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Abstract

This paper proposes a general framework for studying the impact of collaboration

on team production. We build a micro-founded model for team production, where

collaboration between agents is represented by a bipartite network. The Nash equilib-

rium of the game incorporates both the complementarity effect between collaborating

agents and the substitutability effect between concurrent projects of the same agent.

We propose a Bayesian MCMC procedure to estimate the structural parameters and il-

lustrate the empirical and policy relevance of the model by analyzing the collaboration

network of inventors in the semiconductor and pharmaceutical industries.
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1 Introduction

Collaboration between agents plays a prominent role in team production. Through a complex

network of collaborations, agents generate spillovers not only to their coworkers but also to

other agents indirectly connected to them. The aim of this paper is to develop a general

structural model that helps us to understand how collaboration affects team production.

First, we build a micro-founded model for team production. The collaboration between

agents is characterized by a bipartite network with two types of nodes: agents and projects.

The effort that an agent spends on a project is represented by an edge in the bipartite net-

work, and collaborating agents are connected through the projects they work on together.

We characterize the equilibrium of the game where agents choose efforts in multiple and pos-

sibly overlapping projects to maximize utility. The equilibrium takes into account both the

complementarity effect between collaborating agents and the substitutability effect between

concurrent projects of the same agent.

Next, we propose an estimation procedure to recover the structural parameters of the

model. There are three main challenges in estimating this model. First, the effort level of an

agent in the production function is unobservable. To overcome this problem, we replace the

unobserved effort level in the production function with the equilibrium effort level derived

from the theoretical model. Second, the matching between agents and projects is likely

to be endogenous. Estimating the production function without taking into account this

potential endogeneity may incur a selection bias. To remediate the issue, we introduce a

participation function to model the endogenous selection of agents into projects, allowing for

both agent and project unobserved heterogeneity.1 The resulting likelihood function involves

high-dimensional integrals. This leads to the third challenge of the estimation, i.e., it is

computationally cumbersome to apply a frequentist maximum likelihood method, even when

resorting to a simulation approach. To bypass this difficulty, we adopt a Bayesian Markov

Chain Monte Carlo (MCMC) approach to jointly estimate the production and participation
1As pointed out in Bonhomme (2020), a key feature of bipartite networks is two-sided heterogeneity.

1



functions.

Finally, we demonstrate the empirical relevance of our model. The proposed bipartite

network model for team production has many potential applications including co-inventor

networks in technology innovation (see, e.g., Singh 2005, Fleming et al. 2007, Singh & Flem-

ing 2010), co-authorship networks in scientific research (see, e.g., Anderson & Richards-

Shubik 2022), expert networks (The Economist 2011, Davenport et al. 1998), online labor

markets (Horton 2010, Anderson 2017), networks of committees in the U.S. House of Repre-

sentatives (Porter et al. 2005), networks of corporate board members (Conyon & Muldoon

2006), and networks of partners in crime (Billings et al. 2019).2 In this paper, we provide

an empirical illustration using the collaboration network of patent inventors in the semi-

conductor and pharmaceutical industries. We find that the estimated complementarity and

substitutability effects are both statistically significant with the expected signs. The esti-

mates are downward biased when the endogenous matching between researchers and projects

is ignored. The direction of the bias is compatible with the intuition and consistent with

the Monte Carlo simulation results. To show the importance of correctly estimating the

structural model in policy analysis, we carry out a counterfactual study on the impact of

innovation incentives on research output. We find that the effectiveness of innovation in-

centives tends to be understated when the complementarity effect is ignored and overstated

when the substitutability effect is ignored. We also find the innovation incentive program is

more effective in the pharmaceutical industry where the complementarity effect dominates

the substitutability effect. Moreover, we derive the optimal incentive scheme and provide a

ranking of the firms based on the effectiveness of the optimal innovation incentive program.

The theoretical model in our paper has a similar linear-quadratic payoff specification

as Bimpikis et al. (2019), where firms compete in quantities à la Cournot across different

markets. While the products sold by competing firms to the same market are substitutes

in Bimpikis et al. (2019), the efforts spent by collaborating agents on the same project are
2See Section 2.4 for more detailed discussion.
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strategic complements in our model. Chen et al. (2018) also consider a similar payoff function

as ours to study agents’ effort choices in multiple activities with complementarities between

efforts of linked agents and substitutabilities between an agent’s efforts across different activ-

ities. However, different from our model where different agents may participate in different

activities (or projects), Chen et al. (2018) assume all agents in the network participate in

the same set of activities.

Our empirical analysis encounters a similar challenge to the one addressed by Bonhomme

(2021), i.e., individual contributions (or efforts) to the team production output cannot be

directly observed in the data. Bonhomme (2021) assumes that the individual contribution is

fixed across different projects and identifies individual contributions by tracking individuals

who work on different projects over time. By contrast, we allow individual contributions (or

efforts) to vary across projects and impute the unobserved individual contributions from the

equilibrium of the model.

The rest of the paper is organized as follows. Section 2 introduces the theoretical model

and characterizes the equilibrium. Section 3 presents the econometric methodology. The

empirical implications of the model are discussed in Section 4, where Section 4.1 describes

the data used in the empirical study, Section 4.2 gives the main estimation results, Section 4.3

reports the estimated marginal effects, and Section 4.4 conducts a counterfactual study on

an innovation incentive program. Section 5 briefly concludes. The proofs, technical details,

and robustness checks can be found in the online appendix.

2 Theoretical Model

2.1 Bipartite Network, Production Function, and Utility

Consider a bipartite network given by G = (N ,P , E), where N = {1, . . . , n} denotes the

set of agents, P = {1, . . . , p} denotes the set of projects, and E denotes the set of edges

connecting agents and projects. In our model, an edge eis ∈ E is the (non-negative) effort
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that agent i spends on project s. Let Ns denote the set of agents working on project s and

Pi denote the set of projects agent i participates in. Let | · | denote the cardinality of a set.

The production function for project s ∈ P is given by

ys(G) =
∑
i∈Ns

αieis +
λ

2

∑
i∈Ns

∑
j∈Ns\{i}

gijeisejs + ϵs, (1)

where ys(G) (or simply ys) is the output of project s, αi represents individual heterogeneity in

productivity, gij ∈ [0, 1] measures the degree of compatibility between collaborating agents,

and ϵs is a random shock. If λ is positive, then the marginal product of agent i’s effort in

a project increases with the efforts of other agents in that project. Hence, the coefficient λ

captures the complementarity effect.3

We assume that the utility of agent i is given by

Ui(G) =
∑
s∈Pi

δsys︸ ︷︷ ︸
payoff

− 1

2

∑
s∈Pi

e2is + ϕ
∑
s∈Pi

∑
t∈Pi\{s}

eiseit


︸ ︷︷ ︸

cost

. (2)

The utility function has a payoff/cost structure similar to Chen et al. (2018). The payoff

is the weighted total output of the projects that agent i participates in, with the weights

given by δs = |Ns|−1, i.e., the individual payoff is discounted by the number of agents

participating in project s (cf. Kandel & Lazear 1992, Jackson & Wolinsky 1996, Hollis 2001,

Yuret 2017). Moreover, the cost in Equation (2) is quadratic in efforts, eis, of agent i.

The quadratic term, e2is, captures decreasing marginal returns from each project s, while

the cross-product term, ϕeiseit, captures the interdependencies between efforts in different

projects, s ̸= t. The coefficient ϕ measures the degree of substitutability of an agent’s efforts

in different projects. If ϕ is positive, then the marginal cost (utility) of agent i’s effort
3Our formulation for capturing complementarities of collaborating agents in Equation (1) follows the

seminal model proposed in Ballester et al. (2006), and has been widely used in the theoretical and empirical
literature studying games on networks (see Jackson & Zenou 2015, Bramoullé & Kranton 2016, for an
overview and further discussion).
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in a project increases (decreases) with the effort agent i spends on other projects.4 This

quadratic cost specification helps to capture the fact that the available time or resources

of an agent are limited, and there exist substitutability effects between projects (albeit not

perfect substitutes as a resource constraint would imply). It includes the convex separable

cost specification as a special case if ϕ = 0 (when there are no substitutability effects and

projects are independent). The quadratic cost specification is very common in the literature

(cf. Singh & Vives 1984, Bulow et al. 1985, Vives 2011, Chen et al. 2018, Bimpikis et al.

2019).5,6 In Section 2.3 we will provide a simple example to understand better the intuition

behind the complementarity and substitutability effects in our model.

