 2γ +

(
1 + θa
1− ρa

)2
]
σ2
g

2
−

[
1−

(
1 + θa
1− ρa

)2
]
σ2
π

2
.

As
µz = log(1 + rM)− log(1 + rG)−

1

1− ρz

σ2
z

2
≈ (rM − rg)−

1

1− ρz

σ2
z

2
,
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we obtain

ϕ > −(rM − rG) +
1

1− ρz

σ2
z

2
+

[
1 + 2γ +

(
1 + θa
1− ρa

)2
]
σ2
g

2
−

[
1−

(
1 + θa
1− ρa

)2
]
σ2
π

2
.
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APPENDIX D Continuous-Time Framework
In Section 5, we established that discrete-time stochastic debt models with fiscal deficits
lead to an asymptotically power-law-distributed debt-to-GDP ratio. Extending our analysis,
this section generalizes these stochastic debt models, following the approach in Mehrotra
and Sergeyev (2021), to demonstrate that this phenomenon also occurs in continuous-time
stochastic debt models.

We consider a representative household with preferences given by:

E
∫ ∞

0

e−ρt

[
C(t)1−γ − 1

1− γ
+ C̄(t)−γανB(t)

]
dt,

where C(t) denotes the household’s consumption, C̄(t) the average consumption, and B(t)

the household’s bond holdings. The budget constraint is:

dH(t) = [rF (t)A(t) + rG(t)B(t)− C(t)− T (t)] dt+ dy(t),

with H(t) representing household wealth, A(t) the holdings of risk-free assets, T (t) lump-sum
taxes, and y(t) an endowment following a stochastic process:

dy(t) =

(
g −

σ2
g

2

)
y(t)dt+ σyy(t)dW (t); g ≥ 0, σg > 0. (D.1)

Here, W (t) is a Wiener process with E[dW (t)] = 0 and E[dW (t)2] = dt. Denoting aggre-
gate income or GDP by Y (t), the endowment process (D.1) suggests that GDP experiences
random growth with drift g − σ2

g/2:

dY (t)

Y (t)
=

(
ĝ −

σ2
g

2

)
dt+ σydW (t).

The Euler equations are:
rF (t)− ρ = γg,

and
rG(t)− ρ+ αν = γg.

The government determines the net lump-sum transfer following the fiscal rule:

S(t) ≡ T (t)−G(t)

G(t) = γgY (t)
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Thus, the fiscal primary surplus-to-GDP ratio s(t) = S(t)/Y (t) is given by22

s(t) = ϕb(t)− γg

The time evolution equation for the real outstanding government debt is given by

dB(t)

dt
= rG(t)B(t)− S(t).

Using Itô’s lemma, the dynamic equation for the debt-to-GDP ratio (b(t) = B(t)/Y (t)) is
given by

db(t) =

[
(rG(t)− g − ϕ) b(t) +

(
γg +

σ2
y

2

)]
dt− σyb(t)dW (t)

The equilibrium conditions C(t) = Y (t) and A(t) = 0 imply the equilibrium interest rate
for government bonds

rG(t) = ρ+ γg − αν .

Hence, the dynamic equation for the equilibrium debt-to-GDP ratio is given by

db(t) =

[
{ρ− αν + (γ − 1) g − ϕ} b(t) +

(
γg +

σ2
y

2

)]
dt− σyb(t)dW (t). (D.2)

Note that under ϕ ≥ 0, Assumption 4 implies ρ − αν + (γ − 1) g ≤ 0. Applying Itô’s
lemma, we have

d log(b(t)) =

[
ρ− αν + (γ − 1) g − ϕ+

(
γg +

σ2
y

2

)
1

b(t)

]
dt− σydW (t).

Lemma D.1 (Characteristics of the asymptotic debt-to-GDP ratio in continuous-time
model). The asymptotic distribution of the debt-to-GDP ratio induced by (D.2) depends
on (γg, τy):

• If 2γg + σ2
y = 0, b(t) follows the geometric Brownian motion:

db(t) = µbb(t)dt+ σbb(t)dW (t);

µb = ρ− αν + (γ − 1) g − ϕ

σb = −σy

In this case, without some “frictions” (e.g., reflecting walls), there is no stationary
distribution for the debt-to-GDP ratio.

