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Abstract

We propose a correlation utility (CU) representation of correlation prefer-

ence without requiring transitivity nor completeness. Under a correlation in-

dependence axiom, CU specializes to correlation expected utility (CEU) which

is not compatible with the extended Allais paradox. This motivates our cor-

relation betweenness and correlation projective independence axioms, which

characterize correlation weighted utility (CWU). In the absence of correla-

tion sensitivity, CEU reduces to EU while CWU reduces to skew-symmetric

bilinear utility which reduces further to weighted utility under transitivity. Fi-

nally, we characterize correlation probabilistic sophistication, subsuming two

major directions of generalization of SEU: maintaining Savage’s Postulate 2

without transitivity, and vice versa.
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“It seems that the essential point is, and this is of general

bearing, that, if conceptually we imagine a choice being made

between two alternatives, we cannot exclude any probability

distribution over those two choices as a possible alternative. The

precise shape of a formulation of rationality which takes the last

point into account or the consequences of such a reformulation

on the theory of choice in general or the theory of social choice

in particular cannot be foreseen; ...” – Arrow (1951, pp. 20)

1 Introduction

The Condorcet (1785) paradox has inspired a voluminous follow-up literature in

which intransitive choice has a central role. It has been most prominent in the

study of social choice since Arrow (1951) who seeks to address the question of how

to aggregate individual preferences into a social decision. He starts by outlining the

fundamental conditions that a rational collective decision-making process should

satisfy, including transitivity of individual preferences. However, he also acknowl-

edges that “we could as well build up our economic theory on other assumptions

as to the structure of choice functions if the fact seemed to call for it”. Indeed,

the recent social choice literature appears to be gravitating towards questioning the

desirability of transitivity in a preference aggregation setting. (See, e.g., Brandl

et al. (2016); Brandl and Brandt (2020).)

The Condorcet paradox is considered “the root cause for central impossibil-

ity theorems in social choice theory such as Arrow’s Theorem or the Gibbard-

Satterthwaite Theorem” (Brandt, 2017). At the same time, there does not appear

to be works in the literature on mechanism design without requiring transitivity

for mechanism participants. By contrast, in game theory, participants’ identities

and associated transitive preferences, often assumed to be EU, are modeled explic-

itly. Aumann’s (1974) correlated equilibrium enriches players with the ability to

perceive strategy recommendations potentially correlated with each other through

opponents’ strategies. Subsequently, Aumann (1987) recast correlation equilibrium

as EU maximization in line with Savage (1954).

Motivated by the Allais (1953) paradox which inspires much of the subsequent
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development of transitive NEU models, Fishburn (1982) proposes the nontransitive

model of skew-symmetric bilinear utility (SSB) which is determined by a skew-

symmetric bilinear1 kernel ψp¨, ¨q on pairs of lotteries over outcomes X: the de-

cision maker weakly prefers one lottery p P ∆X over another q if ψpp, qq ě 0;

when the set of outcomes is finite, ψpp, qq can be written as
ř

x,yPX ppxqqpyqψpx, yq

where x, y stand for the corresponding degenerate lotteries. The SSB utility has

been applied extensively to social choice theory where individual and social prefer-

ences are not necessarily transitive. In particular, the maximal lottery (Fishburn,

1984), a probabilistic social choice function (SCF), is guaranteed to exist for an

SSB utility by applying the minimax theorem due to von Neumann (1928). More-

over, maximal lottery is the unique (probabilistic) SCF satisfying two influential

axioms: population-consistency and composition-consistency (Brandl et al., 2016).2

In another line of study, Brandl and Brandt (2020) restore Harsanyi’s utilitarian

aggregation under Arrovian axioms within a specific SSB preference subdomain,

the pairwise comparison preference (PC), where the SSB kernel ψpx, yq only takes

one of the three values t0, 1,´1u. Intuitively, p is preferred to q for PC if, when a

pair of alternatives px, yq is randomly selected according to p and q respectively, p

generates the winner with higher probability in expectation.3

The SSB utility resembles the payoff in a zero-sum game where a row player

chooses a mixed strategy p over actions x P X and the opposite column player

chooses q. Then, one might contemplate Aumann’s idea of correlated equilibrium in

this setting by replacing ppxqqpyq with a joint density πpx, yq, where π P ∆pXˆXq.

Two papers attempt to extend SSB utility to pairs of correlated lotteries. Fishburn

(1989) accomplishes this in a Savagean setting leading to a skew-symmetric additive

utility (SSA), where the incomprehensive consideration on joint densities is also

reflected when he describes the relation between SSB and his newly proposed SSA as

“both parent and child”. Recently, the problem is revisited in the risk setting when

1Skew-symmetry means ψpp, qq “ ´ψpq, pq; bilinearity requires ψpαp ` βq, rq “ αψpp, rq `

βψpq, rq and ψpr, αp` βqq “ αψpr, pq ` βψpr, qq.
2Population-consistency regards consistency with respect to a variable electorate, while

composition-consistency requires composition-consistency (Brandl et al., 2016). See their paper
for the formal definitions and a discussion on the development of these axioms.

3In individual choice, the validity of transitivity assumption has also been in doubt given
similar problems such as the intransitive dice (Gardner, 1970) and its original and more formal
form as a statistical paradox (Steinhaus and Trybula, 1959); the problem has been followed by
literature in applied statistics on voting paradox, (e.g., Usiskin (1964), Blyth (1972)), which is
closely connected to the idea of PC.
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Lanzani (2022) axiomatizes regret theory (Bell, 1982; Loomes and Sugden, 1982)

and salience theory (Bordalo et al., 2012) in the form of comparing marginals of joint

densities π taken from ∆pX ˆXq, as opposed to lottery pairs pp, qq P ∆X ˆ ∆X.4

From the emerging literature on nontransitive preferences, we seek to distill

and develop a theory of choice towards what Arrow suggests, in the epigraph, as

“cannot be foreseen”. To this end, we characterize a general utility representation

for binary choice through a form of continuity without requiring transitivity nor

completeness. We begin by incorporating correlation sensitivity to Samuelson’s

four-lottery version of the independence axiom. This yields a characterization of

the correlation expected utility (CEU) in which utility difference ϕpx, yq is defined

on pairs of outcomes and then taken expectation over joint density π: the decision

maker (weakly) prefers the row marginal lottery to the column lottery under π if

Eπϕ is nonnegative. Notably, CEU encompasses the nontransitive models of regret

theory, salience theory and Lanzani’s correlation sensitive representation, which

corresponds to CEU under skew-symmetry of the bivariate utility function. Without

skew-symmetry, CEU includes additionally an extension of the expectations-based

reference dependent (ERD) model to setting of correlation preference.

1/3 1/3 1/3

A l h m
B h m l

Table 1: SML with 3 outcomes l ă m ă h.

As example of correlation preference, consider the following binary choice prob-

lem (Loewenfeld and Zheng, 2023) bearing some resemblance to the Condorcet

paradox. Subjects are asked to choose between a pair of same-marginal lotteries

(SML) A and B, each with three equally likely outcomes (Table 1). Loewenfeld and

Zheng (2023) find a significant majority of subjects exhibit preference for A over

B, even after a premium is added to B so that it first-order stochastically domi-

nates A. Such pattern can be accommodated in a simple CEU model, but not in

models ignoring correlation between lotteries.5 In the absence of correlation sensi-

4We will revisit this issue in Section 6 where we axiomatize a correlation counterpart of prob-
abilistic sophistication.

5As discussed in Loomes and Sugden (1987) and Starmer (2000), imagine a third alternative
C paying pm, l, hq for the three states: if A is strictly preferred to B, then it would be reasonable
for B to be strictly preferred to C, and C to A, giving rise to a preference cycle. Note that the
preference for A over B is opposite to the prediction of regret theory; see detailed discussion on
the experiment in Section 3.
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tivity, CEU reduces to transitive expected utility. The corresponding reduction of

skew-symmetric CEU to EU boils down to the weaker requirement of for correlation

insensitivity over SMLs.

Despite its greater flexibility, CEU cannot account for the range of reported

choice behaviour in the Allais common-consequence problem (Allais (1953); see sub-

section 3.2) which is traceable to an exchange between Allais and Savage during the

1952 Paris Colloquium and revisited in Savage (1954). The literature documents a

wide range of proportions of EU violating behavior even when the Allais gambles are

presented in a correlated manner.6 Recently, Frydman and Mormann (2018) report

a change in subjects’ propensity to exhibit Allais behavior when the correspond-

ing lottery pairs are correlated at different levels depending on a single probability

parameter. Subjects are asked to choose from the two pairs of correlated lotteries

Lz1 “ p$25, 33%; z, 66%; 0, 1%q versus Lz2 “ p$24, 34%; z, 66%q, z P t0, $24u, under

zero, intermediate, and maximum correlation illustrated in Table 2.7

πK 0 24
0 44.22% 22.78%
24
25 21.78% 11.22%

πint 0 24
0 65% 2%
24
25 1% 32%

πmax 0 24
0 66% 1%
24
25 33%

Table 2: Joint densities used in Frydman and Mormann (2018) when z “ 0, with
zero (stochastically independent), intermediate, maximal correlation.

A significant decrease in rates of Allais type reversal is observed as the level of

correlation increases (Table 3).8 Despite being correlation sensitive, CEU cannot

account for the significantly positive rate of Allais behavior as it satisfies sure-thing

principle: common-consequence effect is uniform with ϕpx, xq “ 0 required for all

x P X.9 The pattern is also incompatible with any correlation insensitive utility

model, including SSB and all transitive NEU models (see discussions in Section 3).

To accommodate the above extended Allais paradox, we formulate a correlation

betweenness axiom to axiomatize a non-CEU preference, called correlation between-

6Reported proportions range from 33-36% in Starmer (1992), 20% in Bordalo et al. (2012),
14-36% in Ostermair (2022), 19-40% in Esponda and Vespa (2023),40% in Humphrey and Kruse
(2023).

7Scaled by 1:100 from the values in Problems 1 and 2 of Kahneman and Tversky (1979).
8Decreasing rates of Allias behavior from “independent” to “maximally correlated” are also

documented in Bruhin et al. (2022) and Loewenfeld and Zheng (2024) for other probability and
outcome parameters.

9If we were to allow for non-zero ϕpx, xq, we would have strict preference at the degenerate
choice problem δpx,xq under completeness.
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Degree of correlation Independent Intermediate Maximal

Frydman and Mormann (2018) 48% 36% 15%
Bruhin et al. (2022) 48% - 20%

Loewenfeld and Zheng (2024) 62% - 18%

Table 3: Allais behavior decreases with correlation.

ness utility (CBU), which, under correlation insensitivity and transitivity, reduces

to betweenness conforming utility (Dekel, 1986; Chew, 1989). In conjunction with

an alternative weakening of correlation independence, called correlation projective

independence, CBU specializes to a representation, called correlation weighted util-

ity (CWU), given by Eπϕ`ψpp, qq which comprises a CEU kernel defined on π and

a SSB kernel defined on the row and column marginals p and q of π.

Correlation Sensitivity
Insensitive Sensitive

Linearity of
representation in
(joint) probability

Linear EU
CEU

- SML preference

Bilinear
SSB/WU CWU

- indep. Allais - extended Allais

Table 4: Correlation sensitivity, linearity, and Allais behavior.

Table 4 summarizes how different generalizations of EU can account for the

experimental evidence in the literature relating to SML and Allais behavior. Under

correlation insensitivity, while SSB and WU can both exhibit Allais behavior, the

rates of violations do not depend on the degree of correlation. Although CEU

can exhibit SML preference, it is incompatible with Allais behavior in correlated

common-consequence problem. CWU is the only model which can both exhibit SML

preference and account for the extended Allais paradox. The specific arguments are

discussed in Section 3.

2 Preview of Main Findings

In binary choice, it is customary to denote a (nonstrict) preference for a lottery

p over another lottery q using the notation p ľ q. In this regard, the domain of

choice is implicitly ∆pXqˆ∆pXq where X refers to a real outcome set and the set of

(finite support) lotteries defined on X is denoted by ∆pXq. The preference p ľ q is

often written equivalently as pp, qq P R where the subset R Ă ∆pXq ˆ∆pXq, called

preference set, comprises all ordered pairs of lotteries such that the first element
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is preferred to the second element. Although we are cognizant of the potential

incidence of correlation between any pair of lotteries, this is typically ignored in the

presence of transitivity part of the decision maker’s preference make up.

To accommodate the possibility of binary preference being sensitive to potential

correlation between lotteries, we would need to expand the domain from ∆pXq ˆ

∆pXq to ∆pXˆXq. For a joint density π P ∆pXˆXq, illustrated in Table 5 below,

we adopt the convention π P Π if the decision maker weakly prefers receiving its row

marginal π1 “ p paying xi with probability ppxiq than receiving its column marginal

π2 “ q paying yj with probability qpyjq, where Π Ă ∆pX ˆ Xq comprises all joint

densities π for which the row marginal π1 is weakly preferred to the corresponding

column marginal π2.

π y1 ¨ ¨ ¨ yn

x1 πpx1, y1q ¨ ¨ ¨ πpx1, ynq ppx1q
...

...
...

...
...

xm πpxm, y1q ¨ ¨ ¨ πpxm, ynq ppxmq

qpy1q ¨ ¨ ¨ qpynq

Table 5: A joint density π with row marginal ppxq and column marginal qpyq.

In line with the practice of identifying ľ with its preference set R Ă ∆pXq ˆ∆pXq,

it is convenient to refer to ľπ in terms of the preference set Π Ă ∆pX ˆ Xq: we

denote by p ľπ q the decision maker’s (nonstrict) preference for “p over q under

correlation π” with p and q being the row and column marginals of π. We refer to

both tľπuπPΠ and Π as the decision maker’s correlation preference.

2.1 Correlation Utility Representation

We offer a general representation theorem for binary choice which can accommo-

dates correlation between lotteries. A particularly simple form of correlation utility

is given by an expectation utility form: Upπq “ Eπϕ “
ř

px,yqPsupp π ϕpx, yqπpx, yq.

The following continuity axiom is maintained throughout the paper.

Axiom 0 (Continuity). Π is closed relative to ∆pX ˆ Xq under the topology of

pointwise convergence.

Definition 0 (Correlation Utility Representation). The correlation preference Π is

represented by a correlation utility function U : ∆pX ˆ Xq Ñ R if U is continuous

and for π P ∆pX ˆ Xq, π P Π ðñ Upπq ě 0.
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It turns out that continuity is the only axiom needed to obtain a correlation

utility representation.

Proposition 0. The correlation preference Π admits a correlation utility represen-

tation if and only if Π is continuous.

The “only if” part of the proposition is immediate, whereas the “if part” follows

by, for example, setting Upπq “ infπ1PΠ dpπ, π1q where d is the distance defined on

∆pXˆXq for the topology of pointwise convergence. Notice that the representation

is not unique: any continuous function that assigns nonnegative value to Π and

negative value to its complement suffices.

The following notations will come in handy. Denote by πT the transpose of

π, Π̂ :“ tπ : π P Π, πT R Πu as the strict preference set, Π̃ :“ ΠzΠ̂ as the

indifference set, and Π̌ as the complement of Π. The table below explains the sets

with the corresponding equivalent notations. Notice the distinct role of indifference

set Π̃ from that of indifference curves (lines) in the two settings: under transitivity,

indifference curves partition the entire domain, while in the correlation setting, two

arbitrary points in Π̃ do not satisfy such an equivalence relation. Let δx stands for

π P ¨ Π Π̂ Π̃ Π̌
p vs. q p ľπ q p ąπ q p „π q p ńπ q

Table 6: Equivalent notations for correlation preference.

the degenerated probability density putting probability mass 1 at the point x alone.

In the sequel, we maintain the following assumption throughout the paper.

Assumption 0. The preference Π is

(i) non-trivial: neither the complement Π̌, nor Π˝, the interior of Π (relative to

the probability simplex ∆pX ˆ Xq) is empty;

(ii) pointwise reflexive: each degenerate joint lottery δpx,xq lies on the boundary of

Π, i.e., D “ tδpx,xq : x P Xu Ă ΠzΠ˝.

Intuitively, pointwise reflexivity requires that the decision maker marginally

prefers the degenerate lottery x to itself, in the sense that a slight perturbation

away from it could change the decision maker’s preference. Mathematically, this is

saying for any x P X, δpx,xq P Π and for any of its neighbourhood N , N
Ş

Π̌ ‰ ∅.
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2.2 Correlation Insensitivity and Transitivity

We first introduce a notion called correlation insensitivity under which a correla-

tion preference bears close relation to the classical preference under risk in which

completeness and transitivity are standard.

Let Γpp, qq “ tπ P ∆pX ˆ Xq : pπ1, π2q “ pp, qqu. The correlation insensitive

preference binary relation ľ induced by Π is defined as p ľ q ðñ Γpp, qq Ă Π: the

decision maker weakly prefers p to q no matter how they are correlated; equivalently,

p ľπ q for all π P Γpp, qq. The weak preference ľ naturally induces its strict and

indifferent parts defined as p ą q ðñ p ľ q but not q ľ p, and p „ q ðñ p ľ q

and q ľ p.