2.2 Game and Equilibrium

The equilibrium analysis focuses on agents’ strategic allocation of their efforts across the

projects they are in, taking their assignments into projects as given. Let dis be an indicator

variable, such that dis = 1 if agent i is in project s and dis = 0 otherwise. Given {dis}, the

following proposition provides an equilibrium characterization of the agents’ effort portfolio

e = (e′1, · · · , e′p)′, with es = (e1s, · · · , ens)′ for s = 1, · · · , p. Let

W = D(diagps=1{δs} ⊗G)D, and M = D(Jp ⊗ In)D, (3)

where ⊗ denotes the Kronecker product, D is an np-dimensional diagonal matrix given by

D = diagps=1{diagni=1{dis}}, G is an n × n zero-diagonal matrix with the (i, j)th (i ̸= j)
4Note that ∂2Ui

∂eis∂eit
= − 1

2ϕ for s ̸= t and thus efforts eis and eit are strategic substitutes when ϕ > 0
(Bulow et al. 1985).

5For example, Bimpikis et al. (2019) analyze a multi-product Cournot competition model in which firms
i = 1, . . . , n choose production quantities, qik ≥ 0, across different markets, k = 1, . . . ,m, with a cost
function of firm i given by (

∑m
k=1 qik)

2
=

∑m
k=1 q

2
ik +

∑m
k=1

∑m
l ̸=k qikqil, capturing diseconomies of scope (cf.

Bulow et al. 1985, Rawley & Simcoe 2010).
6A theoretical model with a similar cost specification as in Equation (2) but allowing for only two activities

is studied in Belhaj & Deroïan (2014) and a generalization to multiple activities can be found in Chen et al.
(2018). An empirical analysis is provided in Liu (2014) and Cohen-Cole et al. (2018). However, different
from our model where different agents may participate in different projects, these papers assume that all the
agents in the network participate in the same set of activities.
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element being gij, and Jp is an p× p zero-diagonal matrix with off-diagonal elements equal

to one. Let ρmax(·) denote the spectral radius of a square matrix.

Proposition 1. Suppose the production function for each project s ∈ P is given by Equation

(1) and the utility function for each agent i ∈ N is given by Equation (2). Let L := L(λ, ϕ) =

λW − ϕM . Given {dis}, if

ρmax(L) < 1, (4)

then the Nash equilibrium effort portfolio is given by

e∗ = (Inp − L)−1D(δ ⊗ α), (5)

where δ = (δ1, · · · , δp)′ and α = (α1, · · · , αn)′.

The matrix L = λW − ϕM represents a weight matrix of the line graph L(G) for the

bipartite network G.7 In the line graph L(G), each node represents the effort an agent

invests into a project. The links between nodes with the same project are represented by

the nonzero entries of W while the links between nodes with the same agent are represented

by the nonzero entries of M . The matrix L is a weighted sum of the matrices W and M ,

with the weights being the complementarity effect (λ) and the substitutability effect (ϕ)

respectively. The formulation of L highlights the importance of both effects (i.e., λ and ϕ)

in the bipartite network. The condition in Equation (4) plays a similar role as the one in

Theorem 1 of Ballester et al. (2006), which limits the rate at which spillovers decay across

the bipartite network.

2.3 An Illustrating Example

We illustrate the equilibrium characterization of Proposition 1 with an example correspond-

ing to the bipartite network G in Figure 1. In this bipartite network, there are 3 agents and
7Given a network G, its line graph L(G) is a graph such that each node of L(G) represents an edge of G,

and two nodes of L(G) are connected if and only if their corresponding edges share a common endpoint in
G (cf. e.g., West 2001).
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e11 e21 e12 e32 1
(
e11
e12

)
2

(
e21
0

)

3

2

(
0
e32

)

1

2

e11 e12 e32

e21

λ

λ−ϕ

Figure 1: Top left panel: the bipartite network G of agents and projects analyzed in Section
2.3, where circles represent agents and squares represent projects. Top right panel: the
projection of the bipartite network G on the set of agents. The effort levels of the agents
for each project they are involved in are indicated next to the nodes. Bottom panel: the
line graph L(G) associated with the bipartite network G, in which each node represents the
effort an agent invests into a project. Solid lines connect nodes with the same project while
dashed lines connect nodes with the same agent.
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2 projects, where agents 1 and 2 are collaborating in the first project and agents 1 and 3 are

collaborating in the second project. For expositional purposes, let gij = 1 for all i ̸= j.

Line Graph. The line graph L(G) of this bipartite network is depicted in the bottom

panel of Figure 1. In the line graph, each node represents the effort an agent invests into a

project. Solid lines connect nodes with the same project while dashed lines connect nodes

with the same agent. Following Equation (3),

W =



0 1/2 0 0 0 0

1/2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1/2

0 0 0 0 0 0

0 0 0 1/2 0 0


and M =



0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

The nonzero entries of the matrices W and M correspond to, respectively, the solid lines

and the dashed lines in the line graph. The matrix L is a weighted sum of the matrices W

and M , given by

L = λW − ϕM =



0 λ/2 0 −ϕ 0 0

λ/2 0 0 0 0 0

0 0 0 0 0 0

−ϕ 0 0 0 0 λ/2

0 0 0 0 0 0

0 0 0 λ/2 0 0


.

The (1, 2)th and (2, 1)th elements of the matrix L represent the link between e11 and e21

with weight λ/2 in the line graph, the (4, 6)th and (6, 4)th elements represent the link

between e12 and e32 with weight λ/2, and the (1, 4)th and (4, 1)th elements represent the
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link between e11 and e12 with weight −ϕ. It is worth pointing out that, in the absence of

the substitutability effect (i.e., ϕ = 0), the line graph would be split into two independent

sub-graphs with each one corresponding to the collaborators’ efforts in a single project.

Therefore, the substitutability effect provides a channel to capture the interdependence of

efforts in different projects.

Equilibrium. In this example, the sufficient condition (4) for the existence of a unique

equilibrium holds if |4ϕ| < 4− λ2. Note that this condition reduces to |ϕ| < 1 if λ = 0 and

|λ| < 2 if ϕ = 0. From Equation (5), the equilibrium effort portfolio is

e∗ =



e∗11

e∗21

e∗31

e∗12

e∗22

e∗32


=

1

(4− λ2)2 − 16ϕ2



2(4− λ2 − 4ϕ)α1 + λ(4− λ2)α2 − 4λϕα3

λ(4− λ2 − 4ϕ)α1 + 2(4− λ2 − 4ϕ2)α2 − 2λ2ϕα3

0

2(4− λ2 − 4ϕ)α1 − 4λϕα2 + λ(4− λ2)α3

0

λ(4− λ2 − 4ϕ)α1 − 2λ2ϕα2 + 2(4− λ2 − 4ϕ2)α3


.

In the following, we analyze how idiosyncratic heterogeneity, complementarity, and substi-

tutability affect the equilibrium effort choices.

Idiosyncratic Heterogeneity: Marginal effects of αi. As |4ϕ| < 4− λ2,

∂e∗11
∂α1

=
∂e∗12
∂α1

=
2

4− λ2 + 4ϕ
> 0

∂e∗21
∂α2

=
∂e∗32
∂α3

=
2(4− λ2 − 4ϕ2)

(4− λ2)2 − 16ϕ2
> 0,
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Figure 2: Left panel: equilibrium effort levels for agents 1 and 2 in project 1 for λ = 0.25,
ϕ = 0.75, α2 = α3 = 1, and varying values of α1. Note that in this case, e∗11 = e∗12 and
e∗21 = e∗32. Right panel: equilibrium effort levels for agents 1, 2 and 3 in projects 1 and 2 for
λ = 0.5, ϕ = 0.75, α1 = α3 = 1, and varying values of α2.

and, if the complementarity effect is positive (i.e., λ > 0),

∂e∗21
∂α1

=
∂e∗32
∂α1

=
λ

4− λ2 + 4ϕ
> 0

∂e∗11
∂α2

=
∂e∗12
∂α3

=
λ(4− λ2)

(4− λ2)2 − 16ϕ2
> 0,

which suggest that more productive agents raise not only their own effort levels but also the

effort levels of their collaborators due to the complementarity effect. On the other hand, if

the substitutability effect is also positive (i.e., ϕ > 0),

∂e∗12
∂α2

=
∂e∗11
∂α3

= − 4λϕ

(4− λ2)2 − 16ϕ2
< 0

∂e∗32
∂α2

=
∂e∗21
∂α3

= − 2λ2ϕ

(4− λ2)2 − 16ϕ2
< 0,

which suggest that more productive agents induce lower effort levels spent by agents on other

projects. It is worth noting that, without the substitutability effect (i.e., ϕ = 0), agent i’s

productivity would have no effect on other agents’ effort levels on a project that agent i is

not involved in. This spotlights the important role of substitutability effect in the bipartite

network. An illustration can be seen in Figure 2.
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Figure 3: Equilibrium effort levels for agent 1 with α1 = 0.1, α2 = 0.5, α3 = 1, ϕ = 0.1
(left panel), and ϕ = 0.6 (right panel), for varying values of λ. The dashed lines indicate the
effort levels for λ = 0.