22Mehrotra and Sergeyev (2021) assume the deficit-to-GDP-ratio drift γg = 0.
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• If 2γg + σ2
y ̸= 0, b(t) follows the (continuous-time version of) Kesten process:

db(t) = θb(µb − b(t))dt+ σbb(t)dW (t)

θb = −ρ+ αν − (γ − 1) g + ϕ

µb =
−2γg − σ2

y

2 (ρ− αν + (γ − 1) g − ϕ)

σb = −σy

Following Luttmer (2016), the stationary distribution is

f(b) ∝ 1

b2+αeβ/b
, α =

θb
σ2
b/2

, β = αµb

In this case, the right tail of the stationary distribution is

κ = 1 +
θb

σ2
b/2

> 0

APPENDIX E Additional Results in Section 4
In this appendix section, we consider a bounded random variable for at to demonstrate that
even if log(at) is bounded, the debt-to-GDP ratio exhibits a power-law stationary distribution
as long as sup(at) > 1 and E [log(at)] < 0. For instance, consider log(at) independently
drawn from a uniform distribution with mean µiid and support (µiid − σiid, µiid + σiid), i.e.,
log(at) ∼ U(µiid − σiid, µiid + σiid). This is a specific case of (11) with ρa = 0, θa = 0, and
εa,t ∼ U(m,M) where m ≡ µiid − σiid and M ≡ µiid + σiid. In this scenario, the tail index
condition, E [aκt ] = 1, is defined as:

κ =
1

2σiid

[exp(κM)− exp(κm)] .

Therefore, the asymptotic debt-to-GDP ratio is determined by parameters µiid and σiid. As
illustrated in Figure E.1, the asymptotic distribution can be categorized into four distinct
types:

(I) Explosive debt-to-GDP ratio (Region (I) in Figure E.1): The ratio grows indefinitely
without a stationary distribution

(II) Fat-tailed stationary distribution with an infinite mean (Region (II) in Figure 2): A
unique stationary distribution exists with a power-law upper tail and an infinite mean.
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Figure E.1: Characteristics of the asymptotic distribution of bt: IID

(III) Fat-tailed stationary distribution with a finite mean (Region (III) in Figure 2): A
unique stationary distribution exists with a power-law upper tail and a finite mean.

(IV) Light-tailed stationary distribution (Region (IV) in Figure 2): A unique stationary
distribution exists with light tails.

The theorem concludes that if µiid = E [log(at)] ≥ 0, the ratio falls into Region (I); if
µiid < 0 and µiid + σiid = sup(log(at)) < 0, it falls into Region (IV); Otherwise, it falls into
Region (II) when 0 < κ < 1 and (III) when κ > 1.

Expanding our scope, we consider log(at) following the stationary ARMA(1,1) process
(11). Specifically, assume εa,t ∼ U(m,M) with m ≡ µiid − σiid and M ≡ µiid + σiid, ensuring
that log(at) remains bounded (see Lemma E.1). In this scenario, applying the proposition
by Benhabib, Bisin, and Zhu (2011, Proposition 4) to our equation yields the Pareto tail
condition:

κ
1 + θa
1− ρa

=
1

2σiid

[
exp

(
κ
1 + θa
1− ρa

M

)
− exp

(
κ
1 + θa
1− ρa

m

)]
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Figure E.2: Characteristics of the asymptotic distribution of bt: ARMA(1,1) process

Note: Each panel illustrates the characteristics of the asymptotic distribution of bt when log(at) follows an
ARMA(1,1) process (11).

The asymptotic behavior of the debt-to-GDP ratio is influenced not only by parameters
µiid and σiid but also by ρa and θa. In Figure E.2, we depict the characteristics of the
asymptotic distribution of the debt-to-GDP ratio when log(at) follows a ARMA(1,1) process.
It is observed that as ρa or θa increases, the area of Region (II) widens while that of Region
(III) narrows. In essence, greater persistence in the log(at) process leads to a thicker tail in
the asymptotic debt-to-GDP ratio, implying that more persistent fluctuations in the interest
rate-growth differential heighten the risk of extreme debt accumulation.

Lemma E.1. at is bounded if εa,t is bounded.

Proof of Lemma E.1. at is clearly bounded below since log(at) and thus at > 0. Hence, it is
sufficient to show there exists an upper bound A > 0 such that at < Ā, i.e., log(at) < log

(
Ā
)
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for all t. From (11), we obtain that

log(at) =(1− ρα)µa

t∑
s=0

ρsa +
t∑

s=0

ρsa(εa,t−s + θaεa,t−s−1) + ρt+1
a log(a−1)

=(1− ρα)µa

t∑
s=0

ρsa + εa,t +
t∑

s=1

ρs−1
a (ρa + θa)εa,t−s + ρt+1

a log(a−1)

Since µa > 0 and ρa ∈ (0, 1), we have

(1− ρα)µa

t∑
s=0

ρsa ≤ (1− ρα)µa

∞∑
s=0

ρsa = µa,

and
ρta log(a−1) ≤ max{0, log(a−1)},

for all t ≥ 0. Furthermore, since εa,t is bounded, let ε̄ = sup(εa,t) < ∞ and ε = inf(εa,t) >

−∞. This clearly implies that

ϱ̄ ≡ sup {(θa + ρa)ε̄, (θa + ρa)ε} < ∞.