Axiom 1 (Correlation Insensitivity). A correlation preference Π exhibits correlation

insensitivity if for all pp, qq P ∆X ˆ ∆X, p ľπ q for some π implies p ľ q:

equivalently, either p ľ q, or Γpp, qq X Π “ ∅.

A correlation insensitive decision maker always compares a pair of lotteries pp, qq

regardless of their correlation. Such a decision maker’s preference at one correlation

of pp, qq pins down the preference at any other correlation of pp, qq.

Remark 1. As a corollary of Proposition 0, for correlation insensitive preference

Π (and the induced ľ), there exists a continuous ψ : ∆X ˆ ∆X Ñ R such that

p ľ q ðñ ψpp, qq ě 0. Fishburn’s SSB utility is a specialization with ψ being both

skew-symmetric and bilinear in its arguments pp, qq.

The correlation insensitive preference is further complete and transitive if and

only if it admits a classical transitive utility : there exists a continuous u : ∆X Ñ R
such that p ľ q ðñ uppq ě upqq (see, e.g., Debreu (1964)). As we will show in

Section 4, CEU will reduce to EU under correlation insensitivity.

The following weaker notion of correlation insensitivity restricts to same-

marginal lotteries (SML, Loewenfeld and Zheng (2023)) which will be further

discussed in Section 3.

Axiom 1* (SML Correlation Insensitivity). A correlation preference Π exhibits

SML correlation insensitivity if for all p P ∆pXq, Γpp, pq Ă Π.

If a decision maker is SML correlation insensitive, p ľπ p for any π with identical

marginals pp, pq. In contrast, SML correlation sensitivity can be viewed as a pure
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correlation preference that does not involve difference in marginals. SML correlation

insensitivity appears weaker than full correlation insensitivity. As it turns out, the

two are equivalent under correlation completeness for CEU and CBU.

CBU CLU BU

CU CWU SSB WU

CEU EU

CSEU SEU

C-Independence

C-Completeness +
C-Betweenness

Correlation Insensitivity (CI)

C-Projective
Independence (PI) PI PI

CI

CI

Transitivity

Transitivity

Transitivity

Correlation Probabilistic Sophistication (CPS) CI Probabilistic Sophistication (CIPS)

Choice under Uncertainty

Correlation Utility (CU)
Correlation Expected Utility CEU CSEU Correlation SEU

Correlation Betweenness Utility CBU CLU Conditional Linear Utility
Correlation Weighted Utility CWU SSB Skew-Symmetric Blinear Utility

Figure 1: Relation among Axiomatic Preference Models.

Figure 1 illustrates the interrelations between the transitive models on the right

and their correlation counterparts on the left. The next two sub-sections will pre-

view CEU and CWU before they are formally discussed in Sections 4 and 5 after

section 3 on experimental evidence. The relations between CPS and CIPS and the

other models will be developed and discussed in Section 6.

2.3 Correlation Expected Utility

We state below the definition of the correlation counterpart of expected utility.

Definition 1 (Correlation Expected Utility). The correlation preference Π admits

a correlation expected utility (CEU) representation if there exists a continuous func-

tion ϕ : X ˆX Ñ R with ϕpx, xq “ 0 @x P X such that @π P ∆pX ˆXq, π P Π ðñ

Eπϕ ě 0.

The kernel ϕpx, yq may be interpreted as the utility of receiving x while foregoing
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y. Notice that linearity of the CEU representation implies continuity of the corre-

lation preference Π and its representation. Specific restrictions can be imposed on

the CEU kernel ϕ corresponding to respective behavioral properties. For example,

by pointwise reflexivity, we have ϕpx, xq “ 0 for all x P X. In the following we

assume the CEU representation is non-trivial : there exists px, yq, px1, y1q such that

ϕpx, yq ą 0 and ϕpx1, y1q ă 0.

We say the CEU preference is symmetric if ϕ is skew-symmetric, i.e., ϕpx, yq “

´ϕpy, xq, as the decision maker experiences the same level of utility change whether

receiving x in foregoing y or vice versa. Symmetry of CEU preference implies

Eπϕ ą 0 ðñ π P Π̂,10 and Eπϕ “ 0 ðñ π P Π̃. Asymmetry of CEU

preference could come from various sources, e.g., when there is asymmetric regret

in counterfactual comparison, reference dependence, and when the column outcome

y is an aggregate either through taking the average (Bordalo et al., 2022) or the

maximum over other candidate lotteries (Quiggin, 1994).

The CEU class includes the following important utility models which we will

refer to subsequently.

• Expected Utility (EU) model: ϕEUpx, yq “ upxq ´ upyq.

• Regret Theory (RT) by Bell (1982) and Loomes and Sugden (1982): ϕRT

is often assumed to satisfy regret aversion ϕpx, yq ą ϕpx, zq ` ϕpy, zq for all

x ą z ą y.

• Salience Theory (ST) by Bordalo et al. (2012): ϕST px, yq “ σpx, yqpx´yq with

the salience function σ satisfying a set of salience properties (their Definition

1).11

• The correlation sensitive representation by Lanzani (2022): This is the sym-

metric CEU model.

• Expectations-based-Reference-Dependent (ERD) model from Kőszegi and Ra-

bin (2007): ϕERDpx, yq “ pλ¨1xąy`1xďyqpx´yq, where λ ą 1 captures decision

maker’s aversion to the anticipated loss by switching from x to y when x ą y.

Since λ ą 1, ϕERD is not skew-symmetric.

Theorem 2 in Section 4.3 relates CEU and EU through correlation sensitivity

10As EπTϕ “ ´Eπϕ ă 0, so πT P Π̌.
11Though with different behavioral/psychological fundamentals, ST representation also satisfies

the regret aversion condition. An example would be σpx, yq “
|x´y|

|x|`|y|`θ as provided in the original

paper. Herweg and Müller (2021) propose a generalized RT and demonstrate that it includes ST
as a special case.
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without involving directly transitivity: for a correlation preference Π, the following

are equivalent:

(i) Π admits a CEU representation and exhibits correlation insensitivity;

(ii) Π admits a symmetric CEU representation and exhibits SML correlation in-

sensitivity;

(iii) Π admits a EU representation.

Theorem 2 also implies that SML correlation insensitivity is equivalent to full

insensitivity for symmetric CEU under correlation completeness. In conjunction

with Theorem 1, Theorem 2 can be seen as providing an alternative proof of the

Expected Utility Theorem.

2.4 Correlation Weighted Utility

The Allais (1953) paradox has provided the primary impetus for the development

of transitive NEU models since Kahneman and Tversky (1979). The betweenness

direction in this literature has started with Chew’s (1983) weighted utility (WU)

which is shown in Fishburn (1983) to be the transitive counterpart to the nontransi-

tive SSB model discussed in the Introduction.We formally state both specifications

below.

Definition 2 (Weighted Utility). The preference relation admits a weighted utility

representation if there exist continuous u : X Ñ R and weight function w : ∆X Ñ

∆X, such that p ľπ q ðñ Ewrpsu ą Ewrqsu , where wrpspxq “
ř w̃pxqppxq

ř

w̃px1qppx1q
for

some continuous w̃ : X Ñ Rą0.

Notice that the above WU representation admits a Radon-Nikodym derivative

interpretation for the weight function w (Chew, 1983).

Definition 3 (SSB Utility). The preference relation admits an SSB representation

if there exists a continuous and skew-symmetric bilinear V : ∆X ˆ ∆X Ñ R such

that p ľπ q ðñ ψpp, qq ą 0.

Nakamura (1990) points out that SSB implies a characteristic property of WU

called ratio consistency,12 which we restate in Online Appendix B where we offer

proofs of our main results relating to correlation betweenness. To develop an ac-

12For p, q, r with p „ q and p ȷ r, q ȷ r, βip ` p1 ´ βiqr „ γiq ` p1 ´ γiqr for i “ 1, 2 implies
γ1{1´γ1

β1{1´β1
“

γ2{1´γ2

β2{1´β2
.
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count of the extended Allais paradox, we observe that SSB has a central role in being

both correlation insensitive and reduces to WU under transitivity. This points to

the following correlation weighted utility proposed formally in Section 5.2.

Definition 4. The correlation preference Π admits a correlation weighted utility

(CWU) representation on ∆1 Ă ∆pX ˆ Xq if there exists a continuous, skew-

symmetric kernel ϕ : X ˆ X Ñ R, and a continuous, skew-symmetric bilinear

kernel ψ : ∆X ˆ ∆X Ñ R, such that for π P ∆1, π P Π ðñ Eπϕ ` ψpπ1, π2q ě 0.

In Section 5.2, we will show that for a correlation preference Π that admits a

CWU representation on ∆pX ˆ Xq, it is correlation insensitive if and only if it

admits an SSB representation. Given that SSB and symmetric CEU both involve a

skew-symmetric kernel, it may be tempting to view SSB as resulting from restrict-

ing the latter to ∆X ˆ ∆X. In this regard, Lanzani (2022) invokes Theorem 1 in

Fishburn (1982) to conclude that the skew-symmetric kernel for a symmetric CEU

is uniquely pinned down by comparisons across independent lotteries. This observa-

tion is however not compatible with the equivalence between correlation-insensitive

CEU and transitive EU in our Theorem 2 as well as the axiomatic foundation of

SSB (Fishburn, 1982) reducing to WU under transitivity (Fishburn, 1983).13

A CWU decision maker combines a correlation-sensitive symmetric CEU kernel

on joint densities with a correlation-insensitive SSB kernel on pairs of marginals.

While SSB containing WU can exhibit correlation-insensitive Allais behavior, CEU

can exhibit correlation-sensitive Allais behavior except in the case of maximal cor-

relation. We demonstrate in Section 3 that the resulting CWU combining these

two kernels can exhibit correlation sensitivity in Allais behavior including the case

of maximal correlation thereby accounting for the extended Allais paradox.

In terms of parametric form, as an example, we can adopt the double ex-

ponential specification of WU in Chew and Tan (2005) as transitive SSB ker-

nel ψpx, yq “ wpxqwpyqrupxq ´ upyqs with wpxq “ eρx, upxq “ ´e´λx, deliv-

ering correlation insensitive Allais behavior. At the same time, the ST kernel

13Recently, Chambers et al. (2024) study coherent distorted beliefs that commute with con-
ditioning: DM obtains the same decision weights regardless of distortion preceding information
updating or updating preceding distortion. They show that the only suitably continuous coherent
distorted beliefs that induce expected utility preferences are those that are weighted per the WU
representation. Interestingly, if we apply such idea to the domain of joint densities (i.e., a belief
as correlation π P ∆pX ˆ Xq) and binary utility, then the same analysis would imply that CEU
already captures coherency: any coherent distortion can be “absorbed” into the utility term, so
that equivalently there is no need of distorting beliefs.
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ϕpx, yq “ σpx, yqpx ´ yq with σpx, yq “
|x´y|

|x|`|y|`θ
in Bordalo et al. (2012) exhibits

correlation sensitive Allais behavior except at maximal correlation. Chew (1983)

has derived the Arrow-Pratt measure of local risk attitude for WU as comprising

an EU term ´u2{u1 plus a weighted term ´2w1{w. The corresponding Arrow-

Pratt measure for CWU also comprises a CEU term and a SSB term given by:

Apyq “ ´
ϕ̄22py,yq`ψ22py,yq

ϕ̄2py,yq`ψ2py,yq
, where ϕ̄2px, yq “ 1

2
ϕ2px, y

`q ` 1
2
ϕ2px, y

´q is the average of

left and right derivatives, and similarly for ϕ̄22.
14 Interestingly, now the ϕ term is

dominated by ψ in the Arrow-Pratt measure: Apyq “ ´
ψ22py,yq

ψ2py,yq
“ λ´2ρ is the same

as in Chew and Tan (2005).

3 Experimental Evidence

We provide details on how our correlation preference approach can account for the

experimental findings discussed in the Introduction. We begin with the finding on

pure correlation preference using SML. This is followed by evidence based on the

independent and correlated versions of Allais’ common-consequence problems.

3.1 Same-Marginal Lotteries

Our CEU preference requires that a decision maker linearly evaluate a joint density,

i.e., π P Π if and only if Eπϕ ě 0. Recently, Loewenfeld and Zheng (2023) test a

key assumption in RT and ST: ϕph, lq ą ϕph,mq ` ϕpm, lq for all l ă m ă h. When

skew-symmetry of ϕ is assumed, this is equivalent to ϕpl, hq`ϕph,mq`ϕpm, lq ă 0.

They devise a same-marginal lottery (SML) test where subjects are asked to choose

between two correlated lotteries with the same marginal. The following properties

are closely related to the SML test. We say the decision maker is increasingly (resp.

decreasingly, constantly) sensitive to payoff difference, denoted ISPD (resp. DSPD,

CSPD) if ϕpl, hq ` ϕph,mq ` ϕpm, lq ă (resp. ą,“) 0 for l ă m ă h.

Probability 1
3

1
3

1
3

DSPD l h m
ISPD h m l

Table 7: ISPD vs. DSPD, SML with 3 outcomes l ă m ă h.

One can easily verify that EU is CSPD, RT and ST are both ISPD while ERD is

14Notation ϕ2 means the partial derivative of the second marginal of ϕ, and similarly for others.
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DSPD. Earlier results, mostly for testing the RT and ST theories, report evidence

with choice patterns supporting the ISPD assumption (see Loewenfeld and Zheng

(2023) for a complete reference.) Loewenfeld and Zheng (2023) ask each subject to

choose one from the following two SML, where the lotteries are named so that the

ISPD (resp. DSPD) lottery will be chosen if the subject’s preference satisfies ISPD

(resp. DSPD). The experimental results confirm the existence of SML correlation

sensitivity (37.4%) in their subjects’ choice behavior and thereby rejects EU as well

as SML correlation insensitivity of any symmetric CEU preference by Theorem 2.

Moreover, their evidence also shows that choices display moderate DSPD while find-

ing no ISPD pattern at the individual level, thereby rejecting the ISPD assumption

in regret and salience theory. The results could be interpreted either as supporting

DSPD (rejecting ISPD) under skew-symmetry, or rejecting skew-symmetry under

ISPD. As our axiomatization covers both symmetric and asymmetric CEU prefer-

ences, it is compatible with the evidence from both directions and calls for further

experiments to distinguish the two possibilities.

3.2 Extended Allais Paradox

We trace the extended Allais paradox described in the Introduction to Savage’s

(1954, p.102) exposition of how he corrects his error in violating EU by choosing

gamble 1 in Situation 1 and Gamble 4 in Situation 2 in the two binary choice

situations below:

Situation 1. Gamble 1 : $500,000 with probability 1, versus Gamble 2 : $2,500,000

with 10% probability, $500,000 with 89%, 0 with 1%, and

Situation 2. Gamble 3 : $500,000 with 11% probability, 0 with 89%, versus Gamble

4 : $2,500,000 with 10% probability, 0 with 90%.

Given the common perception of gambles 3 and 4 as being independent lotteries,

the above may be referred to as the independent version of the Allais common-

consequence problem.

In correcting his self confessed choice error, Savage first transforms the two

choice situations into the seemingly equivalent correlated form illustrated in the

Table 8.15 He then describes a thought process involving the application of a con-

15Notice that the marginals of gambles 2, 3, and 4 are the same regardless of whether they
appear in the independent or the correlated versions.
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Ticket Number Drawn
1 2-11 12-100

Gamble 1 5 5 5
Gamble 2 0 25 5
Gamble 3 5 5 0
Gamble 4 0 25 0

Table 8: Savage’s presentation of Allais paradox, prizes in units of $100,000.

tingent reasoning principle, called the sure-thing principle (STP).16 Observing that

it would not matter, in either situation, which gamble is chosen, if one of the tickets

numbered from 12 through 100 is drawn, he focuses on the complementary event of

the ticket drawn being numbered between 1 and 11, in which case Situations 1 and

2 are exactly parallel. He writes, “The subsidiary decision depends in both situa-

tions on whether I would trade an outright gift of $500, 000 for a 10-to-1 chance of

winning win $2, 500, 000, a conclusion that I think has a claim to universality, or

objectivity”. Consulting my purely personal taste, I find that I would prefer the gift

of $500, 000 and, accordingly, that I prefer Gamble 1 to Gamble 2 and (contrary to

my initial reaction) Gamble 3 to Gamble 4.” And yet, Savage writes that he still

feels an intuitive attraction to his favoring Gamble 4 over Gamble 3 when they are

independent after applying STP and arrive at the opposite preference when the two

lotteries are correlated, pointing to the potential instance of correlation sensitivity.

In Frydman and Mormann’s (2018) investigation of correlation sensitivity in

the Allais common-consequence problem where correlation is described with a sin-

gle parameter β (see Table 9 below), they report a declining rate of Allais be-

havior from “independent” (uncorrelated) to “intermediate” to “maximally cor-

related” (see Table 3 in Introduction), based on two pairs of correlated lotteries

Lz1 “ p25, 33%; z, 66%; 0, 1%q versus Lz2 “ p24, 34%; z, 66%q, z P t0, 24u from

Kahneman and Tversky (1979). This extended Allais paradox is incompatible with

CEU implying no violation as well as any transitive NEU (PS) preference implying

uniform rates of violation.