Complementarity: Marginal effects of λ. The partial derivative of the equilibrium

effort of agent 1 in project 1 with respect to the complementarity parameter λ is given by

∂e∗11
∂λ

=
1

[(4− λ2)2 − 16ϕ2]2
{
4λ(4− λ2 − 4ϕ)2α1 +

[
(16− λ4 − 16ϕ2)(4− λ2) + 32λ2ϕ2

]
α2

−4ϕ
[
(4 + 3λ2)(4− λ2)− 16ϕ2

]
α3

}
.

Observe that the coefficient of α3 is negative. Thus, when α3 is large enough, ∂e∗11/∂λ could

be negative. The reason is that, with increasing λ, the complementarity effects between

collaborating agents become stronger, and this effect is more pronounced for the collaboration

of agent 1 with the more productive agent 3, than with the less productive agent 2. Moreover,

when the substitutability effect ϕ is also large, agent 1 may spend even less effort on the

project with agent 2, leading to a negative ∂e∗11/∂λ. An illustration can be seen in Figure 3.

Substitutability: Marginal effects of ϕ. The partial derivatives of the equilibrium

efforts of agent 1 in projects 1 and 2 with respect to the substitutability coefficient ϕ are
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Figure 4: Equilibrium effort levels for agent 1 with α1 = 0.2, α2 = 0.3, α3 = 0.8, and
λ = 0.75, for varying values of ϕ. The dashed lines indicate the effort levels for ϕ = 0.

given by

∂e∗11
∂ϕ

= −2

[
λ(α3 − α2)

(λ2 + 4ϕ− 4)2
+

4α1 + λ(α2 + α3)

(λ2 − 4(ϕ+ 1))2

]
,

∂e∗12
∂ϕ

= 2

[
λ(α3 − α2)

(λ2 + 4ϕ− 4)2
− 4α1 + λ(α2 + α3)

(λ2 − 4(ϕ+ 1))2

]
.

Suppose α3 > α2. Then, ∂e∗11/∂ϕ is negative. That is, with increasing ϕ, agent 1 exerts

lower effort in the project with a less productive collaborator. In contrast, ∂e∗12/∂ϕ can

be positive or negative, depending on whether the first term is larger or smaller than the

second term on the right-hand side of the second equation. With α1 = 0.2, α2 = 0.3,

α3 = 0.8, and λ = 0.75, we can see in Figure 4 that, when the substitutability effect ϕ is

small, both ∂e∗11/∂ϕ and ∂e∗12/∂ϕ are negative, and ∂e∗11/∂ϕ < ∂e∗12/∂ϕ. That is, increasing

ϕ reduces efforts of agent 1 in both projects, and the effort reduction is more significant in

the project with a less productive collaborator. When ϕ is larger, ∂e∗12/∂ϕ becomes positive

while ∂e∗11/∂ϕ remains negative, indicating agent 1 reallocates effort to the project with a

more productive collaborator as a result of the substitutability effect.

2.4 Applications of the Bipartite Network Model

In the following, we list some potential applications of our bipartite network model for team

production. Empirical analysis in these applications shares some common challenges. For
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instance, the data usually only have information on the team production output but not on

the individual contribution of each agent, and agents are likely to be sorted into different

projects based on unobserved characteristics. These challenges motivate the general empirical

model and estimation framework introduced in the next section.

Co-inventor Network. A large body of literature has emphasized the crucial role of

networks of collaborating inventors on innovation outcomes (Singh & Fleming 2010, Singh

2005, Fleming et al. 2007, König 2016). We can treat patents and inventors as two dis-

tinct sets of nodes in a bipartite network connected by the effort that an inventor exerts

in contributing to a patent. We then can use our framework to identify complementarity

and substitutability effects in teams of inventors, and how these contribute to successful

innovations.8

Co-authorship Network. In a co-authorship network, researchers and research projects

can be treated as two distinct sets of nodes in a bipartite network connected by the research

effort that a researcher spends on a project. Our model can be used to study the spillover

effect of research effort taking into account the substitutability effect between concurrent

projects of the same researcher. Hsieh et al. (2018) adopt this model to analyze the co-

authorship network of economists registered in the Research Papers in Economics (RePEc)

Author Service.

Expert Networks. An expert network consists of a group of professionals who are

hired by companies in need of experts on some projects. They have become popular in the

investment industry with professional firms (e.g. GLG or GlobalResearch) providing expert

advice at a service fee (The Economist 2011). Moreover, Davenport et al. (1998) report sev-

eral instances of firms building and managing expert networks within their organization. For

example, Microsoft is mentioned as having developed an expert network that monitors the
8In Section 4, we will provide an empirical application of our model to the network of patent inventors

in the semiconductor and pharmaceutical industries.
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types of knowledge competencies necessary for software development projects and matches

these projects with experts based on their expertise. The experts and projects can be repre-

sented as a bipartite network, and our framework can be used to analyze their performance

and value to a firm.

Online Labor Markets. In recent years, numerous online labor markets have emerged

that allow workers to sell their labor to a pool of buyers (Horton 2010). For example,

Anderson (2017) analyzes a large online freelance labor market (Upwork), where workers with

different skills are matched to employers searching for specific skills. Our bipartite network

framework can be used to analyze how the interactions of workers with complementary skills

in diverse teams create synergies and value for workers and employers.

Network of Committees. Porter et al. (2005) investigate the network of committees

in the U.S. House of Representatives, with committees connected according to the common

membership of the Representatives. Their model can be reframed as a bipartite network with

the Representatives and the committees as two sets of nodes connected by each Representa-

tive’s contribution to the committee’s work. Since the bipartite network framework directly

models the individual decision of each Representative instead of the aggregate outcome of

a committee, it allows us to give a more intricate examination of the political correlation

between Representatives.

Corporate Board Member Network Conyon & Muldoon (2006) study the network

structure of boards of directors. They show the importance of the bipartite representation

for understanding the “small world” characteristics (Jackson & Rogers 2005) of corporate

board member networks. Our model, on the other hand, focuses on the interdependence of

board members’ input in the firm’s operations and can be used to study the impact of board

members’ synergy on firm performance.
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Partners in Crime Billings et al. (2019) examine social spillovers in crime using data

on offenders who were arrested for the same crime. The offenders and the criminal incidents

can be considered as two sets of nodes in a bipartite network. Using our micro-founded

model, one can conduct counterfactual analysis to evaluate the effectiveness of different

crime-reduction policies.

3 Estimation

Recall dis = 1(i ∈ Ns), where 1(·) denotes an indicator function. Equation (1) can be

rewritten as

ys =
∑
i∈N

αidiseis +
λ

2

∑
i∈N

∑
j∈N\{i}

gijdisdjseisejs + ϵs, (6)

where ϵs is i.i.d.(0, σ2
ϵ ). In the empirical model, we assume agent i’s productivity is given by

αi = exp(x′iβ), (7)

where xi is a vector of observable individual attributes. Equation (7) is assumed to be an

exponential function to guarantee that the productivity is positive.

There are three main challenges in estimating this model. First, the effort level eis is

usually unobservable to the econometrician. To overcome this problem, we replace eis in

Equation (6) with the equilibrium effort level e∗is given by Equation (5) and estimate the

equilibrium production function

ys =
∑
i∈N

αidise
∗
is +

λ

2

∑
i∈N

∑
j∈N\{i}

gijdisdjse
∗
ise

∗
js + ϵs. (8)

Equation (8) is highly nonlinear in the unknown parameters. Thus, it is difficult to derive

easy-to-check sufficient conditions for identification as in Bramoullé et al. (2009). To get

some intuition on what data variation identifies the complementarity parameter λ and the
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substitutability parameter ϕ respectively, we consider the following two cases. For simplicity,

suppose gij = 1 for all i ̸= j and the productivities (αi) are identical for all i. In the first case,

suppose n agents collaborate on a single project. If λ ̸= 0, then the (expected) equilibrium

output of the project would change with n. Thus, the complementarity parameter λ can

be identified from the output variation with n. In the second case, suppose a single agent

works on p projects alone. If ϕ ̸= 0, then the (expected) equilibrium output of each project

would change with p. Thus, the substitutability parameter ϕ can be identified from the

output variation with p. Therefore, in the empirical application, when the structure of the

bipartite network is sufficiently rich, we should be able to identify both complementarity and

substitutability effects.