Hence,

log(at) ≤µa + ε̄+
t∑

s=0

ρsaϱ̄+max{0, log(a−1)}

= µa + ε̄+
ϱ̄

1− ρa
+max{0, log(a−1)} < ∞.

Therefore, let log
(
Ā
)
= µa + ε̄+ ϱ̄

1−ρa
+max{0, log(a−1)}, at < Ā for all t.

Since log at is bounded, therefore at is bounded.

60



APPENDIX F Detailed Descriptions of Historical Data
In this section, employing historical data from the United States and the United Kingdom,
we overview the historical debt-to-GDP ratio in both countries.

The United States For the United States, we employ a time series that traces the ratio
of federal debt held by the public to GDP from 1790 to 2022. To achieve this, we ref-
erence the dataset ‘Federal Debt Held by the Public, 1790 to 2000 (Percentage of Gross
Domestic Product)’ as documented in Congressional Budget Office (2010b) (refer also to
Congressional Budget Office, 2010a, Figure 1), and have extended the dataset to include
data through 2022.23 Specifically, for the period post-2000, we calculate the ratio by divid-
ing the federal debt held by the public, sourced from the Debt to the Penny dataset provided
by the U.S. Department of the Treasury, by nominal GDP.24

Figure 5a shows the public debt-to-GDP ratio from 1790 to 2022. After the Treasury
Department was established in 1789, state debts from the American Revolution were feder-
alized in 1790, resulting in a debt-to-GDP ratio of about 50 percent. Despite a spike due
to the War of 1812, fiscal management eliminated the national debt by 1835. The ratio
remained low until the Civil War in 1861. It rose significantly during the Civil War, World
War I (WWI), the Great Depression, and World War II (WWII), with reductions in other
periods. Post-WWII, the ratio declined until the 1970s, then increased sharply in the 1980s
and early 1990s. It decreased in the late 1990s and 2000s but surged with the 2008 financial
crisis and Great Recession, continuing to rise in the 2010s, reaching post-WWII levels during
the COVID-19 pandemic in 2020.

The United Kingdom For the U.K.’s historical data, we rely on the ‘A Millennium
of Macroeconomic Data’ dataset provided by the Bank of England.25 This comprehensive
dataset includes consolidated records of the U.K.’s national debt since 1690 and nominal
GDP estimates for U.K. territories, dating back to 1700. Although the historical dataset is

23Congressional Budget Office (2010b) compiles these historical statistics by using federal debt data from
the Department of the Treasury and the Board of Governors of the Federal Reserve System, in conjunction
with GDP estimates from the Bureau of the Census, Berry (1978), Gallman (2000) and Balke and Gordon
(1989).

24The Debt to the Penny dataset can be accessed at https://fiscaldata.treasury.gov/datasets/
debt-to-the-penny/debt-to-the-penny. The nominal GDP data is sourced from National Income and
Product Accounts (NIPAs), produced by the Bureau of Economic Analysis (BEA): https://apps.bea.gov/
histdata/fileStructDisplay.cfm?HMI=7&DY=2023&DQ=Q3&DV=Third&dNRD=December-22-2023.

25The dataset is available at https://www.bankofengland.co.uk/statistics/research-datasets.
This dataset, compiled by the Bank of England, contains various macroeconomic and financial data dating
back to 1086.
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updated through 2016 as per Thomas and Dimsdale (2017), we have extended the debt and
GDP data up to 2022, following their approach.

Specifically, from the Bank of England’s historical dataset, we use ‘A23-Bank of England
Balance Sheet’ and ‘A29-The National Debt’ to compile a series representing the value of
debt held by the public. This value is computed by subtracting the total debt held by
public sector banks from the overall gross debt value for 1700-1974, as detailed below. For
1975-2022, we use Public Sector Net Debt (PSND) from the Office for National Statistics
(ONS).26

The “National Debt” dataset comprises multiple measures of the total par value of the
U.K. national debt dating back to 1700. From 1700 to 1835, the debt value includes the
United Kingdom’s total funded and unfunded debt, along with the estimated capital value
of terminable annuities. From 1836 to 1899, the debt value comprises the aggregate of the
U.K.’s total funded and unfunded debt and the capital value of terminable annuities.27 For
the period from 1900 to 1949, the Gross National Liabilities value as reported in Pember
and Boyle (1950) was used to represent the debt amount. For the years 1950 to 1974, the
national debt figure documented in Pember and Boyle (1976) was employed. Additionally,
this database provides the estimated value of the outstanding debt at the end of each calendar
year.28