As previewed in Section 2.4, a CWU decision maker can be seen as evaluating

joint densities linearly, but with different thresholds ψpp, qq when the marginals

pp, qq change, thus account for extended Allais-type behavior. Let ϕpx, yq “

σpx, yqpx´ yq where σpx, yq “
|x´y|

|x|`|y|`θ
as in Bordalo et al. (2012), and ψpx, yq be a

16“If the person would not prefer f to g, either knowing that the event B obtained, or knowing
that the event „ B obtained, then he does not prefer f to g.” (Savage, 1954, p.21)
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joint prob. 0.66β 0.66 ´ 0.66β 0.67 ´ 0.66β 0.66β ´ 0.33

L0
1 0 25 0 25

L0
2 0 0 24 24

πK 0 24
0 44.22% 22.78%
24
25 21.78% 11.22%

πint 0 24
0 65% 2%
24
25 1% 32%

πmax 0 24
0 66% 1%
24
25 33%

Table 9: Correlation between lotteries increasing with β

WU kernel. Then, BUpπ0q{Bβ “ ´24p2θ2`123θ`1200q{pθ`24qpθ`25qpθ`49q ă 0,

so that the chance of choosing L0
1, and hence the rate of exhibiting Allais behavior,

decreases with correlation β. Meanwhile, a non-degenerating ψ kernel would allow

for a non-zero rate when there is maximal correlation β “ 1.

4 Correlation Expected Utility

Our development of correlation expected utility is closely related to Lanzani’s

correlation-sensitive representation which parallels Fishburn’s (1989) axiomati-

zation of skew-symmetric additive (SSA) utility17 representation in a Savagean

setting (CSEU). Distinct from Lanzani (2022), our axiomatization does not rely

on completeness nor transitivity while convexity continues to play a key role.

4.1 Correlation Independence

Consider Samuelson’s (1952) and subsequently Fishburn’s (1975) four-lottery ver-

sion of the independence axiom: p „ pąq q and p1 „ pąq q1 imply αp` p1 ´ αqp1 „

pąqαq ` p1 ´ αqq1 for α P p0, 1q.18 Below is the correlation counterpart to this

independence axiom.

Axiom 2 (Correlation Independence). For any α P p0, 1q,

(i) π, π1 P Π ñ απ ` p1 ´ αqπ1 P Π;

(ii) π, π1 P Π̌ ñ απ ` p1 ´ αqπ1 P Π̌.

17In a Savagean framework, let S,X, F be the sets of states, outcomes, and acts with F Ă XS .
Fishburn axiomatizes a preference relation ą on F represented by a probability measure µ on S
and a skew-symmetric φ : X ˆX ñ R such that f ą g ðñ

ş

S
φpfpsq, gpsqqdµ ą 0

18In a footnote, Samuelson acknowledges that the above four-lottery version of his independence
axiom “differs trivially from the Paris version” where three lotteries are used, under transitivity.
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The above may be stated, equivalently, in a form that resembles closely the

original four-lottery independence axioms: p ľπ pńπq q and p1 ľπ1

pńπ1

q q1 implies

pα ľπα pńπαq qα, where πα :“ απ ` p1 ´ αqπ1, and similarly for pα and qα.

Without completeness, correlation independence includes a separate statement

on Π̌. Notice that it is silent on behavior within the strict preference and indif-

ference sets while it implies that Π and Π̌ are both convex, so that Π̃ serves to

separate Π and Π̌ in the simplex. Observe that correlation independence allows

for imprecise preference discriminability (Fishburn, 1982; Nakamura, 1990) or more

broadly, inertia (Bewley, 1986): when π P Π̂ and π1 P Π̃, it is possible that their

convex combination still belongs to the indifference set.19

We further refine correlation independence requiring that p „π q and p1 „π1

q1

imply pα „πα qα, while p ąπ pčπq q and p1 ľπ1

pńπ1

q q1 imply pα ąπα pńπαq qα. The

axiom below is a restatement of what is proposed in Lanzani (2022) by the same

label.

Axiom 2* (Correlation Strong Independence). For any α P p0, 1q,

(i) π, π1 P Π̃ ñ απ ` p1 ´ αqπ1 P Π̃;

(ii) π P Π̂, π1 P Π ñ απ ` p1 ´ αqπ1 P Π̂;

(iii) π P Π̌
Ť

Π̃, π1 P Π̌ ñ απ ` p1 ´ αqπ1 P Π̌.

We axiomatize below a general CEU representation that allows for incomplete-

ness as well as inertia in decisions without requiring skew symmetry of the kernel.

Theorem 1 (Axiomatization of CEU). A continuous correlation preference Π sat-

isfies correlation independence, if and only if it admits a CEU representation.

Proof of Theorem 1. The proof of sufficiency is immediate. To prove necessity,

notice that since both Π and Π̌ are convex sets, they can be weakly separated by

Hahn-Banach separation theorem (see, e.g., Corollary 5.62 of Aliprantis and Border

(2006)). That is, there exists some ϕ : XˆX Ñ R and c P R such that Eπϕ ě pďq c

if π P Π pΠ̌q. Since each π is a joint density, we may set c “ 0.20

Suppose there exists a π1 P Π̌ such that Eπ1ϕ “ 0 (∗). Pick a π P Π˝, the non-

empty interior of Π (relative to the simplex), with Eπϕ ą 0 (∗∗). By continuity21,

19This is also related to the notion of utility of gambling (page 28 of von Neumann and Mor-
genstern (1944)).

20Otherwise, let ϕ1 “ ϕ´ c, then the corresponding threshold c1 “ c´ c “ 0.
21Here we make use of a weaker version of continuity which is close to Lanzani’s (2022)
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there exists a β P p0, 1q such that π2 “ βπ ` p1 ´ βqπ1 P Π̌, so that Eπ2ϕ ď 0,

which contradicts (∗) and (∗∗). Hence, Eπ1ϕ ă 0 for all π1 P Π̌. Consequently,

Eπϕ ě 0 ðñ π P Π.

Observe that the CEU representation is unique up to multiplication by a positive

constant, as ϕ now represents the hyperplane Eπϕ “ 0 between half-spaces. Here,

convexity plays a simple but vital role.

Notice that for CEU, the preference Π (and ϕ) are determined by the indifference

set Π̃ given the convexity brought by the correlation independence axiom, which can

be further pinned down from examining Π̃|ind, the indifference set within the joint

densities for (stochastically) independent marginals, as it forms a spanning set given

the linear structure. Alternatively, one may view ϕ and Π as determined by Π|ind

first through spanning22, and further by Π̃|ind given convexity on the marginals; this

is also observed by Lanzani (2022, footnote 9). These two ways of double reduction

will no longer be available when we axiomatize CWU.

4.2 Correlation Completeness

We next demonstrate how correlation completeness stated below together with

strong correlation independence leads to the symmetric CEU representation in Lan-

zani (2022).

Axiom 3 (Correlation Completeness). For all π P ∆pX ˆ Xq, π P Π̌ ñ πT P Π.

Observe that if Π is represented by a correlation utility function U , the corre-

lation preference is complete if for every π, either Upπq ě 0 or UpπTq ě 0. Under

correlation completeness, each symmetric π (in the sense of π “ πT) belongs to Π̃,

and further we show in Online Appendix A that Π̌ “ Π̂T :“ tπT : π P Π̂u.

Corollary 1 (Axiomatization of Symmetric CEU). A continuous correlation pref-

erence Π satisfies correlation completeness and correlation strong independence, if

and only if it admits a symmetric CEU representation.

Proof. To see how the above corollary follows from Theorem 1, notice that the

axioms already imply the existence of a CEU representation ϕ. That is, Eπϕ ă

Archimedean continuity axiom. See details in Online Appendix A.
22In fact, for a (stochastically) independent π P Γpp, qq, Eπϕ “

ř

x,y ppxqqpyqϕpx, yq, which
coincide with the SSB utility for marginals pp, qq with the SSB kernel ψ properly induced from ϕ.
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0 ô π P Π̌. It remains to show the skew symmetry of ϕ. By correlation strong

independence, for any π, Eπϕ ą 0 ñ π P Π̂. Now suppose ϕpx, yq ` ϕpy, xq ‰ 0

for some px, yq. Then, for π “ 1
2
δpx,yq ` 1

2
δpy,xq, Eπϕ is either positive or negative.

Notice that we have πT “ π here. Then, the former case implies both π, πT P Π̂,

contradicting the definition of Π̂, while the latter implies both π, πT P Π̌, contra-

dicting completeness. We conclude that ϕpx, yq ` ϕpy, xq “ 0 @px, yq. The opposite

direction is immediate.

Here our proof makes use of a correlated lottery π “ 1
2
δpx,yq ` 1

2
δpy,xq and is

substantially simpler than the proof of skew symmetry in the SSB representation

of Fishburn (1982) which only makes use of independent lotteries. As mentioned

earlier, the symmetric CEU representation shares a similar functional form with

Fishburn’s other utility model, CSEU (Fishburn, 1989). We will elaborate on their

close connection in Section 6.

4.3 Correlation Insensitivity and Expected Utility

To facilitate our characterization of classical EU in terms of correlation insensitivity,

we introduce some notions from optimal transport theory (OT). Recall that the

correlation insensitive preference relation ľ is defined as p ľ q ðñ Γpp, qq Ă Π,

which is equivalent to minπPΓpp,qq

ř

x,y ϕpx, yqπpx, yq ě 0. The Kantorovich (1942)

duality delivers the following equation23 which will bridge CEU and EU:

min
πPΓpp,qq

Eπϕ “ max
u,v

upxq´vpyqďϕpx,yq

Epu ´ Eqv.

Hence, p ľ q ðñ maxupxq´vpyqďϕpx,yq Epu ´ Eqv ě 0.

Theorem 2 (Correlation Insensitivity and Expected Utility). For a correlation

preference Π, the following are equivalent:

(i) Π admits a CEU representation and exhibits correlation insensitivity;

(ii) Π admits a symmetric CEU representation and exhibits SML correlation in-

sensitivity;

(iii) Π admits a EU representation.

Points (i) and (ii) in Theorem 2 strengthen Lanzani’s Proposition 1 in two ways:

23The optimal pu, vq on the RHS satisfies vpqpyq “ minx tϕpx, yq ` upqpxqu, upqpxq “

maxy t´ϕpx, yq ` vpqpyqu, and vpqpyq ´ upqpxq “ ϕpx, yq @px, yq P supp π˚, where π˚ is any
optimal solution to the LHS.
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part (i) relaxes symmetry, while part (ii) limits the examination of correlation in-

sensitivity to SML. Both correlation insensitivity and SML correlation insensitivity

appear weaker than the classical notion of transitivity.24 Indeed, correlation in-

sensitivity only concerns a pair of pp, qq without referring to a third lottery, while

SML correlation insensitivity only involves one lottery. While Theorem 2 shows

that correlation insensitivity does imply transitivity of CEU preference, this will

not be the case for correlation preferences satisfying a betweenness property being

developed in the next section. One would also see how transitivity alone appears a

more natural property for a rank-dependence correlation preference in Section 7.2.

Theorems 1 and 2 together imply that it is impossible to have non-EU pref-

erences that satisfy correlation independence and are fully dictated by comparing

marginals. In other words, non-EU preferences such as SSB or WU, becomes in-

complete if we require, following the idea of Fishburn (1988) and Machina and

Schmeidler (1992), that a lottery be valued only according to its distribution.

It is apparent that (iii) implies (i) and (ii). Here we first sketch how (i) implies

(iii) by invoking the Kantorovich duality. For Π admitting CEU representation ϕ,

consider the following minimax problem on a finite support X 1 ˆ X 1:

min
pp,qqPP

max
u,v

upxq´vpyqďϕpx,yq

ÿ

x

upxqppxq ´
ÿ

y

vpyqqpyq,

where P “ tpp, qq : p ľ qu. By the equivalent definition, correlation insensitivity

and pointwise reflexivity implies the problem has value 0. By correlation indepen-

dence and correlation insensitivity, P is convex; moreover, it is compact by conti-

nuity. We can restrict the dual variables pu, vq to a bounded set due to properties

of the Kantorovich duality, so that it is also compact and convex. By minimax the-

orem, we can swap min and max; hence, Dpû, v̂q such that ûpxq ´ v̂pyq ď ϕpx, yq and
ř

ûpxqppxq ´
ř

v̂pyqqpyq ě 0 holds for all pp, qq P P . Pointwise reflexivity then im-

plies v̂ “ û through the dual constraint. Finally, we apply the Kantorovich duality

once again, but in the opposite direction, to show that
ř

ûpxqppxq´
ř

ûpyqqpyq ě 0

implies p ľ q. This completes the proof of (i) ñ (iii) on X 1 ˆX 1. Uniqueness of ϕ

then guarantees the extension to the whole space.

Although we can apply a similar duality argument to show that (iii) follows

24Lanzani (2022) proposes the following transitivity: for p, q, r P ∆X and π P Γpp, qq, π1 P

Γpq, rq, p ľπ q and q ľπ1

r ñ p ľ r. Under pointwise reflexivity and correlation independence, it
implies CI and hence the reduction from CEU to EU; we defer the details to Online Appendix A.
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from (ii), we invoke a different one here that highlights the respective roles of SML

correlation insensitivity and skew-symmetry of ϕ. Notice that the two together

imply
ř

ϕpx, yqπpx, yq “ 0 for all π with SML (so that π P Π̃). Then, we use

a perturbation argument to show that ϕ must have zero synergy in the sense of

Anderson and Smith (2024), namely ϕpx1, y1q`ϕpx2, y2q´ϕpx1, y2q´ϕpx2, y1q “ 0.25

It follows that ϕ is additively separable and thus reduces to EU through skew-

symmetry. A similar argument also appears in Machina and Schmeidler (1992) due

to a private correspondence with Frank Gul.

As observed in subsection 2.3, Theorem 2 together with Theorem 1 can be seen

as providing an alternative proof of the Expected Utility Theorem.26 Three versions

of linear duality play the main role in the establishment. Convexification and then

de-convexification are used to link the two theories through the separation theorem,

the Kantorovich duality, and the minimax theorem. This alternative route involves

the strategy of convexification in a way similar to the essence of extending Nash

Equilibrium to Correlated Equilibrium (Aumann, 1974). The idea resembles the

proof by Hart and Schmeidler (1989) on the existence of correlated equilibrium and

explicitly reveals the advantage of using preference sets.

The idea of convexification (without introducing correlation) relates to the proof

by Fishburn (1975), who makes use of the cone C “ Conetp´ q : p ľ qu. A similar

technique also appears in Dubra et al. (2004) for an incomplete preference with

expected utility form. More recently, Hara et al. (2019) axiomatize a coalitional ex-

pected multi-utility with the independence axiom, but not transitivity nor complete-

ness. One observation is that they use the three-lottery version of independence,

leading to a non-convex C and subsequently a family of utility sets. We discuss in

Appendix 7.1 a correlation multi-utility that extends the above ideas to correlation

preference where convexity is restored. This is akin to the benefit from adapting

the Samuelson (1952) four-lottery independence axiom to arrive at our correlation

independence. Moreover, following Cerreia-Vioglio et al. (2015) who obtain a com-

plete multi-utility model via the negative certainty independence axiom introduced

25We discuss in Online Appendix E how OT helps identifying correlation sensitivity for CEU
through identifying extremal correlations, and more broadly, how OT relates to other strands of
literature such as matching, no-regret-learning, and information design.

26Under CI, we can induce a correlation preference Πľ from an uncorrelated preference ľ. The
EU axioms (e.g., Mas-Colell et al. (1995)) ordering and independence would imply our assumptions
and correlation independence/correlation strong independence, while continuity implies correla-
tion continuity. Therefore, Theorem 1/Corollary 1 leads to a CEU representation and then EU is
given by Theorem 2.
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by (Dillenberger, 2010), we discuss in Section 7.1 a correlation extension of their

cautious expected utility and negative certainty independence.

4.4 Asymmetric CEU Preference

One may wonder whether SML correlation insensitivity in Theorem 2 suffices to

guarantee the reduction to EU without requiring symmetry. The example below

based on the ERD model shows that this is not the case.

Consider the ERD model with representation function proposed by Lanzani

(2022): ϕERDpx, yq “ pλ ¨ 1xąy ` 1xďyqpx ´ yq, λ ą 1. It satisfies ϕERDpx, xq “ 0,

but is not skew-symmetric when λ ą 1.

Recall that the function ϕERDpx, yq is submodular. Then, when q “ p,

to minimize the OT primal, we should choose the perfectly positive corre-

lation πperfect “
ř

ppxqδpx,xq. This gives the primal objective value 0, i.e.

minπPΓpp,pq

ř

ϕpx, yqπpx, yq “ 0, so the decision maker is in fact SML cor-

relation insensitive. In contrast, as long as p is not degenerate, we have

maxπPΓpp,pq

ř

ϕpx, yqπpx, yq ą 0 under a perfectly negative correlation. Then, for

q that shifts a small probability from the best outcome to the worst outcome of

p, we must have minπPΓpq,pq

ř

ϕpx, yqπpx, yq ă 0 while maxπPΓpq,pq

ř

ϕpx, yqπpx, yq

remains positive. Thus, SML correlation insensitivity is strictly weaker than

correlation insensitivity when the correlation preference is not symmetric.