Second, dis is likely to be endogenous. Intuitively, high-ability agents tend to work on

more projects at the same time, and high-potential projects are usually harder to find and

more challenging to work on. Furthermore, agents tend to be sorted into projects based on

their abilities and other unobserved characteristics. Estimating Equation (8) without taking

into account the potential endogeneity of dis may incur a selection bias. To control for

the endogenous selection, we introduce a participation function allowing for both agent and

project unobserved heterogeneity in a similar way as Bonhomme (2020). More specifically,

we assume

dis = 1(z′isγ + ξµi + ψηs + κ|µi − ηs|+ vis > 0), (9)

where zis is a vector of observables measuring compatibility between agent i and other

agents participating in project s, µi is an i.i.d.(0, 1) agent-specific random component, ηs is

an i.i.d.(0, 1) project-specific random component, and vis is an i.i.d.(0, 1) error term inde-

pendent of µi and ηs.9 As the number of observations dis is much larger than the number
9Our model follows a large literature in labor economics and related fields that analyze the matching

of workers to firms (or jobs/projects) based on skills required to apply for a job or geographic restrictions
(Petrongolo & Pissarides 2001, Anderson 2017, Bonhomme 2020). This literature has emphasized the role of
controlling for unobserved individual and firm (or job/project) effects in the matching process as we do here
(similar to e.g. Ahmadpoor & Jones 2019, Zacchia 2020, Bhaskarabhatla et al. 2021). Equation (9) can be
seen as a variation of the so-called “beta model” of network formation (Chatterjee et al. 2011), including both
node- and dyadic-specific shocks as well as covariates, as highlighted, for example, by Graham (2017) and
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of random components µi and ηs, it is reasonable to assume that µi and ηs can be identi-

fied from Equation (9). To allow the agent and project unobserved heterogeneity to also

affect production, we assume agent i’s productivity depends on the agent-specific random

component µi so that Equation (7) becomes

αi = exp(x′iβ + ζµi),

and the error term in Equation (8) can be written as

ϵs = ςηs + us,

where us is an i.i.d.(0, σ2
u) error term independent of ηs. This specification has the following

implications. First, if ζ > 0 and ξ > 0, then an agent with higher ability (given by a higher

µi) tends to participate in more projects. Second, if ς > 0 and ψ < 0, then a project with

higher potential (given by a higher ηs) has a higher threshold for agents to participate in.

Finally, if κ < 0, then agents are more likely to join projects that match their abilities, i.e.,

agents are sorted into projects based on homophily of unobserved characteristics.

Third, with the unobserved heterogeneity, the joint likelihood function of production

and participation involves high-dimensional integrals and is computationally cumbersome to

evaluate. To bypass this difficulty, we follow the Bayesian approach of Zeger & Karim (1991).

Let θd = (γ′, ξ, ψ, κ)′ and θy = (λ, ϕ, β ′, ζ, ς, σ2
u)

′. Let f(d|µ, η, θd) denote the conditional

probability of d = [dis] given µ = (µ1, · · · , µn)′ and η = (η1, · · · , ηp)′, and f(y|d, µ, η, θy)

denote the conditional density of y = (y1, · · · , yp)′ given d, µ, and η. Then, µ, η, and

θ = (θ′y, θ
′
d)

′ can be sampled from the joint posterior density

p(µ, η, θ|y, d) ∝ f(y|d, µ, η, θy)f(d|µ, η, θd)π(µ)π(η)π(θy)π(θd),

Bonhomme (2021). In the empirical study in Section 4, the data indicates every agent only participates in
projects within their employing company, suggesting that the agents are likely assigned to projects (informally
or more formally by a manager) based on their compatibility (Aggarwal et al. 2020).
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with the priors π(µ), π(η), π(θy) and π(θd). The details of Bayesian estimation can be found

in Appendix B.

4 The Bipartite Network of Patents and Inventors

Collaborations between inventors have been identified to be crucial for facilitating knowledge

flows (Singh 2005), innovations and technological breakthroughs (Fleming et al. 2007, Singh

& Fleming 2010, Bhaskarabhatla et al. 2021) as well as firm performance (Aggarwal et al.

2020, Almeida & Kogut 1999). To show the empirical relevance of our model, we provide

the following illustration based on the collaboration network of inventors on U.S. patents in

the semiconductor and pharmaceutical industries.

4.1 Data

In this empirical illustration, we use the dataset compiled by Bhaskarabhatla et al. (2021).

The primary data used in their study consists of U.S. patents granted by the United States

Patent and Trademark Office (USPTO), which includes information about the inventors’

identities and the corresponding firm assignee for each patent.10 Since USPTO does not

provide unique identifiers for inventors and assignees, Bhaskarabhatla et al. (2021) use the

procedures outlined in Li et al. (2014) and Hall et al. (2001) to disambiguate inventor names

and standardize assignee names. Subsequently, they match the assignees in the USPTO

patent data to Compustat data on publicly listed firms using the procedure in Bessen (2009).

The Continuation patents are excluded due to their potential to inflate innovation produc-

tivity artificially. Each entry in the dataset represents a patent-inventor pairing, containing

information on both the patent and the associated inventor(s). For each patent, we know

the application number, application year, and granted year. We further merge the informa-

tion of patent forward citation and patent value (Kogan et al. 2017) as measures of patent
10The sample contains all patents granted between 1973 and 2013.
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output.11 For inventors, the dataset includes the inventor’s foreigner status, geographical

location (at the state level for U.S.-based inventors), affiliated company, and industry classi-

fication (NAICS) code. Additionally, we gauge the ability of an inventor by the cumulative

total of patent citations (value) garnered from all the granted patents, and the experience

of an inventor by the number of years between the first patent application and the current

application.

To prepare the data for the estimation, we undertake the following sample selection proce-

dure. Firstly, we narrow our focus to patents filed in two specific industries: Semiconductors

and related device manufacturing (with NAICS code 334413) and pharmaceutical prepara-

tion manufacturing (with NAICS code 325412). Notably, the semiconductor industry has

the highest number of patent applications across all industries, while the pharmaceuticals

industry leads in patent applications for non-computer-related sectors. Secondly, we focus

on patents applied in 2003, in which the number of patent applications in the semiconductor

industry is the highest compared to all other years.12 Thirdly, we exclude patents with miss-

ing information on the application year or associated inventors, and inventors with missing

information on their characteristics. Finally, we also drop inventors who only work on one

solo-invented patent and the corresponding patents. The summary statistics of the data

used for the estimation are reported in Tables 1 and 2. In the semiconductor industry our

sample comprises 6,017 patents and 8,472 inventors. On average, each patent involves 2.58

inventors, and each inventor contributes to 1.83 patents. By contrast, the pharmaceuticals

industry in our sample exhibits fewer patents (927) and inventors (2,888). Here, each patent

is co-invented by 4.29 inventors on average, with each inventor contributing to 1.38 patents.

These summary statistics imply that collaborations are more common in the pharmaceutical

industry than in the semiconductor industry, and inventors in the pharmaceutical industry
11The patent citation and value data can be downloaded from the supplementary GitHub website

of Kogan et al. (2017): https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-
Growth-Extended-Data

12In Appendix E.1, we conduct a robustness check with patents applied in 2001, in which the number of
patent applications in the pharmaceutical industry is the highest compared to all other years. The estimation
results are qualitatively unchanged.
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tend to concentrate their efforts on fewer innovation projects. In the empirical study, we

will investigate whether these industries also differ in terms of the complementarity effects

among inventors and substitutability effects across patents.

Figures 5 and 6 depict the networks of co-inventors in the semiconductor and pharma-

ceutical industries, respectively. Different colors indicate different company affiliations. We

see that both networks are characterized by closely linked clusters of inventors with the

same company affiliation. The extent to which these networks are clustered can be mea-

sured with the clustering coefficient, which is defined as the fraction of connected neighbors

of a node, averaged across nodes in the network. The average clustering coefficient for the

co-inventor network in the semiconductor industry is 0.64 while for the pharmaceutical in-

dustry it is 0.86, suggesting that the co-inventor network in the pharmaceutical industry

is more clustered than in the semiconductor industry. In Section 4.2, we will analyze how

these differences translate to the synergies between collaborating (linked) inventors in the

network.