Regarding the ”Bank of England Balance Sheet,” this dataset chronicles the institution’s
extensive balance sheet history, including the government debt within the assets section. For
the period 1700-1974 covered here, the balance sheet dates annually as follows: 1700-1764 -
balance sheet at the end of August; 1766-1844 - balance sheet at the end of February; 1845-
1857 - bank report published on the final Saturday in February; 1858-1966 - bank report

26The dataset is available at https://www.ons.gov.uk/economy/governmentpublicsectorandtaxes/
publicsectorfinance/articles/widermeasuresofpublicsectornetdebt/december2018. It contains
time series data on public sector finances and key fiscal aggregates. In this analysis, we use Public sec-
tor net debt excluding public sector banks (PSND ex, ONS code: HF6W). PSND ex includes bonds (debt
securities), loans, deposits, and currency, and liquid financial assets. The dataset records first quarter debt
from 1975 to 1992, and from 1993 onwards, debt is recorded on a monthly basis. Therefore, from 1993
onwards, the debt at the end of December is used to correspond to the calendar year.

27Details about funded debt values from 1700 to 1899 can be found in Pember and Boyle (1950), while
those on unfunded debt are provided in Mitchell (1988). Additionally, data regarding payment amounts and
discount rates were employed to estimate the capital value of terminable annuities.

28For example, the outstanding debt at the end of the calendar year 1964, when the financial year ends
on March 31, is calculated as follows:

B̂1964 =
1

4
×B1963/64 +

3

4
×B1964/65,

where B̂1964 denotes the outstanding debt at the end of the calendar year 1964, B1963/64 denotes the out-
standing debt at the end of the financial year 1963/64, and B1964/65 denotes the outstanding debt at the
end of the financial year 1964/65.
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released on the last Wednesday in February; 1966-1974 - bank reports issued on the third
Wednesday in February. Due to the unavailability of balance sheets for 1765 and 1774, the
data for these years represent the average of the figures from adjacent years.29

For GDP data, we integrate ’A9-Nominal GDP (A)’ from the Bank of England’s historical
dataset with nominal GDP data sourced from the ONS. The U.K. nominal GDP represents
the nominal gross output of Great Britain (England, Scotland, and Wales) from 1700-1800,
expands to include Ireland from 1801-1920, and encompasses Great Britain plus Northern
Ireland post-1920. From 1700 to 1800, the nominal GDP is calculated the sum of the GDP
factor cost, documented by Broadberry, Campbell, Klein, Overton, and Van Leeuwen (2015),
and the value of indirect taxes, based on tax revenue data recorded in fiscal sheet. The
market value of nominal GDP from 1801 to 1920 was calculated by calculating the value
of the factor cost of GDP and indirect taxes as measured by the Compromise/Balanced
measure and recording the sum of the two as the market value. The market value of nominal
GDP from 1921 to 1947 was calculated using data from Sefton and Weale (1995). After
1948, we use Gross Domestic Product at market prices sourced from the ONS.30

Figure 5b illustrates the debt-to-GDP ratio of the United Kingdom from 1700 to 2022.
Over the last 320 years, the UK experienced three significant periods of increase in this
ratio. The first was during the 18th century, marked by numerous large-scale European wars,
culminating in a debt-to-GDP ratio of approximately 200 percent following the Napoleonic
Wars. The subsequent period, spanning the 19th and early 20th centuries, saw efforts to
reduce the debt. However, the two World Wars and the severe recessions of the interwar years
drove the ratio above 250 percent immediately after WWII. Thereafter, the ratio consistently
decreased until around 1990, dropping well below 50 percent. The trend reversed with the

29We use the same methodology to calculate the amount of government debt held by the Bank of England
at the end of the calendar year. For example, the amount of government debt held by the Bank of England
at the end of calendar year 1964 (the balance sheet date is the third Wednesday in February) is calculated
as follows:

g1964 =
1

6
×G1964 +

5

6
×G1965

where g1964 denotes the amount of government debt held by the Bank of England at the end of calendar
year 1964, G1964 denotes the amount of government debt held by the Bank of England on the balance sheet
date in 1964, and G1965 denotes the amount of government debt held by the Bank of England on the balance
sheet date in 1965. The value of the public net debt excluding public sector banks for 1964 can be calculated
as follows:

PB1964 = B̂1964 − g1964

where B̂1964 denotes the outstanding debt at the end of the calendar year 1964 and g1964 denotes the amount
of government debt held by the Bank of England.

30The dataset is available at https://www.ons.gov.uk/economy/grossdomesticproductgdp/
timeseries/ybha/pn2.
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Early 1990s recession, and further escalated due to the Great Recession and the COVID-19
Recession, bringing the current ratio to approximately 100 percent.
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