As it turns out, SML correlation insensitivity implies a generalized reference

dependence representation, which can be seen from our proof of Theorem 2.

Definition 5 (Generalized ERD). The correlation preference Π admits a general-

ized expectations-based reference dependence (generalized ERD) representation if it

can be represented by a ϕ in the form of ϕpx, yq “ upxq ´ upyq ` mpx, yq, where

mpx, yq ě 0 @px, yq, and mpx, xq “ 0 @x.

Proposition 1. For Π admitting an asymmetric CEU representation with ϕpx, xq “

0, the following are equivalent:

(i) Π exhibits SML correlation insensitivity;

(ii) ľ has a generalized ERD representation.

For a non-skew-symmetric ϕ, the corresponding preference set Π could either

be incomplete or violate strong independence. In his Example 3, Lanzani argues
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that ERD representation violates the latter: when perturbing slightly away from

a π P Π̃ by mixing with a π1 P Π̂, the decision maker’s preference could remain

unchanged. This difference between the two independence axioms and their induced

representations is akin to that which is reflected in Fishburn’s SSB utility versus

Nakamura’s (1990) non-SSB utility; there, Nakamura also relaxes the constraint

on combining pairs of lotteries across strict preference and indifferent sets, thereby

resulting a non-skew-symmetric representation. He relates his utility model to a

generalized SSB utility with a threshold function, which bears some resemblance

with the mpx, yq term in our generalized ERD model.

Incompleteness may also arise from behavioral and psychological factors such

as inertia, status quo bias, and reference point effect.27 One way to incorporate

reference point involving correlation is discussed in Cerreia-Vioglio et al. (2024).

They propose a cautious utility model where the decision maker evaluates each

lottery p with respect to a stochastic reference given by a fixed lottery r which may

be correlated with p. The utility of p is the expectation of the utility of difference

between the realized and reference outcomes over the joint probability, giving rise

to a complete and transitive model.

5 Correlation Weighted Utility

As discussed in the Introduction, the CEU model maintaining linearity in the joint

density cannot account for the extended Allais paradox. This motivates the de-

velopment of non-CEU model here by formulating the correlation counterparts of

two weakenings of the independence axiom, namely betweenness (Section 5.1) and

projective independence (Section 5.3). The resulting axiomatizations of correlation

betweenness utility and correlation weighted utility are discussed in the sequel.

5.1 Correlation Betweenness

The statement of our correlation betweenness axiom below bears some resemblance

to the betweenness property in Chew (1989) requiring probability mixtures of a

27Consider the ERD model with representation function: ϕERDpx, yq “ pλ ¨ 1xąy ` 1xďyqpx ´

yq, λ ą 1. One feature of the preference is that due to the submodularity of ϕERD, it involves
“too much” completeness in the sense that there exists π such that both π and πT P Π. This
also reflects the effect of reference point. On the other hand, if we instead require λ ă 1, then
completeness no longer holds while strong independence remains satisfied.
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pair of indifferent lotteries to also be indifferent each of them. The resulting planar

indifference surfaces each divides ∆X into convex better-than and worse-than sets.

Axiom 4 (Correlation Betweenness). For any π, π1 P ∆pXˆXq such that π1 “ π1
1,

and α P p0, 1q,

(i) π, π1 P Π̃ ñ απ ` p1 ´ αqπ1 P Π̃;

(ii) π P Π̂, π1 P Π ñ απ ` p1 ´ αqπ1 P Π̂;

(iii) π P Π̌
Ť

Π̃, π1 P Π̌ ñ απ ` p1 ´ αqπ1 P Π̌.

For comparison, correlation independence implies that both Π and Π̌ are convex

by strengthening the convexity on ∆p “ tπ P ∆pX ˆ Xq : π1 “ pu across different

marginals.

Definition 6 (Correlation Betweenness Utility). The correlation preference Π ad-

mits a correlation betweenness utility (CBU) representation if for each p P ∆X,

there exists a continuous ϕp such that π P Π ðñ Eπϕπ1 ě 0, and π P Π̃ ðñ

Eπϕπ1 “ 0.

The CBU representation generalizes the following conditional linear utility

(CLU) representation due to Fishburn (1982): for each p P ∆X, there exists a

linear vp : ∆X Ñ R such that p ą q (resp. „) ðñ vppqq ă 0 (resp. “). Our CBU

kernel is also sensitive to the row marginal p, while further allowing for correlation

sensitivity. The nontransitive CLU plays a key role in Fishburn’s (1982, Lemma 3)

proof of the SSB representation.

Theorem 3 (Axiomatization of CBU). A continuous correlation preference Π sat-

isfies correlation betweenness if and only if it admits a CBU representation.

The proof is similar to the one for Theorem 1 (details are provided in Appendix

B) with the separation argument now applied to the subdomain ∆p for each p P ∆X.

Each ϕp concerns only those π whose first marginals equal p. Viewed as a separating

hyperplane, it intersects the subspace (subset) ∆p at the indifference set, while it

is unconstrained in the direction orthogonal to this subspace. In the sequel, denote

∆P “
Ť

pPP ∆p for P Ă ∆X.

We now demonstrate that a correlation insensitive CBU reduces, under transi-

tivity, to the class of betweenness utility due to Dekel (1986) and Chew (1989). To

see this, suppose now the decision maker is correlation insensitive. By applying a

duality argument similar to that in the proof of Theorem 2, we obtain the following
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result:

Proposition 2 (Conditional Linear Utility). For Π admitting a CBU representa-

tion, it is correlation insensitive and complete if and only if it admits a conditional

linear utility representation.

While correlation insensitivity implies transitivity for CEU by Theorem 2, this is

not the case for a CBU preference. In Appendix B, we show that under completeness

and transitivity, if we assume there is a maximal lottery r̄ and a minimal one r as

in Dekel (1986) such that r̄ ľ p ľ r for all p P ∆pXq, then in a similar spirit as his

original calibration, one can construct BU through implicit utility function V and

the auxiliary function u (from vp) defined as
ř

x upx, V ppqqppxq “ V ppq.

Proposition 3. The correlation insensitive preference ľ admits a betweenness util-

ity representation if and only if it is complete, transitive and admits a conditional

linear utility representation.

From the two propositions, we arrive at the following.

Theorem 4 (Correlation Insensitivity and Betweenness Utility). For Π admitting

a CBU representation, it is correlation insensitive, complete and transitive if and

only if it admits a betweenness utility representation.

5.2 Local Correlation (In-)Sensitivity

Assume that the outcome space X is finite with |X| “ N . We first demonstrate how

the correlation completeness axiom suffices to guarantee a CWU representation for

a CBU preference on a correlation sensitive subdomain of ∆pX ˆ Xq through the

following definition of a local notion of correlation (in-)sensitivity.

Definition 7 (Local Strict Correlation Insensitivity). The decision maker is locally

strictly correlation insensitive on pp, qq, if either Γpp, qq Ă Π̂ or Γpp, qq Ă Π̌.

With the above definition, we arrive at the following partition of ∆X ˆ ∆X

consisting of three subsets:

(i) DI consists of all pairs pp, qq satisfying the above definition.

(ii) Dind includes all pairs pp, qq such that Γpp, qq P Π̃.

(iii) DS consists of the rest at which the decision maker is locally correlation sen-

sitive.
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For a subset Q Ă ∆X ˆ ∆X, we say there exists a generalized skew-symmetric

(GSS) representation tϕpu in Q if for every pp, qq P Q, Eπϕp ` EπTϕq “ 0 for all

π P Γpp, qq. This generalizes the original notion of skew-symmetry where ϕp “ ϕ for

all p P ∆X, which relates closely to correlation completeness in CEU. The proof of

the following proposition applies a theorem of the alternative.

Proposition 4 (Generalized Skew-Symmetry). For a correlation complete CBU

preference, it admits a generalized skew-symmetric representation in DS
Ť

Dind.

We next introduce a partition of ∆X using the following equivalence result

between correlation insensitivity and SML correlation insensitivity, which is implied

by Corollary 2 in Appendix B. This echoes a similar equivalence result obtained for

symmetric CEU preference in Theorem 2.

Proposition 5 (SML Correlation Insensitivity). For a correlation complete CBU

preference, correlation insensitivity is equivalent to SML correlation insensitivity.

By Proposition 5, we can partition ∆X “ PI
Ť

PS, where PI consists of all

those p that are SML correlation insensitive and PS of those being SML correlation

sensitive. We further decompose PI and PS into connected components. Notice

that by continuity, each p P PS has a neighbourhood that is also SML correlation

sensitive, and hence PS is open and so is each of its connected component. PI is

thus closed (and compact).

A key step in the overall axiomatization is to observe that correlation complete-

ness guarantees a CWU representation in a connected component of PS where the

decision maker is nowhere SML insensitive.

Proposition 6 (Correlation Completeness and CWU Representation). Within a

connected component P S Ă PS, the CBU preference Π is correlation complete if

and only if it admits a CWU representation.

The CWU representation, unique up to multiplication by a positive constant,

implies that indifference sets in each Γpp, qq are parallel if viewed as affine sub-

spaces. Proposition 6 parallels Fishburn’s (1982) Lemma 4, where he also derives

ratio consistency and hence projective independence directly from betweenness and

completeness for nontransitive triplets of marginals.28 Notice that our previous re-

sult assumes existence of correlation sensitivity, in the absence of which we cannot

28This is a direct application of Ceva’s Theorem in affine geometry.
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invoke generalized skew-symmetry to begin with. This also corresponds to the ne-

cessity of projective independence for SSB utility (Fishburn’s remaining proof) and

WU when preference is transitive. This observation helps elucidate the tension be-

tween transitivity and correlation sensitivity. In this regard, correlation sensitivity

appears to be driving nontransitive preference.

5.3 Correlation Projective Independence

Now we are ready to axiomatize the intended bilinear representation on the entire

domain. First, notice that if the decision maker admits a CWU representation

on a subdomain, then Π satisfies a correlation counterpart of the (uncorrelated)

projective independence axiom (Chew et al., 1994), which requires that if p̄ „ q̄, p „

q, and there is an α P p0, 1q such that αp̄ ` p1 ´ αqp „ αq̄ ` p1 ´ αqq, then for all

β P p0, 1q, βp̄ ` p1 ´ βqp „ βq̄ ` p1 ´ βqq (see Figure 2 below). Together with

betweenness, it implies Fishburn’s SSB utility and further WU under transitivity

as previewed in Section 2.4.

Axiom 5 (Correlation Projective Independence). For any π, π1 P Π̃, if Dα P p0, 1q

such that απ ` p1 ´ αqπ1 P Π̃, then βπ ` p1 ´ βqπ1 P Π̃ for all β P p0, 1q.

Left: With transitivity, for each p̃ P tp, p1, pαu, each color represents an indifference lp̃ in a 2-
dimensional probability simplex of tr1, r2, r3u. Projective independence implies once pα and qα
are on a same indifference curve for one α P p0, 1q, then this applies for all α P p0, 1q, and hence
all lp are projective.

Right: Each color represents a subdomain ∆p̃ where solid line segments are the respective indif-

ference sets Π̃|p̃ separating Π̂|p̃ and Π̌|p̃. CPI implies that once πα P Π̃|pα for one α P p0, 1q, then

this applies for all other α, and hence the black line segment is in the indifference set Π̃.

Figure 2: Projective independence and its correlation counterpart.
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We next show that correlation projective independence (illustrated also in Figure

2) specifies a uniform CWU representation across different connected components

P S Ă PS, and further dictates the bilinear representation on the entire domain.

Assumption 1. For any point p P PI , there exists a sequence in the interior of PI

that converges to p.

The above regularity assumption requires PI to equal the closure of its interior

intPI .29 Specifically, if PI is non-empty, then so is its interior.

Proposition 7. Under Assumption 1, if the CBU preference Π satisfies correla-

tion completeness and correlation projective independence, then it admits a CWU

representation on PS and an SSB utility representation on PI .

The dichotomous representation is obviously necessary and sufficient for the

axioms within each subdomain. When comparing two marginals from different

subdomains, correlation completeness further requires the following cross-domain

completeness : for π with π1 P PS and π2 P PI , ϕ¨π`ψpπ1, π2q ą 0 ñ V pπ2, π1q ă 0,

and similarly ϕ ¨ π ` ψpπ1, π2q ă presp. “q0 ñ V pπ2, π1q ą presp. “q0. Observe

that in those cases, the ψ term locally dominates the ϕ term, so that the overall

preference appears locally insensitive at pπ1, π2q.

Theorem 5. Under Assumption 1, the correlation preference Π satisfies correla-

tion betweenness, correlation completeness and correlation projective independence

if and only if it admits a CWU representation pϕ, ψq on PS and an SSB utility

representation V on PI , that satisfy cross-domain completeness.

One may have noticed the seeming discontinuity in representation across the

boundary of two subdomains. If we forgo bilinearity and allow for a re-scaling on

ϕp “ ϕ ` ψ, then we can smoothly paste the two representation at each π on the

boundary as γπpϕ ¨ π`ψpπ1, π2qq “ V pπ1, π2q, with the weight λπ being continuous

in π and positive as required by correlation completeness across domains. We then

continuously extend γπ to the whole domain to obtain a global continuous Upπq

representation.

When the decision maker is correlation insensitive, a CWU representation re-

duces to SSB utility, and further to WU under transitivity given that (uncorrelated)

projective independence is satisfied. This can also be viewed as the limit of a se-

29Both relative to the affine subspace of the joint densities.
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quence of CWU in which the CEU kernels ϕ converging to a null kernel ϕ “ 0.

Specifically, an SSB utility can be viewed as a correlation insensitive preference Π

satisfying correlation completeness, correlation betweenness and correlation projec-

tive independence.

Proposition 8 (SSB Utility and Weighted Utility). For a correlation preference Π

that admits a CWU representation on ∆pXˆXq, it satisfies correlation insensitivity

if and only if it admits an SSB representation. It is further transitive if and only if

it admits a WU representation.

When developing his CSEU, Fishburn (1989) states that “SSB theory is both a

parent and a child of ” CSEU as, in particular, the skew-symmetric representation

of SSB utility “emerges as the specialization” of the CSEU representation “for

pairs of stochastically independent acts”. Subsequently, Lanzani (2022) points out

that a CEU model “coincides” with the SSB utility model “when restricted to the

comparison between independent lotteries”, and writes, “Theorem 1 provides an

alternative set of axioms for the SSB model”. From the perspective of shrinking

the domain to the set of independent joint densities, strong independence is not

applicable since a convex combination of two arbitrary independent joint densities

may not be independent. Instead, should we wish to apply strong independence

to the whole simplex ∆pX ˆXq, we would need to impose correlation insensitivity

so that the “restriction” is well defined. In this regard, our Theorem 2 earlier

establishes that a correlation insensitive CEU model, without invoking transitivity,

reduces to EU, not SSB utility. Moreover, we show that any SSB model can be

recast as a correlation insensitive CWU model and vice versa.

6 Correlation Preference in a Savagean Setting

As illustrated in Figure 3 below, there are two directions of research following Sav-

age (1954 – S54). The direction on the left, initiated in Fishburn (1989 – F89),

drops transitivity while maintaining Postulate 2 (P2). This leads to a character-

ization of a skew-symmetric additive representation which we label as correlation

subjective expected utility (CSEU). On the right is the better known (transitive)

probabilistic sophistication (TPS) direction, originating with Machina-Schmeidler

(1992 – MS92), which maintains transitivity without imposing P2. Subsuming
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both directions of generalizing S54 is the present paper (CCZ24).

Figure 3: Parallelisms involving P2 and correlation sensitivity

Fishburn (1988. p.27) posits a decision making principle based on the following

example of the two choice situations below:

SI: A fair coin is to be flipped. Under a1, you win $l,000 if a head appears and get

$0 if a tail appears; under a2 you win $1,200 if a head appears and lose $80 if a tail

appears.

SII: Two fair coins are to be flipped. Under a1 you win $l,000 if the first coin lands

heads and get $0 otherwise; under a2 you win $1,200 if the second coin lands tails

and lose $80 otherwise.

Fishburn then states the following decision making principle which is in essence

equivalent to TPS (MS92, p.747) which is shared by SEU in S54.

Distribution Reduction (DR). Lotteries which reduce to the same probability dis-

tributions are valued the same.

Under DR, choice behavior in the two situations – interdependent SI and inde-

pendent SII – ought to be the same. In other words, how probabilities in different

alternatives arise does not affect choice behavior. Suggesting that this implica-

tion does not accord well with intuition, Fishburn proceeds to axiomatize CSEU

which is suggestive of an extension of DR principle in terms of requiring the prefer-

ence between pairs of lotteries to remain the same when they arise from the same

joint density. Observe that in the absence of correlation sensitivity, CPS reduces
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to correlation-insensitive PS as exemplified by SSB, which further reduces to WU

under transitivity (Fishburn, 1983), exemplifying TPS.

6.1 Correlation Probabilistic Sophistication

We are ready to extend TPS to CPS by adapting Chew and Sagi’s (2006) character-

ization of TPS which does not rely on continuity nor monotonicity of the preference

ordering. Formally, S and X refer to the sets of states and outcomes. The set of

acts F Ă XS consists of mappings from states to a finite subset of outcomes. For a

preference relation on F , we abuse the notation and let Π be the set of acts pf, gq

such that the decision maker weakly prefers f over g. Notice that Π plays a similar

role as the preference set Π in the preceding exposition of correlation preference

in a risk setting. As before, we also write f ľ g for pf, gq P Π when there is no

confusion in notation.