4.2 Estimation Results

In the benchmark empirical model, we assume that the compatibility between inventors is

homogeneous, i.e., gij = 1 for i ̸= j in Equation (1).13 Table 3 reports the estimation results

of Equations (8) and (9) for semiconductors and pharmaceuticals. We use the logarithm of

patent forward citations as the output of the production function.14,15 Columns (A) and (C)

report the estimates of the production function ignoring potential endogenous participation,
13In Appendix E.2, we conduct a robustness check with heterogeneous compatibilities between inventors,

where gij is based on the Jaffe (1986) similarity measure between inventors i and j. The estimation results
are qualitatively unchanged.

14 There exists a well-documented positive correlation between the monetary value of a patent and the
citations it receives (cf. e.g. Harhoff et al. 1999, Hall et al. 2005, Kogan et al. 2017, Higham et al. 2021).
Based on our data sample we find that a one-unit increase in patent output (measured as the log of patent
citations) is approximately associated with a $1 million increase in economic value (in 1982 prices). See
Appendix C for further details.

15In Appendix E.3, we conduct a robustness check with an alternative measure for the value of a patent
introduced in Kogan et al. (2017) as the output of the production function. The estimation results are
qualitatively unchanged.
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Table 1: Sample statistics for semiconductors.

Min Max Mean S.D. Obs.

Patents
Forward Citations (log) 0.0000 5.7398 1.6047 1.1063 6017
Value (million dollars in 1982 prices) 0.0209 162.0552 7.4947 9.9904 6017
Number of inventors (in each patent) 1 13 2.5784 1.4803 6017

Inventors
Foreigner 0 1 0.4214 0.4938 8472
Log life-time patent citations 0 9.3284 2.7749 1.7108 8472
Log life-time patent values (millions) 0 6.4146 1.9198 1.0437 8472
Seniority (decades since first granted patent) 0 2.5000 0.2275 0.4088 8472
Number of patents (for each inventor) 1 49 1.8312 1.9784 8472

Notes: Semiconductor and related device manufacturing (NAICS: 334413). This sample is
based on patents applied in 2003. We drop inventors with a single solo-invented patent and the
corresponding patents. We add one before taking the log of forward citations.

Table 2: Sample statistics for pharmaceuticals.

Min Max Mean S.D. Obs.

Patents
Forward Citations (log) 0.0000 5.1761 1.3639 1.2304 927
Value (million dollars in 1982 prices) 0.0100 563.4050 51.2777 60.5520 927
Number of inventors (in each patent) 1 24 4.2945 2.9925 927

Inventors
Foreigner 0 1 0.2753 0.4467 2888
Log life-time patent citations 0 8.3156 2.4375 1.7482 2888
Log life-time patent values (millions) 0 6.8764 3.4198 1.2467 2888
Seniority (decades since first granted patent) 0 2.5000 0.2617 0.4495 2888
Number of patents (for each inventor) 1 18 1.3785 0.9459 2888

Notes: Pharmaceutical preparation manufacturing (NAICS: 325412). This sample is based on
patents applied in 2003. We drop inventors with a single solo-invented patent and the correspond-
ing patents. We add one before taking the log of forward citations.
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Figure 5: The network of co-inventors in the semiconductor industry (NAICS code 334413).
Only inventors with at least one collaboration are shown. Different colors indicate different
company affiliations. The network consists of 8,472 nodes and 14,617 links. The average
degree is 3.52. The average clustering coefficient (i.e., the average fraction of connected
neighbors of a node) is 0.64.

and Columns (B) and (D) report the joint estimates of the production and participation

functions with both inventor- and patent-specific random components.16

For semiconductors the estimated complementarity effect (λ) and substitutability ef-

fect (ϕ) are both statistically significant when endogenous participation is controlled for.

However, both effects are downwards biased when endogenous participation is ignored. A

possible explanation for the downward bias is as follows. The estimated coefficients (ζ and

ξ) of the inventor-specific random component suggest that high-ability inventors tend to

participate in more projects. Therefore, ignoring endogenous project participation tends to
16The trace plot of the MCMC draws and the Geweke convergence test for the complementarity effect (λ)

and the substitutability effect (ϕ) in Columns (B) and (D) of Table 3 are provided in Appendix Figure D.1.
The test results suggest the Markov chains are converged.

22



Figure 6: The network of co-inventors in the pharmaceutical industry (NAICS code 325412).
Only inventors with at least one collaboration are shown. Different colors indicate different
company affiliations. The network consists of 2,888 nodes and 9,164 links. The average
degree is 6.36. The average clustering coefficient (i.e., the average fraction of connected
neighbors of a node) is 0.86.
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Table 3: Estimation results for semiconductors and pharmaceuticals using
patent forward citations.

Semiconductors Pharmaceuticals

(A) (B) (C) (D)
Exogenous Endogenous Exogenous Endogenous

Participation Participation Participation Participation

Production

Complementarity (λ) 0.1538*** 0.1677*** 0.2782*** 0.3192***
(0.0233) (0.0245) (0.0663) (0.0751)

Substitutability (ϕ) 0.0485*** 0.0502*** 0.1663*** 0.1871***
(0.0062) (0.0062) (0.0204) (0.0348)

Constant (β0) -0.2110*** -0.2167*** -0.3956*** -0.4208***
(0.0224) (0.0243) (0.0610) (0.0670)

Foreigner (β1) -0.0494*** -0.0499*** -0.0726** -0.0711*
(0.0139) (0.0138) (0.0365) (0.0362)

Log accu. citations (β2) 0.1559*** 0.1569*** 0.2212*** 0.2237***
(0.0060) (0.0062) (0.0099) (0.0106)

Seniority (β3) -0.3823*** -0.3890*** -0.7042*** -0.7191***
(0.0339) (0.0327) (0.1102) (0.1120)

Inventor effect (ζ) – 0.0106*** – 0.0289*
(0.0027) (0.0169)

Patent effect (ς) – 0.0129*** – 0.0283
(0.0027) (0.0170)

Error term variance (σ2
ϵ ) 0.8867*** – 0.7174*** –

(0.0162) (0.0338)
Error term variance (σ2

u) – 0.8664*** – 0.7170***
(0.0162) (0.0337)

Participation

Constant (γ0) – -5.1908*** – -5.0033***
(0.0455) (0.0884)

Location (γ1) – 1.5446*** – 5.2940***
(0.0674) (0.2421)

Past coauthors (γ2) – 8.4770*** – 7.2150***
(0.1589) (0.3919)

Common co-authors (γ3) – 15.1374*** – 12.8617***
(0.1659) (0.3785)

Inventor effect (ξ) – 1.4049*** – 1.1192***
(0.0647) (0.0767)

Patent effect (ψ) – -2.8966*** – -2.6903***
(0.0432) (0.0960)

Homophily effect (κ) – -3.6539*** – -1.6792***
(0.0669) (0.0827)

Sample size
Patents 6,017 927
Inventors 8,472 2,888

Notes: Columns (A) and (B) show estimates for firms in the semiconductor and related device
manufacturing industry (NAICS code: 334413). Columns (C) and (D) show estimates for
firms in the pharmaceutical preparation manufacturing industry (NAICS code: 325412). The
output of the production function is measured by the logarithm of patent forward citations.
In Columns (A) and (C) we estimate the production function ignoring endogenous project
participation. In Columns (B) and (D) we jointly estimate the production and participation
functions with both inventor and patent random effects. We implement MCMC sampling for
25,000 iterations, leaving the first 5,000 draws for burn-in and using the rest of the draws for
computing the posterior mean (as the point estimate) and the posterior standard deviation (in
the parenthesis). The asterisks ***(**,*) indicate that the 99% (95%, 90%) highest posterior
density range does not cover zero.
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underestimate the substitutability effect because it fails to take into account that inventors

simultaneously working on multiple projects are more likely to be high-ability ones. On the

other hand, the estimated coefficients (ς and ψ) of the project-specific random component

suggest that high-potential projects are harder to find and hold a higher threshold for inven-

tors to participate in. The estimated coefficient κ suggests inventors are matched to projects

based on homophily of unobserved characteristics. Since high-potential projects are scarce

and inventors are sorted into projects according to their compatibility, most inventors in our

data are collaborating on projects with relatively low potential. Therefore, the complemen-

tarity effect tends to be underestimated when endogenous participation is not taken into

account.17

Regarding the effect of inventor characteristics on research output, we find that the

cumulative total of citations garnered from all of the granted patents is a positive and

significant predictor of the inventor’s productivity (cf. e.g., Singh & Fleming 2010, Ductor

2015). On the other hand, seniority measured by the number of decades since the first

patent application has a negative partial effect on research output. This finding mirrors

Ductor (2015), who shows that career time has a negative impact on productivity, and it is

consistent with the scientists’ life-cycle effects documented in Levin & Stephan (1991).

Finally, from the estimation of the participation equation, we find that being in the same

location, being collaborators in the past, and sharing common collaborators in the past all

make collaboration more likely (cf. Freeman & Huang 2015).

For pharmaceuticals, the estimation results show a similar pattern. In particular, both

the estimated complementarity and substitutability effects are statistically significant when

endogenous participation is controlled for, and downwards biased when endogenous partici-

pation is ignored. In terms of magnitudes, we find that the estimated complementarity and

substitutability effects are higher in the pharmaceutical industry relative to the semicon-

ductor industry. This difference can be interpreted in the context of the existing empirical
17In Appendix F, we conduct Monte Carlo simulation experiments with different signs of ξ and ψ, and the

pattern of estimation bias is consistent with the above explanation.
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literature. For example, Pammolli et al. (2011) document a sharp decline in innovations gen-

erated per dollar of pharmaceutical research. Bloom et al. (2020) document that research

productivity is declining across a variety of industries. However, the semiconductor industry

is the industry with the least degree of diminishing returns in idea production. This indicates

that successful innovation might be more difficult in the pharmaceutical industry than in the

semiconductor industry. Jones (2009) argues that when innovation becomes more difficult,

inventors tend to increase their degree of specialization and form more collaborations to com-

pensate. Interpreting these findings in terms of our model, a higher difficulty of innovation

could lead to higher complementarity (collaborations) and substitutability (specialization)

effects, and this could be related to the higher magnitudes of the estimated effects for the

pharmaceutical over the semiconductor industry.

4.3 Marginal Effects

From Equation (5), the marginal effect of the kth covariate of agent i on the equilibrium

effort is given by
∂e∗

∂xik
= (Inp − L)−1D(δ ⊗ ∂α

∂xik
),

where ∂α/∂xik is an n × 1 vector with the ith element being ∂αi/∂xik = exp(x′iβ)βk and

other elements being 0.18 As the agents are connected through the bipartite network, the

change in an agent’s covariate affects not only his/her own equilibrium effort but also the

equilibrium efforts of other agents in the network. The former is known as the direct marginal

effect, while the latter is known as the indirect marginal effect. In Tables 4 and 5, we report

the average marginal effect (AME) of each covariate by first calculating the marginal effect

for each individual and then taking an average across all individuals. For the kth covariate,

the direct AME is given by
1

n

∑
i∈N

∑
s∈Pi

∂e∗is
∂xik

,

18The covariate xik is taken to be a continuous variable. If xik is a binary variable, then the marginal
effect is given by e∗(xik = 1)− e∗(xik = 0).
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the indirect AME is given by
1

n

∑
i∈N

∑
j ̸=i,j∈N ,

∑
s∈Pj

∂e∗js
∂xik

,

and the total AME is given by
1

n

∑
i∈N

∑
j∈N ,

∑
s∈Pj

∂e∗js
∂xik

.

The benchmark marginal effects reported in the first columns of Tables 4 and 5 are

calculated based on the estimates given in Columns (B) and (D) of Tables 3, respectively.

To gain a deeper understanding of the magnitudes of the estimated complementarity and

substitutability effects, we also calculate the marginal effects under the restrictions λ = 0,

ϕ = 0, and λ = ϕ = 0 respectively. We find that ignoring the complementarity effect (i.e., λ

is set to 0) leads to an attenuation bias (i.e., a bias towards zero) in the estimated marginal

effects while ignoring the substitutability effect (i.e., ϕ is set to 0) leads to an exaggeration

bias (i.e., a bias away from zero) in the estimated marginal effects. In the semiconductor

industry, when both effects are ignored (i.e., both λ and ϕ are set to 0), the direction of

the bias in the estimated total AME is the same as the case with ϕ set to 0, suggesting

that the substitutability effect ϕ dominates the complementarity effect λ. By contrast, in

the pharmaceutical industry, when both λ and ϕ are set to 0, the direction of the bias in

the estimated total AME is the same as the case with λ set to 0, indicating that the com-

plementarity effect dominates the substitutability effect. In Section 4.2, we found that the

estimated complementarity effect is higher in the pharmaceutical industry. This pattern is

corroborated in the current section where we further find that in the pharmaceutical indus-

try the spillover effect dominates in the marginal effect analysis while in the semiconductor

industry the substitution effect dominates. As discussed in Section 4.2, this is likely due to a

higher difficulty of innovation in the pharmaceutical industry (Pammolli et al. 2011, Bloom

et al. 2020), leading to higher synergy effects (complementarity) between team members in

the pharmaceutical industry to compensate for the greater difficulty in discovering new ideas

(Jones 2009).
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Table 4: Marginal effects of inventor characteristics on efforts
for semiconductors.

Benchmark λ = 0 ϕ = 0 λ = ϕ = 0

Direct AME
Foreigner -0.0398 -0.0396 -0.0455 -0.0453
Log accu. citations 0.1245 0.1240 0.1426 0.1419
Seniority -0.3076 -0.3063 -0.3523 -0.3505

Indirect AME
Foreigner -0.0029 0.0000 -0.0038 0.0000
Log accu. citations 0.0092 0.0000 0.0119 0.0000
Seniority -0.0226 0.0000 -0.0293 0.0000

Total AME
Foreigner -0.0427 -0.0396 -0.0493 -0.0453
Log accu. citations 0.1337 0.1240 0.1545 0.1419
Seniority -0.3303 -0.3063 -0.3816 -0.3505

Notes: The marginal effects are calculated based on the estimates reported in
Column (B) of Table 3.

Table 5: Marginal effects of inventor characteristics on efforts
for pharmaceuticals

Benchmark λ = 0 ϕ = 0 λ = ϕ = 0

Direct AME
Foreigner -0.0206 -0.0202 -0.0248 -0.0243
Log accu. citations 0.0665 0.0652 0.0802 0.0785
Seniority -0.2134 -0.2094 -0.2576 -0.2522

Indirect AME
Foreigner -0.0044 0.0000 -0.0060 0.0000
Log accu. citations 0.0141 0.0000 0.0196 0.0000
Seniority -0.0449 0.0000 -0.0622 0.0000

Total AME
Foreigner -0.0249 -0.0202 -0.0308 -0.0243
Log accu. citations 0.0806 0.0652 0.0998 0.0785
Seniority -0.2583 -0.2094 -0.3188 -0.2522

Notes: The marginal effects are calculated based on the estimates reported in
Column (D) of Table 3.
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4.4 Counterfactual Study

To illustrate the importance of accounting for the complementarity and substitutability

effects in policy design and evaluation, we use our model to design an incentive program to

promote innovations. Under this policy, we assume every inventor receives a reward, r ∈ R+,

per unit of the output she generates.19 Then, the utility function (2) of inventor i can be

extended to

Ui(G, r) =
∑
s∈Pi

(1 + r)δsys −
1

2

∑
s∈Pi

e2is + ϕ
∑
s∈Pi

∑
t∈Pi\{s}

eiseit

 . (10)

Let L(r) := L(r;λ, ϕ) = λ(1 + r)W − ϕM . Following a similar argument as in the proof of

Proposition 1, we can show that, if ρmax[L(r)] < 1, then the equilibrium effort portfolio is

given by

e∗(r) = (1 + r)[Inp − L(r)]−1D(δ ⊗ α). (11)

It is worth pointing out that if the complementarity effect is ignored (i.e., λ = 0), then

L(r) = −ϕM , which does not depend on r. In this case, the reward r only increases the

equilibrium effort

e∗(r) = (1 + r)(Inp + ϕM)−1D(δ ⊗ α)

by a factor of (1+ r). As the output is linear in e∗(r) with λ = 0 in Equation (1), the impact

of the inventive program on output is one-to-one. Intuitively, when λ = 0, the multiplier

effect of the bipartite network is wiped out, and hence the impact of the incentive program

is likely to be understated. On the other hand, if the substitutability effect is ignored (i.e.,

ϕ = 0), then the cost of effort is understated and thus the impact of the incentive program on

equilibrium effort is overstated. As a result, the impact of the incentive program on output
19Indeed, many firms, universities, and research funding institutions give awards or provide monetary

incentives to promote high-quality research outputs. For example, Yuret (2017) documents subsidies for
publications provided by the Scientific and Technological Research Council of Turkey. Researchers freely
use these publication subsidies as pocket money, and, as in our model, the publication subsidy given to a
researcher for an article is inversely proportional to the number of authors of the article.
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tends to be overstated as well.