Definition 8 (Correlation Probabilistic Sophistication). The decision maker ex-

hibits correlation probabilistic sophistication if there exists a probability measure µ

on Σ such that for any two pairs of acts pf, gq and pf 1, g1q inducing the same joint

density under µ, f ľ g ðñ f 1 ľ g1.

The decision maker is said to exhibit CPS with respect to µ if such a µ exists.

We offer the following definition as the correlation counterpart to event ex-

changeability in Chew and Sagi (2006). For outcomes x, x1 P X, acts f P F , and

disjoint events E,E 1 Ă S, let xEx1E 1f denote the act giving outcomes x, x1 on event

E,E 1 respectively, and identical to f on the rest.

Definition 9 (Correlation Event Exchangeability). Disjoint events E and E 1 are

correlation exchangeable, denoted E « E 1, if xEx1E 1f ľ yEy1E 1g ðñ x1ExE 1f ľ

y1EyE 1g for all x, y, x1, y1 P X and acts f, g.

Like its non-correlated counterpart, correlation exchangeability can be viewed

as a notion of equal likelihood: if E « E 1, the decision maker does not change her

preference over f and g if the outcomes on E and E 1 are swapped. This yields the

definition of correlation comparative likelihood ľC and the corresponding statements

of the three axioms in Chew and Sagi (2006): (C) Completeness of ľC , (A) Event

Archimedean Property, and (N) Event Nonsatiation, in the same ways as defined

by Chew and Sagi (2006).
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Definition 10 (Correlation Comparative Likelihood). For any events E,E 1, E ľC

E 1 whenever there exists a sub-event e Ă EzE 1 such that e « E 1zE.

Like correlation exchangeability, ľC represents an at-least-as-likely relation.

Axiom 6. Axioms C, A, and N of Chew and Sagi (2006):

• Completeness (C): given any disjoint pair of events E and E 1, either E ľC E 1

or E 1 ľC E.

• Event Archimedean Property (A): any sequence of pairwise disjoint and non-

null events teiui“0 such that ei « ei`1 for every i is necessarily finite.

• Event Non-satiation (N): for any pairwise disjoint E,E 1, A, if E « E 1 and A

is non-null, then there exists no sub-event e Ă E 1 such that e « E
Ť

A.

Adapting the Chew-Sagi proof slightly, we arrive at the following.

Theorem 6 (Characterization of CPS). Axioms C, A, and N are satisfied if and

only if (i) there exists a unique, solvable, and finitely additive agreeing probability

measure µ for ľC, (ii) any two events have the same measure if and only if they

are correlation exchangeable, and (iii) the decision maker exhibits CPS with respect

to µ.

We omit the proof which is straightforward and somewhat repetitious. Com-

pared with the original proof, notice that equivalence relation in Definition 8 delivers

the role of transitive indifference played by Chew and Sagi (2006) in the derivation

of an agreeing probability measure.

Bikhchandani and Segal (2011) study a special form of CPS called regret-based

preference which conforms to P230. For acts f, g on a probability space S, let πrf, gs

be the induced joint density, and Rrf, gs be the distribution of ψpfpsq, gpsqq where

ψpx, yq is the regret or rejoicing about x over y. The preference is regret-based

if pf, gq P Π ðñ pf 1, g1q P Π whenever Rrf, gs “ Rrf 1, g1s. This requirement

is stronger than CPS where the condition applies only to pf, gq and pf 1, g1q when

πrf, gs “ πrf 1, g1s. They show that a regret-based preference is transitive if and only

if it reduces to EU. As it turns out, the proof of Proposition 1 in Bikhchandani and

Segal (2011) can be modified (see Online Appendix C) to show, as stated below,

that CPS and TPS are equivalent under transitivity for any correlation-complete

30P2 requires fEg ą f 1Ag ñ fEg1 ą f 1Eg1 for acts f, g and event E.
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preference in the Savagean setting.31

Proposition 9 (CPS and TPS). If a correlation-complete preference satisfying CPS

is transitive, then it satisfies TPS.

The above proposition shows that imposing transitivity would obliterate any

influence of correlation in binary choice. Notice that correlation insensitivity serves

an intermediate role between CPS and TPS as reflected in the relation between

SSB and WU illustrated in Figure 1. Under CPS, Lanzani’s (2022) symmetric

CEU in the risk setting is traceable to F89 in a Savagean framework. In this re-

gard, Fishburn imposes an axiom S1˚, a precursor to Lanzani’s (2022) correlation

strong independence, which he views as being complementary to P2. (The relevant

definitions and statements are formally stated in Online Appendix C.) Notwith-

standing the key role of completeness in F89, Fishburn’s arguments do not extend

to general, non-symmetric CEU. As our CPS axiomatization does not rely on P2,

we can perform a similar exercise to arrive successively at CBU and CWU in the

Savagean setting by applying correlation betweenness followed by adding correlation

projective independence.32

6.2 Small Worlds

Under the Savagean perspective in which all uncertainties arise from a single grand

world, the decision maker always faces correlated lotteries. Yet, this does not matter

given the maintained assumption of transitivity of the preference ordering. Our

development of CPS reveals how requiring a single grand world may constitute an

undue limitation in modeling choice under risk and uncertainty. This leads naturally

to the need to explore the implications of having multiple sources of uncertainty

following the axiomatization of small worlds PS in Chew and Sagi (2008). Building

on the approach taken in the preceding subsection, we can adapt the definition of

correlation event exchangeability to the small worlds setting. This yields a definition

of small worlds correlation comparative likelihood on which to apply the axioms of

Completeness, Archimedean, and Non-satiation. This process can then deliver a

context dependent CPS in which the decision maker possesses varying degrees of

31(Correlation-)completeness is also required for the proof of Bikhchandani and Segal’s Propo-
sition 1; see errata to original paper (Chang and Liu, 2024).

32We can mechanically translate the axioms in the risk setting back to those in the Savagean
setting, just as the translation for CEU and CSEU in the online appendix.
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correlation sensitivity, ranging from being transitive and fully correlation insensitive

to being SML correlation sensitive depending on the small world associated with

the specific choice situation.

In the experimental literature, several papers33 provide empirical support for

the incidence of source preference including, in particular, familiarity bias which

relates to the decision maker’s identification with the source of uncertainty when

evaluating a choice situation. As pointed out in Simon (1947), a sense of identity

often arises from loyalty and identification with groups and organizations. In this

sense, people generally possess multiple identities through memberships in different

groups, e.g, family, nationality, jobs, and clubs relating to schools and hobbies.

Like small worlds PS and in contrast with CPS, small worlds CPS points to the

possibility of the decision maker exhibiting distinct correlation preference depending

on how she may identify with the small world underpinning the choice context.

Small worlds CPS may give rise to a fresh perspective to account for the eq-

uity home bias puzzle (French and Poterba, 1991) and its variants based solely on

domestic US equity markets (Coval and Moskowitz, 1999; Huberman, 2001). Such

considerations may also apply to the differentiation between investment and insur-

ance, discussed in Armantier et al. (2023), exemplifying a more general reference-

dependent differentiation across gain- versus loss-oriented choice situations. Finally,

it seems that labor and matching markets could provide a rich source of small worlds

CPS given the inherent heterogeneity in how diverse individuals may relate to jobs

and other occupational arrangements taking up large portions of their daily lives.

6.3 Correlation Ambiguity

Recently, Epstein and Halevy (2019) bring in correlation sensitivity to the study

of ambiguity attitude in the setting of two-urn Ellsberg problem. By incorporating

choice comparisons from simultaneous draws from both urns, they find an incre-

mental aversion towards correlation ambiguity. Given their focus on inconsistency

between correlation ambiguity and PS under transitivity, there is value of a more

general investigation of correlation ambiguity building on the CPS approach taken

in the present paper. As an example, consider the following thought experiment in

their Section 2.

33See Chew et al. (2008), Abdellaoui et al. (2011), Armantier and Treich (2016), Chew et al.
(2023), among others.
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There are two urns numbered 1 and 2. Each urn contains two balls, each of

which is either red or black; there is no more additional information about the

compositions. One ball is to be drawn from each urn simultaneously, and thus

the set of possible outcomes is S “ tR1B2, B1R2, R1R2, B1B2u. Before the balls

are drawn, an individual chooses between a pair of bets on the colours of the two

balls, each giving a same prize x if being true: for instance, bet Same corresponds

to the event of balls being in the same color, tR1R2, B1B2u, and similarly Diff

for balls being different colors; bet R1 denotes the event of urn 1 ball being red,

tR1R2, R1B2u, and similarly B1 denotes the opposite.

Consider the following choice pattern: R1 ą Same, and B1 ą Diff. As argued

by Epstein and Halevy (2019), there exists no measure P on S such that P pR1q ą

P pSameq, P pB1q ą P pDiffq, while maintaining P pR1q ` P pB1q “ 1 “ P pSameq `

P pDiffq. They then resolve this paradox by assuming that the decision maker is

averse to the ambiguity in the possible correlation between the ball compositions

of two urns: bets R1 and B1 involves one urn, while Same and Diff both involves

two urns simultaneously.

Such paradox also exists for correlation preference when there is a single grand

world. Suppose the decision maker attaches the following joint probability to the

bet pairs.34 Then, preferences R1 ą Same and B1 ą Diff is equivalent to both

joint densities π and πT P Π̂, which contradicts the definition of strict preference

itself. On the other hand, the paradox can be resolved if we extend the framework

to allow for one correlation-insensitive small world for one-urn bets R1 and B1, and

another correlation-sensitive small world for two-urn bets Same and Diff.

Same Diff
R1 πpx, xq πpx, 0q

B1 πp0, xq πp0, 0q

Table 10: Joint probability for comparing bets R1 and Same.

34This can be translated into the joint density of ball composition of two urns. For instance,
πpx, xq “ ProbpR1R2q, πpx, 0q “ ProbpR1B2q, etc.
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7 Discussions

7.1 Inertia

Recall that Section 4.4 links asymmetric CEU preference to the idea of inertia.

Here, we consider another approach to model inertia through a non-CEU correlation

utility. As an example, consider the following multi-linear representation based on

weakening of correlation independence.35

Definition 11. The correlation preference Π admits a correlated multi-utility rep-

resentation if there exists a closed family tϕ : ϕ P Φu , such that

π P Π ðñ inf
ϕPΦ

ÿ

px,yqPsupp π

ϕpx, yqπpx, yq ě 0.

The family Φ correspond to the indecisiveness of the decision maker (Dubra

et al., 2004) in the sense that she compares each correlated pair with multiple ϕ,

and the determining ϕ may be different at different π. For such a preference, let

UΦpπq :“ infϕPΦ

ř

px,yqPsupp π ϕpx, yqπpx, yq. Preferences with a correlation multi-

utility representation are characterized by the following convexity axiom.

Correlation Convexity. For any π, π1 P Π and α P p0, 1q, απ ` p1 ´ αqπ1 P Π.

Observe that a correlation preference is correlation convex if U is quasi-concave.

By an immediate supporting hyperplane argument, a correlated multi-utility rep-

resentation is characterized by correlation convexity.

Proposition 10. A continuous correlation preference Π satisfies correlation con-

vexity if and only if it admits a correlated multi-utility representation.

One family Φ corresponds to the family of supporting hyperplanes underpinning

the convex Π. Compared with our asymmetric CEU where inertia also plays a role,

here the modeling of inertia is through a non-CEU representation.36

The correlation multi-utility model naturally links to the original expected multi-

35While we could consider a similar extension based on weakening correlation betweenness, we
do not pursue this direction here.

36As an example, if U satisfies the two spherical properties in Chambers and Echenique (2020),
then U is quadratic (in π) with a positive semi-definite quadratic term Q and linear part ϕ:
Upπq “ Qpπq ` ϕ ¨ π. Like our CEU, here we can view Upπq ´ Upπ1q as “second-order” utility
difference. For intuition, compared with our CEU model, the extra quadratic term Q represents
the decision maker’s deviation from a linear utility preference. Since Q is positive semi-definite, it
always “favors” the row marginal π1; if we view row marginal as the status quo, then this captures
the inertia of the decision maker.
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utility representation by Dubra et al. (2004).

Definition 12. The correlation preference Π admits an expected multi-utility rep-

resentation if there exists a closed family tuϕ : ϕ P Φu , such that π P Π ðñ

infϕPΦ uϕ ¨ π1 ´ uϕ ¨ π2 ě 0.

If we can normalize ϕpx, xq “ 0, then correlation insensitivity leads to expected

multi-utility through a similar OT argument as in Theorem 2.

Proposition 11. For Π that admits a correlated multi-utility representation with

ϕpx, xq “ 0 @ϕ P Φ, it is correlation insensitive if and only if it admits an expected

multi-utility representation.

As Cerreia-Vioglio et al. (2015) extend expected multi-utility utility to a com-

plete and transitive cautious expected utility, one may consider extending their nega-

tive certainty independence axiom—if p ľ δx, then αp`p1´αqq ľ αδx`p1´αqq, for

any other lottery q—into a correlation setting: π̄, π1 P Π implies απ̄` p1´αqπ1 P Π

for any π̄ with degenerate column marginal and any π1. It follows that such par-

tially degenerate π̄’s are part of the domain of Π exhibiting correlation indepen-

dence. On the flip side, one candidate for a counterpart of cautious expected utility

could likewise be obtained by restricting the family Φ in a correlation multi-utility

representation to those consistent with the preference on the correlation indepen-

dence domain. Specifically, such a preference is correlation complete if UΦpπq ą 0

ðñ UΦpπTq ă 0.

Besides Bikhchandani and Segal (2011) and correlation dual utility above, an-

other form of CPS is offered in Chew, Wang, and Zhong’s (2024) attention theory

(AT) model of attention induced correlation preference which encompasses RT as

well as ST but does not belong to CEU. The AT specification takes the form of

a weighted utility representation bearing some resemblance to CBU, but does not

belong to that class.37 This leaves open the question of identifying its characteristic

property and the corresponding axiomatization.

37For an AT preference, there exists a outcome utility v : X Ñ R and a bivariate atten-
tion function function α : X ˆ X Ñ R` such that π P Π ðñ Eπϕπ ě 0, where ϕπ “

Eπrαpy, xqsαpx, yqvpxq ´ Eπrαpx, yqsαpy, xqvpyq.
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7.2 Rank Dependence

We propose a correlation-sensitive extension of Yaari’s (1987) dual utility repre-

sentation, who axiomatizes a rank-dependent utility linear in monetary outcome.

Following his notation, we now consider the monetary outcome space X “ r0, 1s

and define the following.

For a marginal lottery p, associate it with a random variable t and let Gp :

r0, 1s Ñ r0, 1s be its de-cumulative distribution function (DDF) with Gppxq “

Prob tt ą xu. A DDF Gp is decreasing and right-continuous with Gpp1q “ 0.

It serves as a role of ranking: the larger outcome x is ranked “higher” by a smaller

DDF value. Define the generalized inverse G´1
p as G´1

p puq “ mintx : Gppxq ď uu.

Such a quantile function reflects the idea of re-ranking of the outcomes by associ-

ating each rank u with the corresponding outcome x “ G´1
p puq.

By Sklar’s theorem (see, e.g., Nelsen (2006)), any bivariate joint probability dis-

tribution F on X ˆ X can be decomposed into F px, yq “ CpF1pxq, F2pyqq, where

F1, F2 are the marginals and C : r0, 1s Ñ r0, 1s is a copula representing the correla-

tion between the two random variables associated with F . Let C be the set of all

copulas. For a joint density π, we can thus identify it with a triplet pCπ, Gπ1 , Gπ2q.

The representation ψ below resembles the bivariate utility ϕ in CEU.

Definition 13 (Correlation Dual Utility). The family tψCuCPC is a correlation

dual utility representation if each ψC is continuous and increasing, and for all π,

π P Π ðñ
ş

r0,1s2
ψCπpGπ1pxq, Gπ2pyqqdxdy ě 0.

Intuitively, a CDU decision maker first singles out the correlation Cπ, and

applies the corresponding utility function ψCπ to evaluate the two marginal

quantiles/rankings Gπ1p¨q, Gπ2p¨q at each outcome level x. If the decision maker is

correlation-insensitive, the above turns into another SSB utility form: π P Π ðñ
ş

r0,1s2
ψpp, qqdG´1

π1
ppqdG´1

π2
pqq ě 0, where the bilinearity is now in terms of marginal

ranks (quantiles). Imposing transitivity, one may arrive at a rank-dependent

weighted utility à la Chew and Epstein (1989).

When each ψC is separable38, i.e. ψCpr, sq “ fCprq ´ fCpsq, the correlation

dual utility preference is represented by π P Π ðñ
ş

r0,1s
fCπpGπ1pxqqdx ě

ş

r0,1s
fCπpGπ2pyqqdy, which satisfies the following correlation dual independence:

38We formulate a specialization of ψC in Online Appendix D that reduces to Yaari’s formula
given correlation insensitivity through applying Kantorovich duality as in CEU arguments.
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Property (Correlation Dual Independence). If π, π1 P Π and Cπ “ Cπ1 “ C, then

for any α P p0, 1q, the joint density πα corresponding to the triplet pC,Gα
1 , G

α
2 q is

also in Π, where pGα
i q´1 “ αG´1

πi
` p1 ´ αqG´1

π1
i
for i “ 1, 2.

Fixing a copula C, it is natural to examine transitivity for marginals under this

specific correlation given the above separability in utility. On the other hand, when

the decision maker is correlation insensitive, the axiom is simplified into Yaari’s

original dual independence axiom, which he shows being equivalent to comonotonic

independence of random variables (Schmeidler, 1989). The representation reduces

correspondingly to his dual utility representation, i.e. there exists f such that

fC “ f for every C belonging to C.

7.3 Social Preference

There is a rich literature concerned with social and risk preference.39 For example,

bringing together the theories of individual choice with risk and allocation inequal-

ity measurement, Chew and Sagi (2012) take into account the correlations across

individuals and axiomatize a social preference for both ex-ante and ex-post fairness.

Their social choice function takes a rank-dependent form, addressing the inequal-

ity concerns. Now, if we consider the income distribution/wealth allocation as a

consequence of policy choice and economic state with uncertainty, then the differ-

ent resulting outcomes must be correlated and the society or the social planner is

effectively facing a correlated choice problem.40

Given such understanding, we revisit the correlation rank-dependent preference

fC discussed in the previous subsection. The correlation utility function fC takes

as argument a ranking over wealth/income after detaching it from the correlation

C. It is now natural to examine the preference for different correlations when the

marginal rankings are fixed. For example, if fC is linear in C, then it further

satisfies the following.

Property (Dual Strong Independence). If π, π1 P Π and πi “ π1
i for i “ 1, 2, then

for any α P p0, 1q, the joint density πα corresponding to the triplet pCα, Gπ1 , Gπ2q is

39See e.g., Fleurbaey (2010); Fleurbaey and Zuber (2017); Gajdos and Maurin (2004); Grant
et al. (2012); Saito (2013); Miao and Zhong (2018).

40Recently, Zhou (2024) studies a social preference model over rankings that allows for non-
transitivity. She introduces an idea of blame and gratitude revised from RT, which will naturally
involve correlation when randomization over rankings is allowed.
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also in Π, where Cα “ αCπ ` p1 ´ αqCπ1

It would be interesting to incorporate correlation and social preference into the

study of game theory and mechanism design. For example, Rubinstein and Salant

(2016) report evidence of individuals positively correlating her belief over others

with her own action in a two-player game, a term they coined as self-similarity. On

the other hand, designing mechanisms for agents with social preference in the sense

of Chew and Sagi (2012) could bring about fresh challenge on social related issues.

7.4 Social Choice

As mentioned in the Introduction, SSB utility has been applied to the study of social

choice theory for intransitive preferences. Recently, in seeking to resolve Arrow’s

impossibility, Brandl and Brandt (2020) investigate the maximal SSB preference

domain in which there exists an Arrovian social welfare function (SWF) that ag-

gregates individual preferences into social preference. They further show that the

Arrovian SWF on that domain must be affine utilitarian, thus recovering Harsanyi’s

aggregation theorem (Harsanyi, 1955) though with an additional axiom of indepen-

dence of irrelevant alternatives (IIA). Prior to that, Fishburn and Gehrlein (1987)

and Turunen-Red and Weymark (1999) also attempt to restore Harsanyi’s aggrega-

tion theorem in the domain of SSB preferences; however, as noted by Brandl and

Brandt (2020), the results suggest that aggregating SSB utility functions is “fun-

damentally different” from the exercise for EU functions. None of these attempts

incorporate correlation preference into the binary choice framework, even transitiv-

ity is dispensed with at the very beginning. Noticeably, Turunen-Red and Weymark

(1999) convexify the domain of independent lottery pairs into the space of all joint

densities between marginals, but still attach a cardinal interpretation to the utility

on joint densities so as to apply the result of De Meyer and Mongin (1995) who

strengthen Harsanyi’s result by virtue of convex structure.

It will also be interesting to revisit classical aggregation results in social choice

theory with correlation preferences. For example, in the symmetric CEU domain, we

expect Harsanyi’s aggregation theorem to hold via applying the duality argument of

Turunen-Red and Weymark (1999) but similar techniques would not be applicable

to asymmetric CEU or CWU. Likewise, we may also study Arrovian aggregation of

nontransitive preferences à la Brandl and Brandt (2020) in the CEU/CWU domain.
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Such investigation would be a rich avenue for future research.
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Appendices

For notational ease, we write ϕ ¨ π for Eπϕ when convenient.

A Proofs for Section 4

Proof of Theorem 2. (iii) ñ (i) and (ii) is easy to see.

(i) ñ (iii): Let P “ tpp, qq : p ľ qu. For simplicity, we fix a finite subset X 1 Ă X

with |X 1| “ n, and restrict attention to Π|X 1ˆX 1 and ∆pX 1 ˆX 1q. It is sufficient to

prove the result on this restricted set as an extension to the whole X is guaranteed

by uniqueness of ϕ.

Clearly the feasible set of pu, vq is convex. By standard cyclic monotonicity

argument in Kantorovich duality41, we can further restrict the pu, vq in the dual

constraint to a bounded set UV Ă R2|X 1|. Now, P and UV are both convex and

compact, and fppp, qq, pu, vqq “ u ¨p´v ¨q is linear in both of them. By the standard

41For instance, by Kantorovich duality theorem, the dual constraint holds as an equality almost
surely for any optimal dual solution. Since the support is finite, we can always normalize the
optimal dual solutions to a bounded set based on the given ϕ.
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minimax theorem in the Euclidean space, we have the following

min
pp,qqPP

max
pu,vqPUV

u ¨ p ´ v ¨ q “ max
pu,vqPUV

min
pp,qqPP

u ¨ p ´ v ¨ q.

The LHS is non-negative by definition, and hence so is the RHS. This means Dpû, v̂q

such that ûpxq ´ v̂pyq ď ϕpx, yq and û ¨ p ´ v̂ ¨ q ě 0 holds @pp, qq P P .

By setting y “ x in the dual constraints, we have ûpxq ď v̂pxq @x P X 1. But

at the same time, δpx,xq P Π and therefore, ûpxq ´ v̂pxq ě 0, so that it must be

v̂pxq “ ûpxq @x P X 1. Let u˚pxq “ ûpxq.

Now, if p, q are such that u˚ ¨ p ě u˚ ¨ q, then maxpu,vqPUV u ¨ p ´ v ¨ q ě 0. By

Kantorovich duality, we know that for all π P Γpp, qq, ϕ ¨π ě 0, so p ľ q. Therefore,

p ľ q ðñ u˚ ¨ p ě u˚ ¨ q. It then suffices to set ϕEUpx, yq “ u˚pxq ´ u˚pyq to

represent Π.

(ii) ñ (iii): We can also use a similar OT proof here. However, the following

alternative proof demonstrates the power of symmetry.

Suppose that ϕ is not a EU representation. Then, ϕ is not modular, meaning

that there exist x1 ă x2, y1 ă y2 such that the cross-difference spx1, x2, y1, y2q “

ϕpx1, y1q `ϕpx2, y2q ´ϕpx1, y2q ´ϕpx2, y1q is not zero. (Otherwise, for any fixed pair

pxi, xjq, ϕpxi, yq ´ϕpxj, yq is constant over y, so we can write ϕpx, yq as vpyq ´upxq,

and then ϕpx, xq “ 0 implies u “ v.)

Now, we pick a p P ∆X with x1, x2, y1, y2 in its support, and any π P Γpp, pq. If
ř

ϕpx, yqπpx, yq ą 0, then its transpose πT P Γpp, pq while
ř

ϕpx, yqπTpx, yq ă 0 due

to skew-symmetry. This means that pp, pq violates SML correlation insensitivity.

If it happens that
ř

ϕpx, yqπpx, yq “ 0, then we can perturb π on the rectangle of

the four points pxi, yjq, i, j “ 1, 2, so that the perturbed π1 is still in Γpp, pq while
ř

ϕpx, yqπ1px, yq ą 0. For example, suppose spx1, x2, y1, y2q “ ϕpx1, y1q`ϕpx2, y2q´

ϕpx1, y2q ´ ϕpx2, y1q ą 0. Let π1 P Γpp, pq be the correlation identical to π on all

points but the four above, and π1pxi, yiq “ πpxi, yiq ` ϵ, π1pxi, y´iq “ πpxi, y´iq ´ ϵ,

i “ 1, 2. Then ϕ ¨ π1 “ ϕ ¨ π `ϵspx1, x2, y1, y2q “ ϵspx1, x2, y1, y2q ą 0.

B Proofs for Section 5

Proof of Theorem 3 (CBU). For each p P ∆X, define Π|p “ tπ P Π : π1 “ pu, and

Π̌|p, Π̂|p, Π̃|p correspondingly. We assume that both Π̌|p and Π̂|p are non-empty as
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the rest of the cases are straightforward. Using a similar separation argument as

in Theorem 1, we can find a ϕp ı 0 so that for π P ∆p, π P Π ñ ϕp ¨ π ě 0, and

π P Π̌ ñ ϕp ¨ π ď 0. Equivalently, ϕp ¨ π ą 0 ñ π P Π, and ϕp ¨ π ă 0 ñ π P Π̌.

Now, as in Corollary 1, π P Π̃ ñ ϕp ¨π “ 0 as otherwise, we can find some π1 P Π̌

and a convex combination π2 of π and π1, which should be in Π̌ by betweenness but

ϕp ¨ π2 ą 0. So ϕp ¨ π ą 0 ñ π P Π̂.

Since ϕp ı 0, we can assume without losing generality that Dπ˚ such that

ϕp ¨ π ą 0. Then π P Π̌ ñ ϕp ¨ π ă 0. (Otherwise, by continuity, there is a

combination π˚˚ of π and π˚ in Π̌, but this contradicts ϕp ¨ π˚˚ ą 0.) This means

π P Π̌ ðñ ϕp ¨ π ă 0 and hence, π P Π ðñ ϕp ¨ π ě 0.

Finally, ϕp ¨ π “ 0 ñ π P Π̃ as otherwise, π P Π̂, so continuity implies the

existence of a combination with some πc P Π̌ that is in Π̃, but this clearly contradicts

ϕp ¨ pαπ ` p1 ´ αqπcq ă 0. This gives ϕp ¨ π “ 0 ðñ π P Π̃ and completes the

proof.

Proof of Proposition 2 (CLU). By applying a duality argument similar to the proof

of Theorem 2, we have for every p,

0 ď min
q: pľq

max
pu,vqPUV

ÿ

x

upxqppxq ´
ÿ

y

vpyqqpyq

“ max
pu,vqPUV

min
q: pľq

ÿ

x

upxqppxq ´
ÿ

y

vpyqqpyq,

and hence the existence of dual ũp, ṽp P RX such that ũp ¨ p´ ṽp ¨ q ě 0 ðñ p ľ q.

Let vpp¨q “ ´ũp ¨ p` ṽpp¨q, and assuming completeness on ľ, then p ą (resp. „) if

and only if vp ¨ q ă 0 (resp. “).

Proof of Proposition 3 (CBU, CLU, and BU). Under transitivity, for any p „ p1

and q P ∆X, vp ¨ q ă 0 (resp. “,ą) ðñ vp1 ¨ q ă 0 (resp. “,ą). Conse-

quently, for any indifference set Hα Ă ∆X and α P r0, 1s such that Hα

Ş

rr̄, rs :“ rα

“ αr̄ ` p1 ´ αqr, let V ppq :“ α and upx, αq :“ vrαpxq ` α for all p P Hα. By

continuity and transitivity, such u and V are both well defined for X ˆ r0, 1s and

∆X respectively. Then, u and V satisfy the betweenness utility equation in Dekel

(1986):
ř

x upx, V ppqqppxq “ V ppq.

Now, for p „ rα,
ř

x upx, βqppxq ă β (resp. “,ă) if β ą α (resp. “,ă). This is

because, by construction,
ř

x upx, βqppxq “
ř

x vrβpxqppxq `
ř

x αppxq “ vrβ ¨ p` α

where Hβ

Ş

rr̄, rs “ rβ. This shows the uniqueness of solution V ppq for a given p.
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One can easily verify the uniqueness of u up to a positive affine transformation,

continuity of u in the second argument, and monotonicity of V pλq ` p1 ´ λqq1q in

λ. Thus, we effectively construct the implicit utility V from the conditional linear

representation vp. The opposite direction is immediate.

For our analysis of CWU, let tk P RNˆN , k P t1, 2, . . . , Nu be the vector with

the pxk, ¨q entries equal to 1 with the other entries being 0; tk describes the row

marginal constraints π1 “ p with tk ¨ π “ pk. Similarly define t̄k P RNˆN for the

column marginal constraints.

Proof of Proposition 4 (GSS). The statement is trivially true for pp, qq P Dind as

ϕp ¨ π “ ϕq ¨ πT “ 0. For a fixed pair pp, qq P DS, we proceed in two steps.

Step 1. A theorem of the alternative.

Observe that completeness ðñ the following system: ϕp ¨ π ą 0, ϕq ¨ πT ě 0,

πpx, yq ě 0,
ř

y πpx, yq “ ppxq,
ř

x πpx, yq “ qpyq being infeasible. By a theorem

of the alternative proved by Ball (2023), this is equivalent to the feasibility of its

alternative:

´aϕppx, yq ´ bϕqpy, xq ` cpxq ` dpyq ě 0,

c ¨ p ` d ¨ q ď 0, a, b ě 0,

c ¨ p ` d ¨ q ă 0, or a ą 0.

For pp, qq P DS, we can find a full-support π P Γpp, qq such that ϕp ¨ π “ 0 “

ϕq ¨ πT.42 Multiply by πpx, yq the first line of the alternative and sum across px, yq,

c ¨ p` d ¨ q ě 0. Given the second line in the alternative, this means c ¨ p` d ¨ q “ 0,

and ´aϕppx, yq ´ bϕqpy, xq ` cpxq ` dpyq “ 0 for all px, yq. The former then implies

a ą 0 through the third line in the alternative, so we can normalize a “ 1. The

latter now becomes

ϕppx, yq ` bϕqpy, xq “ cpxq ` dpyq, (†)

which implies ϕp ¨ π ` bϕq ¨ πT “ 0 for any π P Γpp, qq. As pp, qq P DS, we know

b ą 0.

Step 2. Normalizing b to 1.

If pp, pq P DS, notice that (†) gives both ϕppx, yq ` bϕppy, xq “ cpxq ` dpyq and

ϕppy, xq ` bϕppx, yq “ cpyq ` dpxq. Adding them up we obtain ϕppx, yq ` ϕppy, xq “

cpxq ` dpxq ` cpyq ` dpyq (after dividing cp.q and dp.q by b ` 1). Together with

42The set of full-support π is dense.
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c ¨ p ` d ¨ p “ 0, we obtain ϕp ¨ π ` ϕp ¨ πT “ 0 for all π P Γpp, pq.

Now we fix p and further normalize ϕq for all q ‰ p so that ϕppx, yq `ϕqpy, xq “

cpqpxq ` dpqpyq with cpq ¨ p` dpq ¨ q “ 0. Consequently, b “ 1 and ϕp ¨π`ϕq ¨πT “ 0.

For q, r ‰ p, we show below that bpqbqrbrp “ 1 and hence bqr must be equal to 1

after the other two are normalized to 1. To see this, we substitute the terms ϕq and

ϕr in equation † for pq, rq with ϕp:

cqrpxq ` dqrpyq “ ϕqpx, yq ` bqrϕrpy, xq

“
1

bpq
rcpqpyq ` dpqpxq ´ ϕppy, xqs ` bqrrcrppyq ` drppxq ´ brpϕppx, yqs

“ ´ r
1

bpq
ϕppy, xq ` bqrbrpϕppx, yqs `

1

bpq
rcpqpyq ` dpqpxqs ` bqrrcrppyq ` drppxqs

“ p
1

bpq
´ bqrbrpqϕppy, xqs ´ bqrbrprϕppx, yq ` ϕppy, xqs

`
1

bpq
rcpqpyq ` dpqpxqs ` bqrrcrppyq ` drppxqs

“ p
1

bpq
´ bqrbrpqϕppy, xq ´ bqrbrprcpppxq ` dpppxq ` cpppyq ` dpppyqs

`
1

bpq
rcpqpyq ` dpqpxqs ` bqrrcrppyq ` drppxqs

Now suppose to the contrary that 1
bpq

´ bqrbrp ‰ 0. Then, ϕppy, xq can be expressed

as terms that depend on only x or only y. This contradicts to the premise that

pp, qq P DS. Consequently, 1
bpq

´ bqrbrp “ 0.