For a given reward rate r, the net total output can be computed as the total output,∑
i∈N

∑
s∈Pi

δsys(G, r), minus the cost of the program,
∑

i∈N
∑

s∈Pi
rδsys(G, r). In Figure

7, net total output is shown as a function of the reward rate r varying from 0 to 1. Panel

(a) depicts the case of the semiconductor industry, and Panel (b) depicts the case of the

pharmaceutical industry. The solid curves (benchmark) are based on the estimates reported

in Columns (B) and (D) of Table 3, respectively. The dashed curves correspond to the case

that the complementarity effect is ignored (i.e., λ is set to 0). In this case, the net total

output is understated (i.e., lower than the benchmark) at any rate between 0 and 1. The

dotted curves correspond to the case that the substitutability effect is ignored (i.e., ϕ is set

to 0). In this case, the net total output is overstated. When both effects are ignored (i.e.,

both λ and ϕ are set to 0), the net total output is depicted by the dash-dotted curve. In

this case, net total output is overstated for the semiconductor industry but understated for

the pharmaceutical industry, which is consistent with what we observe in the marginal effect

analysis in Section 4.3. Hence, correctly estimating these two effects is crucial for policy

design and evaluation.

Given the equilibrium effort portfolio e∗(r) in Equation (11), we can derive the optimal

reward rate r∗ that maximizes the net total output. It is given by

r∗ = argmax
r∈R+

∑
i∈N

∑
s∈Pi

(1− r)δsys(G, r), (12)

where ys(G, r) is the output of project s with the equilibrium effort levels e∗(r) given a rate

of r.20 In Figure 7, the maximum net total output is indicated by a vertical line which

pinpoints the optimal rate r∗. The optimal rate is higher in the pharmaceutical industry

(with an optimal rate of 0.1518) than in the semiconductor industry (with an optimal sub-

sidy rate of 0.0490). The corresponding percentage increase of total output, which measures
20Given the parameter estimates and the data, Equation (12) can be solved numerically using standard

optimization algorithms.
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(a) Semiconductors

r

(b) Pharmaceuticals

Figure 7: The net total output in the presence of a merit-based reward,
∑

i∈N
∑

s∈Pi
(1 −

r)δsys(G, r), for the semiconductor industry and the pharmaceutical industry. The maximum
at the optimal rate, r∗, is highlighted with vertical lines for different model specifications.

the log number of forward citations,14 under the optimal rate is 4.97% for semiconductors

and 14.22% for pharmaceuticals. This means that the increase in total output in the phar-

maceutical industry is 2.8612 times higher than the increase in the semiconductor industry.

The higher rate and its effect on total output reflect a stronger complementarity effect in the

pharmaceutical industry that we have documented in Sections 4.2 and 4.3, respectively. The

innovation incentive program, with the optimal reward rate r∗, internalizes the externality

due to the complementarity effect in the effort decision of the inventors (cf. Equation (11)).

The higher the complementarity effect, the more effective the program. On the other hand,

when the complementarity effect is presumed to be absent, the innovation incentive program

loses its purpose and the corresponding optimal reward rate is zero (cf. Figure 7).

The optimal reward rate, r∗, in Equation (12) can also be computed for each firm sepa-

rately.21 In this scenario, we assume that each firm implements its own innovation incentive

program. Based on the optimal rates for every firm, we can then identify the firms in the
21Let Fi ⊂ N denote the set of inventors affiliated with firm i. Then the optimal rate chosen by firm i

is given by r∗i = argmax
r∈R+

∑
j∈Fi

∑
s∈Pj

(1 − r)δsys(G, r), where ys(G, r) is the output of project s with the

equilibrium effort levels e∗(r) given a rate of r from Equation (11).
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semiconductor and pharmaceutical industries that stand to gain the most (in terms of re-

search output) from this incentive program. Tables 6 and 7 list the top 10 firms in each

industry, ranked by the difference in output before and after implementing the incentive

program, displayed in the second column of the table.22 In the semiconductor industry,

Intel, a U.S.-based firm, occupies the top rank with an increase of 135.74 in patent output.

The two following companies are Texas Instruments, another U.S.-based firm, with a gain

of 58.50, and Infineon Technologies, a German semiconductor manufacturer, with a gain of

57.65. In the pharmaceutical industry, the top three firms benefiting the most from the

program are all based in the U.S.: Bristol-Myers Squibb, Eli Lilly, and Wyeth, having gains

of 31.25, 26.72, and 22.25 in the output, respectively. The optimal rates, as indicated in the

sixth column, differ across firms. In Table 6, the optimal rate ranges from 0.029 to 0.057 for

semiconductors, while in Table 7, it ranges between 0.118 and 0.191 for pharmaceuticals. In

line with our previous findings, we consistently observe that the optimal rate is greater in

the pharmaceutical industry compared to the semiconductor industry. The return on the

innovation incentive program (RoIIP), as shown in the seventh column, is always higher

than one for every firm. This means that the incentive program generates more benefits to

the firm than costs. The highest-ranked firms are generally industry giants, having applied

for the most patents, employing the most inventors, and having higher productivity. How-

ever, it must be noted that the ranking of firms would be different when using alternative

measures (such as productivity) that do not take network externalities into account as we

do here.

From a fixed-effect regression of the patent market value on the log number of forward

citations, we find that a one-unit increase in the log number of forward citations (which is the

measure of patent output in 3) in our sample is approximately associated with a $1 million

increase in economic value (in 1982 prices).23 We can use this relationship to give a rough
22It’s worth pointing out that the rankings in Tables 6 and 7 would vary if we were to consider the

percentage of the total output (as shown in the third column) or the return on the program (as indicated in
the seventh column) instead.

23See Footnote 14.
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estimate of the economic gain from the innovation incentive program for the firm. Based on

the reported increase in output per patent (at the fourth column) in Table 6, Intel, Texas

Instruments, and Infineon Technologies in the semiconductor industry can gain $92,000,

$85,000, and $70,000, respectively, per patent from the incentive program. In contrast, from

Table 7 we find that top pharmaceutical firms like Bristol-Myers Squibb, Eli Lilly, and Wyeth

could gain even more, with potential gains of $303,000, $267,000, and $297,000, respectively,

per patent. This shows that the innovation incentive program that we analyze here can

potentially yield considerable economic gains for a firm.

5 Conclusion

In this paper, we analyze the equilibrium efforts of agents who seek to maximize their util-

ity when involved in multiple, possibly overlapping projects in a bipartite network. We

show that both the complementarity effect between collaborating researchers and the substi-

tutability effect between concurrent projects of the same researcher play an important role

in determining the equilibrium effort level. To estimate the structural parameters of the

model, we propose a Bayesian MCMC procedure that accounts for the endogenous selection

of researchers into research projects. We then bring our model to the data by analyzing the

collaboration network of patent inventors in the semiconductor and pharmaceutical indus-

tries and find empirical evidence for both complementarity and substitutability effects.

As our model has an explicit micro-foundation, it provides a formal framework for coun-

terfactual analysis. To illustrate the importance of correctly estimating the structural model

in policy evaluation, we conduct a counterfactual analysis of the impact of the innovation

incentive program on research output. We find that the effectiveness of innovation incentives

tends to be underestimated when the complementarity is ignored and overestimated when

the substitutability is ignored. We also derive the optimal incentive scheme and show that

economic gains of innovation incentives can be substantial for a firm.
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The proposed bipartite network model provides a general framework to analyze complex

interactions within diverse systems. By delineating the relationships between two distinct

sets of nodes, the model offers a versatile structure that can be applied across various do-

mains. Besides the direct applications of our model listed in Section 2.4, we believe that,

with some modifications, this framework can also be used to analyze competition between

multi-product firms (cf. Bimpikis et al. 2019, with firms and product markets depicted as

two distinct sets of nodes), formation of syndicated loans (cf. Berlin et al. 2020, with finan-

cial institutes and borrowing firms depicted as two distinct sets of nodes), and spillovers

from science to innovations (cf. Arora et al. 2021, with scientific publications and corporate

patents depicted as two distinct sets of nodes).
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Table 6: Top 10 firms in the semiconductor industry ranked by the impact of the incentive program on output.