Proof of Proposition 6 (CWU). For each p̃ in this P S, continuity implies that there

is a neighbourhood Bpp̃q Ă ∆X such that pp̃, p1q P DS for all p1 P Bpp̃q. Then,

for any r, p P P S, by the open covering theorem (applied to the compact path43

from r to q), there exists a finite sequence pq0 “ r, q1, q2, . . . , qK , qK`1 “ pq such

that pqk, qk`1q P DS for all k “ 1, 2, . . . , K. We will fix a starting marginal r

and let ϕ “ ϕr and show that for every p, the preference on ∆p is represented by

ϕp “ ϕ ` λ̄p ¨ 1 `
řN

1 µ
k
p t̄
k where scalars λ̄p P R and vectors µp P RN (Step 1). We

then prove that the coefficients λ̄p and µp are linear in p (Step 2). Finally we show

the uniqueness of a CWU representation (Step 3).

Step 1. Representation for a fixed p.

43PS is an open and connected subset of an Euclidean space, and hence is path-connected.
Formally, a path is a continuous mapping f : r0, 1s Ñ PS with fp0q “ p and fp1q “ q. Such
argument also appears in Segal (1992) when he deals with transitive preference in a non-convex
domain.
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Lemma 1. For pq, q1q P DS, there exist scalars λ̄q1 P R and vectors µq1 P RN such

that ϕq1 “ ϕq ` λ̄q1 ¨ 1 `
řN

1 µ
k
q1 t̄k.

Proof. For pq, q1q P DS, fix π̄ P Γpq, q1q and α P r0, 1s. Since any symmetric π P

Γpq, qq is in Π̃, correlation betweenness implies that qα :“ αq`p1´αqq1, pq, qαq P DS.

Pick any π̃ P Γpq, qq
Ş

Π̃. Let πα “ απ̃T ` p1´αqπ̄ P Γpq, qαq. Since pq, qαq P DS, by

Step 1 in proof of GSS, there exists b ą 0 such that ϕq ¨ πα ` bϕα ¨ πT
α “ 0, where ϕα

is short for ϕqα . By our selection, LHS is equal to rϕq ¨ π̄` bp1´αqϕαπ
Ts ` bαϕα ¨ π̃.

We denote the latter constant by Cπ̄.

Notice π̃ is arbitrarily picked from Γpq, qq
Ş

Π̃, which is a spanning set of the

affine subspace described by the linear system rϕq ¨ π “ 0, tk ¨ π “ qk, t̄k ¨ π “ qks,

where the latter two are the marginal constraints π1 “ π2 “ q. Since ϕα ¨ π̃ “ Cπ̄,

the affine subspace above is also represented by rϕα ¨π “ Cπ̄, t
k ¨π “ qk, t̄k ¨π “ qks.

Hence, there exists τα, tµ
k
αuNk“1, tλ

k
αuNk“1 P R such that ϕα “ ταϕq `

ř

λkαt
k `µkαt̄

k.44

We now further simplify the expression.

First, as ϕα only evaluates π P ∆α, for any π P Γpqα, q̃q, ϕα ¨ π “ ταϕq ¨ π ` λα ¨

q ` µα ¨ q̃. So we can replace the family tλkαuNk“1 with a fixed scalar λ̄α “ λα ¨ q.

Then, notice that τα ą 0: it cannot be 0 as pq, qαq P DS, while also nonnegative

by continuity and correlation completeness (betweenness on the second marginal).

Put together, we can normalize ϕα “ ϕq ` λ̄α ¨ 1 `
řN

1 µ
k
αt̄
k. Specifically, this holds

for α “ 0, i.e. for qα “ q1.

Now since pqk, qk`1q P DS for all k “ 0, 1, . . . , K, we can let pq, q1q “ pqk, qk`1q

in the Lemma above and obtain recursively the desired formula ϕp “ ϕ ` λ̄p ¨ 1 `
řN

1 µ
k
p t̄
k.

Step 2. Linearity in p.

We fix any full-support p, q sufficiently close such that there exists a open ball

B, with pp, sq, pq, sq P DS for any s P B. We pick arbitrary πp P Γpp, sq
Ş

Π̃, and

similarly πq P Γpq, sq
Ş

Π̃. Denote πβ “ βπp ` p1 ´ βqπq, which belongs to Π̃ by

correlation betweenness and correlation completeness.

By our selection, we have 0 “ ϕp ¨ πp “ ϕq ¨ πq “ ϕβ ¨ πβ, which expands to the

44See e.g., Chapter 8 of Sernesi (2019). Corollary 2 below, which implies Proposition 5, is shown
through a similar argument.
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following equations:
$

’

’

’

’

&

’

’

’

’

%

0 “ ϕ ¨ πp ` λ̄p ` µp ¨ s,

0 “ ϕ ¨ πq ` λ̄q ` µq ¨ s,

0 “ ϕ ¨ πβ ` λ̄β ` µβ ¨ s,

.

We substitute πβ with πp and πq using the first two equations and obtain

0 “ rλ̄β ´ βλ̄p ´ p1 ´ βqλ̄qs ` rµβ ´ βµp ´ p1 ´ βqµqs ¨ s.

Since s is chosen arbitrarily from a full-dimension subset, it must be that both

terms in the square brackets equal to 0. This gives the linearity of ϕp in p. The

equivalent representation in the Theorem can be obtained from grouping λ̄p and µp

as ϕp ¨ π “ ϕ ¨ π ` λ̄p ` µp ¨ q for any π P Γpp, qq. Hence, ψpp, qq “: pλ̄p ` µp ¨ qq is

bilinear.

Step 3. uniqueness of skew-symmetric representation.

We now again apply GSS to a fixed pair pp, qq P DS. There exists a b P R such

that pϕ ` bϕTq ¨ π ` ψpp, qq ` bψpq, pq “ 0, where ϕTpx, yq “ ϕpy, xq. This means

that there exists c, d such that ϕpx, yq ` bϕpy, xq “ cpxq ` dpyq. Then this b must

be common for all q as correlation sensitivity requires that ϕ cannot be written

into some c1pxq ` d1pyq. Then the GSS consistency implies that b “ 1, so that

ϕpx, yq ` ϕpy, xq “ cpxq ` dpyq, and pϕ` ϕTq ¨ π `ψpp, qq `ψpq, pq “ 0. The former

implies cpxq “ dpxq `C. We can define ϕ1px, yq “ ϕpx, yq ´ 1
2
rcpxq ` cpyq `Cs, and

ψ1pp, qq “ 1
2
pc ¨ p ` c ¨ q ` Cq ` ψpp, qq, so that ϕ ¨ π ` ψpp, qq “ ϕ1 ¨ π ` ψ1pp, qq,

while ϕ1px, yq ` ϕ1py, xq “ 0 “ ψ1pp, qq ` ψ1pq, pq. Uniqueness also follows from the

argument. This completes the proof.

The Corollary below shares a similar spirit with the Lemma in Step 1 above and

implies Proposition 5.

Corollary 2. For a correlation complete CBU preference, if pp, qq P Dind, then

there exist a scalar λ̄p P R and vector µp P RN such that ϕp “ λ̄p ¨ 1 `
řN

1 µ
k
p t̄
k

represents the preference in ∆p, i.e. pp, q1q is locally insensitive for any q1 P ∆X,

and p ľ q1 ðñ λ̄p ` µp ¨ q1 ě 0.

Proof. As in the previous proof, pick an arbitrary π̃ P Γpp, pq
Ş

Π̃, which is a span-

ning set of the affine subspace described by the linear system rtk ¨π “ pk, t̄k ¨π “ pks,

also satisfies ϕp ¨π “ 0 by SML insensitivity. Then there exists tµkpuNk“1, tλ
k
puNk“1 P R
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such that ϕp “
ř

λkpt
k ` µkp t̄

k. The first term is then normalized to a scalar with a

same argument.

Proof of Proposition 7 (General CWU). Given Assumption 1, the SSB representa-

tion on each connected component P I of PI follows from Fishburn’s (1982) original

proof and the similar open covering argument in the above proof of Proposition

6. We are now left to show the validity of uniform CWU and SSB representation

across different components.

Consider two connected components P S
1 and P S

2 of PS, with their respectively

unique CWU representations pϕ1, ψ1q and pϕ2, ψ2q. Pick any p̄ P P S
1 and p P P S

2 .

By continuity and SML sensitivity of p̄, we find a open neighbourhood N of p̄ such

that pp̄, q̄q P DS for every q̄ P N . By disconnectedness between two components, the

line segment rp̄, ps is not contained in the union of two. We can select α P p0, 1q so

that pα is in some P I . Without loss, we can assume pα is in its interior as otherwise

we can perturb p̄ and p by openness of two components.

By definition of PI , pα „ pα. SSB representation on P I ensures that there exists

a line segment rpα, rαs Ă P I such that pα „ q1 for any q1 P rpα, rαs. Fix a q̄ P N
close enough to p̄, We can select an q1 close enough to pα such that there exists a

q P P S
2 such that (1) pp, qq P DS and (2) q1 “ αq̄ ` p1 ´ αqq.

By the above, we can pick any π̄ P Π̃
Ş

Γpp̄, q̄q and π P Π̃
Ş

Γpp, qq, and their

pα, 1´αq combination πα P Γppα, qαq Ă Π̃. By correlation projective independence,

@β P p0, 1q, πβ is also in Π̃. Specifically, this holds for a non-empty segment of β

such that pβ P P S
2 . By CWU representation on P S

2 , we have

0 “ ϕ2 ¨ πβ ` ψ2ppβ, qβq

“ βϕ2 ¨ π̄ ` p1 ´ βqϕ2 ¨ π ` β2ψ2pp̄, q̄q ` p1 ´ βq
2ψ2pp, qq ` βp1 ´ βqrψ2pp̄, qq ` ψ2pp, q̄qs

“ rβϕ2 ¨ π̄ ` β2ψ2pp̄, q̄qs ` βp1 ´ βqϕ2 ¨ π ` βp1 ´ βqrψ2pp̄, qq ` ψ2pp, q̄qs

“ βrϕ2 ¨ π̄ ` ψ2pp̄, q̄qs ` βp1 ´ βqr´ψ2pp̄, q̄q ` ϕ2 ¨ π ` ψ2pp̄, qq ` ψ2pp, q̄qs

It follows from existences of β in a non-empty segment that both square brackets

must be equal to 0, so that ϕ2 ¨ π̄`ψ2pp̄, q̄q “ 0. Notice that π̄ is freely chosen from

the indifference set in a full-dimension neighbourhood of p̄. This means pϕ2, ψ2q

is also a CWU representation on P S
1 . By uniqueness of the CWU representation,

it coincides with pϕ1, ψ1q (up to multiplication). Thus, there is a uniform CWU

representation across all connected components of PS. The proof for unique SSB
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representation on PI is the with a same argument.

The proof of Theorem 5 follows from the observation that for both correlation

betweenness and correlation projective independence, cross-domain completeness is

guaranteed by their respective validity in each subdomain.
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Online Appendices

A Supplementary Materials for Section 4

In Lanzani’s (2022) characterization of symmetric CEU, he makes use of the fol-

lowing correlation version of the Archimedean property in von Neumann and Mor-

genstern (1944) and Herstein and Milnor (1953).

. Correlation Archimedean Property. Π exhibits the correlation

Archimedean property if for all π P Π̂ and π1 P Π̌, there exists α, β P p0, 1q such

that απ ` p1 ´ αqπ1 P Π̂ and βπ ` p1 ´ βqπ1 P Π̌.

Lanzani (2022) makes use of correlation Archimedean throughout his axiomati-

zation while we apply the stronger continuity axiom for the separation argument as

we begin the our proof of Theorem 1. The second part of our proof uses a weaker

continuity property which relates closely to correlation Archimedean property.

We next discuss Lanzani’s transitivity axiom which implies correlation insensi-

tivity under CEU.

L-Transitivity. For all p, q, r P ∆X and π P Γpp, qq, π1 P Γpq, rq, p ľπ q and

q ľπ1

r ñ p ľ r.

Lemma 2. For Π admitting an CEU representation, L-transitivity implies correla-

tion insensitivity.

Proof. This can be seen from setting p1 “ p, p2 “ q in the definition of L-transitivity.

For a fixed pair pp, qq, suppose we have Γpp, qq X Π ‰ ∅. Then, by pointwise

reflexivity and independence, the perfect correlation between pq, qq,
ř

x qpxq ¨δpx,xq P

Π ñ Γpq, qq X Π ‰ ∅. So by definition, Γpp, qq P Π. This is exactly correlation

insensitivity.

As a consequence, we obtain Proposition 1 of Lanzani (2022) which essentially

corresponds to the equivalence between (ii) and (iii) below.

Corollary 3 (CI, L-Transitivity, and EU). For a CEU preference Π, the following

are equivalent:

(i) Π is correlation insensitive;

(ii) Π is L-transitive;
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(iii) Π has an EU representation.

Proof of Π̌ “ Π̂T under completeness. By correlation completeness, for any

π R Π, πT P Π. So, Π̌ “ tπ : π R Πu Ă tπ : πT P Πu “ tπT : π P Πu, so that

Π̌ Ă tπT : π P Π, πT R Πu “ tπT : π P Π̂u “ Π̂T. Meanwhile, Π̂T is clearly

contained in Π̌ by correlation completeness, so we have Π̂T “ Π̌, and equivalently,

Π̌ “ tπT : π R Πu.

B Supplementary Materials for Section 5

We discuss the geometry behind Fishburn’s SSB utility.

SSB Implies Ratio Consistency. Fix lotteries p, q, r as given in the definition of ratio

consistency. Notice that βp ` p1 ´ βqr „ γq ` p1 ´ γqr implies

0 “ ψpβp ` p1 ´ βqr, γq ` p1 ´ γqrq

“ βγψpp, qq ` βp1 ´ γqψpp, rq ` p1 ´ βqγψpr, qq ` p1 ´ βqp1 ´ γqψpr, rq

“ βp1 ´ γqψpp, rq ` p1 ´ βqγψpr, qq,

where the second line uses bilinearity of ψ, and reduction to the last line is due

to the indifference in pp, qq and pr, rq. Hence, the ratio β{p1´βq

γ{p1´γq
“

ψpr,qq

ψpr,pq
is constant

across pβ, γq pairs for fixed p, q, r.

Fishburn (1982) introduces the following weakened version of projective inde-

pendence, which he terms symmetry : pp ą q ą r, p ą r and q „ 1
2
p ` 1

2
rq im-

plies pλp ` p1 ´ λqr „ 1
2
p ` 1

2
q ðñ λr ` p1 ´ λqr „ 1

2
r ` 1

2
qq for λ P p0, 1q.

Assuming betweenness, symmetry can be deduced from projective independence

through a simple geometry argument, as the latter implies that the straight indif-

ferent curves are projective. Both then results in a bilinear utility representation. In

Section 5.2, we have obtain the conditional linearity result of Lemma 3 in Fishburn

(1982). Fishburn then calibrate vp to arrive at a skew-symmetric ψpp, qq defined as

ψpp, qq “ vppqq.

Notice that Fishburn’s proof actually implies the following key observation: for

non-indifferent p, q, r, we can find α, β, γ (not necessarily positive) such that for t “

p, q, r, the linearly extended vt to the affine set45 satisfies vtpαp`βq`γrq “ 0. When

45The set ∆̄X “ tp̄ :
ř

x p̄pxq “ 1u where each coordinate is not necessarily positive.
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there is a preference cycle p ą q ą r ą p, the combination is within the simplex of

tp, q, ru. Otherwise, for the transitive preference p ą q ą r, p ą r, the combination

falls outside of the simplex but in the extended affine set. Geometrically, this means

the three (extended) indifference curves crossing p, q, r are projective. Now, if we

start from a reference r˚ and define ψpr˚, pq “ ´ψpp, r˚q “ vr˚ppq, letting r “ r˚

gives the desired calibration vppqq “ ´vqppq.

C Supplementary Materials for Section 6

C.1 Fishburn’s CSEU

As in the main text, let S,X, F be the sets of states, outcomes, and acts with

F Ă XS. Fishburn studies a preference relation ą on F (and its induced weak

preference ľ and indifference „) satisfying the following set of axioms.

For x P X, let x also represent the constant act with the same outcome x. For

E Ă S, the conditional preference f ąE g means fEh ą gEh for any h. Denote N
as the null events as usual.

Axiom 7. Fishburn’s (1989) axioms:

• P1˚. ą is asymmetric and, for all x, y P X, ą is a weak order on Fxy “ tf P

F : fpsq P tx, yuu.

• P2. fEg ą f 1Ag ñ fEg1 ą f 1Eg1.

• P3. For E R N , xEf ą xEf ðñ x ą y.

• P4. px ą y, z ą wq ñ pxAy ą xBy ðñ zAw ą zBwq.

• P5. x1 ą y1 for some x1, y1 P X.

• P6˚. pf ą g;x, y P Xq ñ there exists a finite partition of S such that for

every event E in the partition, fEx ą gEy, fEx ą g, and f ą gEy.

• S1˚. pA
Ş

Bq “ ∅, f ľA g, f ľB gq ñ f ľA
Ť

B g; if in addition, f ąA g,

then f ąA
Ť

B g.

Fishburn shows that, if the preference ą satisfies all seven axioms above, then

there is a probability measure µ on S and a skew-symmetric φ : X ˆ X ñ R such

that, µ satisfies the following (i) to (iii) of Savage’s original theorem, along with the

CSEU representation (iv):

(i) A P N ðñ µpAq “ 0;
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(ii) for A Ă S, λ P p0, 1q, there exists A1 Ă A such that µpA1q “ λ ¨ µpAq;

(iii) for any x ą y, xAy ą xBy ðñ µpAq ą µpBq;

(iv) f ą g ðñ
ş

S
φpfpsq, gpsqqdµ ą 0.

In his proof, Fishburn first restricts to the set of binary acts tFxy : x, y P Xu,

and borrow Savage’s theorem to obtain a candidate probability measure µ. He then

shows that this µ together with a calibrated φ represents the preference. Notice that

CSEU satisfies our CPS as φpfp¨q, gp¨qq effectively translates binary acts the into

joint densities over outcome pairs. Hence, while CSEU is set to describe nontran-

sitive preferences over Savagean acts under uncertainty, it corresponds exactly to

Lanzani’s correlation sensitive representation, or equivalently, our symmetric CEU

preference, in the risk domain.

C.2 Comparing Fishburn (1989) and Lanzani (2022)

Now, assuming the decision maker is CPS, we can induce, through µ, a joint density

π P ∆pX ˆ Xq for each pair of acts f, g. Then, the original preference ą under

uncertainty induces a corresponding correlation preference Πą under risk. The

proposition below formally connects the strong independence of the induced Πą

and S1˚.

Proposition 12. Assuming CPS and Fishburn’s P1˚ and P6˚, S1˚ is equivalent to

strong independence of the induced correlation preference.

Proof of Proposition 12. P1˚ and P6˚, as their original versions, implies complete-

ness and continuity of preference. It is then easy to check that strong independence

of the induced Πą implies Fishburn’s S1˚ on ą.

To see S1˚ implies strong independence, suppose we have two joint densities

π, π1, induced from act pairs pf, gq and pf 1, g1q. Then, π, π1 P Π is equivalent to

f ľ g, f 1 ľ g1. We now show that π1{2 “ 1
2
π ` 1

2
π1 P Π. Notice that by property

(ii) of µ, we can find A Ă S with µpAq “ 1
2
and acts f2, g2, f3, g3, such that (1)

the joint densities induced by pf2, g2q conditional on A and Ac are equal to π, π1

respectively, and similarly (2) the joint densities induced by pf3, g3q conditional

on A and Ac are equal to π1, π respectively. As a result, the (full) joint densities

induced by pf2, g2q, pf3, g3q are π2 “ π3 “ π1{2.

Suppose g2 ąA f2. Then, by CPS, g3 ąAc f3. Define f̃ as f̃ “A f2 and
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f̃ “Ac f3, and g̃ similarly. Now S1˚ implies g̃ ą f̃ , which violates CPS as we

already assume f ľ g and pf, gq, pf̃ , g̃q induce the same joint density π. Hence, it

must be f2 ľA g2. Similarly, f2 ľAc g2, so f2 ľ g2 again by S1˚. This means

π1{2 “ π2 P Π as desired.

We can now go on to show that πα “ απ`p1´αqπ1 P Π for all rational α P p0, 1q

with α “ m
2n
. By continuity given P6˚, we can further extend to all rational and

real α. This completes the proof for strong independence.

C.3 Relating CPS to TPS

The following proof is adapted from that of Proposition 1 in Bikhchandani and

Segal (2011).

Proof of Proposition 9. For acts f0 and f1 inducing the same outcome probability

distribution, we will show that f0 „ f1. By finiteness in outcome, let f0psq “ xi

for s P Si, and f1psq “ yi for s P S 1
i where tSiu

n
i“1 and tS 1

iu
n
i“1 are partitions of the

states S.

Case 1: Si “ S 1
i and µpSiq “ 1{n for all i. Then there exists a permutation σ on

t1, 2, . . . , nu such that f1pSiq “ f0pSσpiqq. Let fkpSiq “ f0pSσkpiqq, then the induced

distributions πrfk, fk`1s are the same for all k. By CPS, the preferences over fk

versus fk`1 are the same for all k. Since there are at most n different outcomes

xi, there exists a k1 such that fk1 “ f0. Then, transitivity implies that the decision

maker must be indifferent between fk and fk`1 for all k “ 0, 1, . . . , k1. In particular,

f0 „ f1.

Case 2: For all i, j, µpSi
Ş

Sj1q is a rational number. Let n̂ be a common

denominator of all these fractions. Then we can rewrite f0 and f1 as in Case 1 with

events T1, . . . , Tn̂ of equal probabilities.

Case 3: There exist i, j such that µpSi
Ş

Sj1q is irrational. A limiting argument

given Case 2 would suffice together with continuity.
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D Supplementary Materials for Section 7

This section focuses on the discussion of Correlation Dual Utility. Consider the

following representation:

π P Π ðñ Upπq “

ż

r0,1s2

ψpGπ1pxq, Gπ2pyqqdCπ
p1 ´ x, 1 ´ yq ě 0.

Using a change of variable p “ Gπ1pxq, q “ Gπ2pyq, we can write the represen-

tation as Upπq “
ş

r0,1s2
ϕpp, qqdCπp1 ´ G´1

π1
ppq, 1 ´ G´1

π2
pqqq. It resembles a CEU

representation with the role of marginals now played by the quantiles.

Suppose Π is correlation-insensitive. Noticing that copulas have uniform

marginals, by a similar Kantorovich duality argument, we can arrive at a dual

representation:
ş

r0,1s
uGπ1 ,Gπ2 ppqdr1 ´ G´1

π1
ppqs ´

ş

r0,1s
vGπ1 ,Gπ2 pqqdr1 ´ G´1

π2
pqqs for

each fixed pair of marginals. A minimax argument would give both u and v

are constant in the marginals, so that it reduces to Yaari’s original dual utility

representation.

E Extremal Correlation, Matching, and Optimal

Transport

An important implication of Theorem 2 is that any non-EU preference within the

CEU framework is sensitive to the correlation between the two lotteries compared.

Among the considerable effort made in the literature to test departure from EU,

an interesting direction is to assess/test the axioms where the EU theory is built

on. We show in the next subsection how to check a decision maker’s robustness

to correlation for a fixed pair pp, qq through the famous network simplex algorithm

(see, e.g. Chapter 7 of Bertsimas and Tsitsiklis (1997)), which efficiently finds one,

if not the unique solution to the OT problem. It is a special case of the simplex

algorithm, and was first discovered by Dantzig (1951).46,47

46Many other algorithms are developed in the OR literature. The classical Hungarian method
for assignment problem is developed by Kuhn (1955), which is also based on the cross-difference
and cyclic improvements. It lies in the foundation of the famous multi-item auction algorithm by
Demange et al. (1986), which is also closely connected to the job matching process by Crawford
and Knoer (1981).

47When the CEU is symmetric, then Theorem 2 (ii) implies that we can restrict ourselves to
SML, i.e. π P Γpp, pq for p P ∆X. Then the optimization problem, viewed as a zero-sum game,
relates to von Neumann’s observation that for any finite two-person zero-sum game, there is a
feasible linear programming (LP) problem whose saddle points yield equilibria of the game. We
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The network simplex algorithm iterates on extreme points of Γpp, qq by updat-

ing according to cycles created and removed in the support graph, which is closely

related to cyclic monotonicity, one of the equivalent optimality conditions in the

Kantorovich duality (see, e.g., Villani (2009)). Cyclic monotonicity and its vari-

ants are widely observed in optimality conditions in various economic literature.

A well-known application is for optimization in the quasi-linear settings (Rochet,

1987), and in particular mechanism design and auctions (Vohra, 2011). Lin and

Liu (2024) study the problem of credibly persuading a receiver who can observe

and verify the final signal distribution when the sender is not able to commit to the

information structure. In an optimal transport setup, they show that any imple-

mentable policy must be cyclic monotone, and further comonotonic if the sender’s

utility involves a certain supermodularity. Anderson and Smith (2024) study the

comparative statics of a matching problem using a formulation very similar to the

optimal transport problem. They propose a synergy function: the cross-difference

ϕpxi, yiq ` ϕpxi`1, yi`1q ´ ϕpxi, yi`1q ´ ϕpxi`1, yiq, behind which the idea is closely

related to the cycle modification in the network simplex algorithm.48

We have considered examples of extremal correlations when we discuss the ERD

model after Theorem 2, where we borrow the idea of assortative matching from the

matching literature for SML under submodularity. In fact, a discrete optimal trans-

port problem can be equivalently viewed as an assignment problem (Shapley and

Shubik, 1971). Then, algorithms from the matching literature can directly fit in,

including the famous auction mechanisms by Crawford and Knoer (1981) and De-

mange et al. (1986).49 Note that for a correlation sensitive CEU representation,

binary choice reversal is a generic property for pp, qq. Hence, we can, without loss,

can actually do better by invoking the following well known result on fictitious play: if both
players use a no-regret learning algorithm to adapt their strategies to their opponent’s strategies,
then the average payoff of the players converge to their minmax value, and their average strategies
constitute an approximate min-max equilibrium, with the approximation converging to 0; see
Chapter 7 of Cesa-Bianchi and Lugosi (2006). No-regret learning algorithm is not only a natural
iterative dynamics: its rate of convergence is fast; more precisely, it is at the order of the average
regret in T rounds and recently improved to OplnT {T q for zero-sum games by Daskalakis et al.
(2015).

48They show that this synergy function solely determines the optimal matching plan; for in-
stance, an everywhere positive synergy, corresponding to a supermodular ϕ, leads to the famous
positive assortative matching (Becker, 1973). Comparative statics given varying ϕ are examined
and shown to be related to the positive quadrant order (PQD, Lehmann (1966)).

49Bertsekas and Castanon (1989) convert the transport problem to an assignment problem.
A rich strand of literature extend and improve on the early methods in the general transport
problem, see, for instance, Kim (2010), Chapter 1.5 for a short survey.
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focus on lotteries with rational probabilities. For rational marginals, we can “repli-

cate” the points in the support, and then reduce the rational lotteries to uniform

densities and the feasible set of joint densities to doubly stochastic matrices.50 We

then refer to the famous Birkhoff-von Neumann theorem, which identifies all per-

mutation matrices51 as the extreme points of the set of doubly stochastic matrices

(see, e.g., Budish et al. (2013)).

E.1 Test Correlations for a Fixed CEU Kernel

Suppose that a decision maker exhibits correlation sensitivity with respect to a pair

of pp, qq. We now demonstrate how to find π`, π´ P Γpp, qq such that π` P Π while

π´ R Π, i.e. her preference over pp, qq changes when correlation varies from π` to

π´. If further πT
´ P Π (which is true for a skew-symmetric ϕ), then she prefers p to

q under π` but conversely under π´.

Specifically, we can pick π´ P argminπPΓpp,qq

ř

ϕpx, yqπpx, yq; in terms of cor-

relation sensitivity, this π´ is the worst-case correlation in Γpp, qq to ϕ. It is a

“test” correlation that determines whether the decision maker’s preference over

pp, qq is robust to correlation variations — if, for any pair pp, qq, the decision maker

prefers p to q even under the worst-case correlation π´ P Γpp, qq. Similarly, pick

π` P argmaxπPΓpp,qq

ř

ϕpx, yqπpx, yq — this π` “favors” the lottery p most among

all correlations in Γpp, qq. It is the best-case correlation that determines whether

the decision maker would, under any correlations, prefer p to q. These best-case

and worst-case test correlations are of importance for testing whether the decision

maker’s preference is sensitive to correlation.52 Observe that the problem is linear.

Now, the problem boils down to finding the extreme points of Γpp, qq and then

solving the OT problem, which can be done through the famous network simplex

algorithm.

Procedure (Network simplex algorithm). Start with a tree π0 P Γpp, qq.

50A matrix is doubly stochastic if the sum of entries of each row and column is always 1.
51A permutation matrix has, in each row and column, one entry equal to 1 and other entries

equal to 0.
52In fact, the two extreme correlations correspond to the two possible ways of defining the

induced preference in Lanzani (2022). In his main text, he defines it as our correlation insensitive
preference relation ľ, with a “for all” quantifier. Meanwhile, he proposes another in the footnote
right after it, where he defines p ľ˚Π q ðñ Dπ P Π such that

ř

ϕpx, yqπpx, yq ě 0. While we
have shown that the former preference is generally incomplete, the latter often involves too much
indifference as it is not too demanding that both p ľ˚Π q and q ľ˚Π p hold.
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1. Given the tree π from previous iteration, compute the dual pu, vq according to

complementary slackness equation (23).

2. Compute the reduced costs ϕ̂px, yq “ ϕpx, yq ´ pupxq ´ vpyqq for all px, yq not

in the support. If none of them is negative, terminate as we already obtain an

optimal solution; otherwise, choose a node px1, y1q with ϕ̂px1, y1q ă 0 and add

it to the support graph.

3. The entering px1, y1q forms a unique cycle C with other nodes and edges in Gπ.

For a positive number θ, a new cycle Cθ is obtained from C by alternatively

adding θ to and subtracting θ from πpx, yq along the cycle C, starting from

px1, y1q. Let θ˚ “ argmaxθ tCθ remains a non-negative cycleu.

4. There is a unique node in Cθ˚ with zero value. Replace it with px1, y1q and we

obtain a new tree π1. Return to Step 1.

For example, Bordalo et al. (2012) test the significance of correlation in Allais

paradox in their appendix. After the classical (uncorrelated) common-consequence

Allais test L0
1 “ p2500, 33%; 0, 67%q versus L0

2 “ p2400, 34%; 0, 66%q, they ask the

participants to decide on the same, but correlated pair of lotteries.

By the results in the next subsection, we will see that π0 in our example is one (of

the two) extreme point of Γpp, qq. In fact, it survives the network simplex algorithm

when the ϕ satisfies the salience conditions in Bordalo et al. (2012). Hence, it is

the correlation for which a salience minded decision maker will “most likely” not

prefer L0
1 to L0

2. The experiment results confirms this: more than half of (26% out

of 46%) of those who chooses L1 over L2 now reverses to L0
2 over L0

1.

Interestingly, for another, non-extremal correlation π̂0 with the same pair of

marginal lotteries, subjects exhibit a similar preference pattern as for the classical

one. This is also consistent with our theory: binary choice switches are most likely

observed at extremal correlations.

πmax 0 24
0 66% 1%
24
25 33%

Table 11: π0, L0
1 vs L0

2, maximally correlated distribution
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E.2 Extremal Correlations

We fix a pair of pp, qq. As the problem is linear, the algorithm always finds one

extreme point of Γpp, qq. Denote Epp, qq the set of extreme points of Γpp, qq. Diego

and Germani (1972) studies this set and shows that for π P Γpp, qq, it is an extreme

point if and only if it is a set of uniqueness.53

Definition 14 (Set of uniqueness). For a fixed pair of marginals pp, qq, a set A Ă

XˆX is a set of uniqueness if for any π, π1 supported within A, pπ1, π2q “ pπ1
1, π

1
2q “

pp, qq ñ π “ π1.

For a π P ∆pX ˆ Xq, its associated support graph Gπ is defined as following:

each node pi, jq P Vπ corresponds to a point pxi, xjq P suppπ, considered as a cross

in the nˆn grid corresponding to XˆX; an edge is linked between two nodes if (i)

the two nodes are in the same row or column of the grid and (ii) they are adjacent

in the concerning row or column (i.e. there are no other nodes lying between the

two).

We say π is a forest if Gπ is a forest, meaning it does not contain a cycle.

If π P Γpp, qq is a forest, then values of each πpx, yq can be determined uniquely

according to the marginals pp, qq by starting from the roots to the leafs. The Lemma

below shows that such forest correlations are vital in our analysis.

Lemma 3 (Diego and Germani (1972), Theorems 1 and 2). π P Epp, qq if and only

if π P Γpp, qq and π is a forest.

Though perhaps based on different reasoning and foundations, there is a ten-

dency of adopting extreme correlations observed in research studying a decision

maker’s preference robustness to correlation and the corresponding laboratory tests.

For example, all of Lanzani’s numerical examples are forests, and notably among

them is the correlated Allais paradox example. As a motivation for Lanzani (2022),

Bordalo et al. (2012) test whether decision makers’ exhibited inconsistency in Allais

paradox are partly related to different correlations. Most correlations in their the

experimental tests are also forests.

A forest is a tree if it is connected, or equivalently, it is not a proper subset of

another forest. Then, by well know results in graph theory, π is a tree if and only if

53Sets of uniqueness also play a part in He et al. (2022) for the study of private private infor-
mation structures.
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|Vπ| “ 2n´ 1. A correlation supported on a forest is similar to a perfect correlation

given the non-existence of cycles, while a perfect correlation in the current terms

is supported on a forest with exactly n disconnected nodes. For sake of testing a

decision maker’s robustness to correlation, it is sufficient to focus on extreme points

supported on trees, the reason being that a generic pair pp, qq always admits at least

one such extreme point.54

Lemma 4 (Diego and Germani (1972), Theorems 6 and 7). For a generic pair

pp, qq, π P Epp, qq if and only if (i) it is a tree and (ii) ppX1q ` qpY 1q ă 1 for all

non-empty X1, Y 1 satisfying pX1 ˆ Y 1q
Ş

supp π “ ∅.

Diego and Germani (1972) also provides a procedure for finding all trees corre-

sponding to extreme points of Epp, qq in their Section 6.B.
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