Firm
Output Relative Output Output Change Output per Opt. RoIIPe

i

Patents Inventors Prod.f
R&Dg

Int.
RankChangea Change (%)b per Patentc Patentd Rate ∆Yi(G, r∗i )/

∆Yi(G, r∗i ) ∆Yi(G, r∗i )/Yi(G, 0) ∆Yi(G, r∗i )/|Pi| Yi(G, r∗i )/|Pi| r∗i (r∗i Yi(G, r∗i ))

Intel 135.742 5.400 0.092 1.790 0.049 1.046 1480 2325 378.181 0.145 1
Texas Instruments 58.499 5.730 0.085 1.577 0.052 1.049 685 1100 287.931 0.178 2
Infineon Technologies 57.650 5.440 0.070 1.362 0.049 1.047 820 1282 221.836 0.187 3
Taiwan Semiconductor 44.962 6.320 0.102 1.716 0.057 1.053 441 894 371.732 0.063 4
STMicroelectronics 34.877 5.740 0.080 1.466 0.052 1.049 438 764 158.381 0.171 5
Qualcomm 33.259 5.690 0.117 2.176 0.051 1.048 284 407 536.572 0.132 6
Micron Technology 25.906 3.040 0.057 1.915 0.029 1.028 458 463 186.223 0.212 7
Altera 18.175 6.010 0.114 2.004 0.054 1.051 160 262 414.640 0.216 8
Nvidia 15.936 5.990 0.120 2.120 0.054 1.051 133 190 998.874 0.150 9
National Semiconductor 13.991 5.050 0.075 1.563 0.046 1.044 186 266 204.443 0.178 10

a The difference in the output of a firm i with and without the incentive program, ∆Yi(G, r∗i ) = Yi(G, r∗i ) − Yi(G, 0), where Yi(G, r) =
∑

j∈Fi

∑
s∈Pj

δsys(G, r) is the output
of firm i with the reward rate r, Fi ⊂ N denotes the set of inventors affiliated with firm i, ys(G, r) is the output of project s with the equilibrium effort levels e∗(r) from
Equation (11).

b The output difference, ∆Yi(G, r∗i ), divided by the total output before implementing the incentive program, Yi(G, 0).
c The difference in firm output, ∆Yi(G, r∗i ), divided by the number of patents, |Pi|, where Pi ⊂ P denotes the set of patents of firm i, and | · | denotes its cardinality.
d The output of firm i, Yi(G, r∗i ), divided by the number of patents, |Pi|.
e Return on the innovation incentive program (RoIIP) is calculated as the output difference divided by the program cost: RoIIPi = ∆Yi(G, r∗i )/ (r∗i Yi(G, r∗i )).
f Labor productivity is calculated as sales (in million dollars) divided by the number of employees (in thousands).
g R&D intensity is calculated as R&D expenditures (in million dollars) divided by total sales (in million dollars).
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Table 7: Top 10 firms in the pharmaceutical industry ranked by the impact of the incentive program on output.

Firm
Output Relative Output Output Change Output per Opt. RoIIPe

i

Patents Inventors Prod.f
R&Dg

Int.
RankChangea Change (%)b per Patentc Patentd Rate ∆Yi(G, r∗i )/

∆Yi(G, r∗i ) ∆Yi(G, r∗i )/Yi(G, 0) ∆Yi(G, r∗i )/|Pi| Yi(G, r∗i )/|Pi| r∗i (r∗i Yi(G, r∗i ))

Bristol-Myers Squibb 31.25 23.130 0.303 1.615 0.166 1.132 103 437 474.864 0.109 1
Eli Lilly 26.72 14.950 0.267 2.054 0.118 1.099 100 337 272.939 0.187 2
Wyeth 22.25 23.740 0.297 1.546 0.169 1.136 75 301 302.580 0.132 3
Novartis 20.71 20.820 0.280 1.624 0.153 1.126 74 279 316.574 0.151 4
Abbott Laboratories 20.71 25.010 0.351 1.754 0.176 1.139 59 309 272.656 0.093 5
Pfizer 20.30 20.990 0.214 1.232 0.154 1.125 95 313 370.393 0.270 6
Johnson & Johnson 18.70 14.860 0.302 2.331 0.118 1.100 62 138 378.499 0.134 7
Schering-Plough 16.52 28.200 0.330 1.502 0.191 1.150 50 220 273.246 0.176 8
Astrazeneca 15.11 15.350 0.153 1.147 0.121 1.102 99 253 307.738 0.181 9
Novo Nordisk 10.83 21.260 0.451 2.573 0.156 1.125 24 89 249.338 0.152 10

a The difference in the output of a firm i with and without the incentive program, ∆Yi(G, r∗i ) = Yi(G, r∗i )− Yi(G, 0), where Yi(G, r) =
∑

j∈Fi

∑
s∈Pj

δsys(G, r) is the output
of firm i with the reward rate r, Fi ⊂ N denotes the set of inventors affiliated with firm i, ys(G, r) is the output of project s with the equilibrium effort levels e∗(r) from
Equation (11).

b The output difference, ∆Yi(G, r∗i ), divided by the total output before implementing the incentive program, Yi(G, 0).
c The difference in firm output, ∆Yi(G, r∗i ), divided by the number of patents, |Pi|, where Pi ⊂ P denotes the set of patents of firm i, and | · | denotes its cardinality.
d The output of firm i, Yi(G, r∗i ), divided by the number of patents, |Pi|.
e Return on the innovation incentive program (RoIIP) is calculated as the output difference divided by the program cost: RoIIPi = ∆Yi(G, r∗i )/ (r∗i Yi(G, r∗i )).
f Labor productivity is calculated as sales (in million dollars) divided by the number of employees (in thousands).
g R&D intensity is calculated as R&D expenditures (in million dollars) divided by total sales (in million dollars).
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by Chih-Sheng Hsieh, Michael D. König, Xiaodong Liu, and Christian Zimmermann

A Proof of Proposition 1

Proof of Proposition 1. Let dis be an indicator variable such that dis = 1 if agent i

participates in project s and dis = 0 otherwise. Substitution of Equation (1) into Equation

(2) gives

Ui(G) =
∑
s∈P

disδs

∑
j∈N

αjdjsejs +
λ

2

∑
j∈N

∑
k∈N\{j}

gjkdjsdksejseks + ϵs

 (13)

−1

2

∑
s∈P

dise
2
is + ϕ

∑
s∈P

∑
t∈P\{s}

disditeiseit

 .

First, note that the marginal utility has to be non-positive at equilibrium, i.e.,

∂Ui(G)
∂eis

|e∗ = dis

δsαi + λδs
∑

j∈N\{i}

gijdjse
∗
js − e∗is − ϕ

∑
t∈P\{s}

dite
∗
it

 ≤ 0,

where the inequality is strict only if e∗is = 0 at equilibrium (corner solution). This set of

inequalities can be written in matrix form as

−D(δ ⊗ α) + (Inp − L)e∗ ≥ 0. (14)

Second, if e∗is > 0 at equilibrium, then ∂Ui(G)
∂eis

|e∗ = 0, which implies

e∗′[−D(δ ⊗ α) + (Inp − L)e∗] = 0. (15)
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Finally, the equilibrium effort has to be non-negative, i.e.,

e∗ ≥ 0. (16)

Conditions (14), (15), and (16) constitute a linear complementarity problem (Samelson et al.

1958). If ρmax(L) < 1, the matrix Inp − L is positive definite. It follows by Lemmas 2 and 3

in Bimpikis et al. (2019) that the unique equilibrium is given by the solution to the linear

complementarity problem and the inactive links (dis = 0) are strategically redundant and

play no role in determining the equilibrium. Hence, it follows by a similar argument as in

the proof of Theorem 1 in Bimpikis et al. (2019) that the game has a unique equilibrium

with the equilibrium effort levels are given by Equation (5).
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B Bayesian Estimation

Since the likelihood function based on Equations (8) and (9) involves high-dimensional inte-

grals, it is computationally cumbersome to apply a frequentist maximum likelihood method

even when resorting to a simulation approach. As an alternative estimation method, the

Bayesian Markov Chain Monte Carlo (MCMC) approach can be more efficient for estimat-

ing latent variable models (cf. Zeger & Karim 1991). We divide the parameter vector θ and

unknown latent variables into blocks and assign the prior distributions as follows:

λ ∼ N (0, σ2
λ),

ϕ ∼ N (0, σ2
ϕ),

β ∼ N (0,Σβ),

ζ ∼ N (0, σ2
ζ ),

ς ∼ N (0, σ2
ς ),

γ ∼ N (0,Σγ),

ξ ∼ N (0, σ2
ξ ),

ψ ∼ N (0, σ2
ψ),

κ ∼ N (0, σ2
κ),

σ2
u ∼ IG

(τ0
2
,
ν0
2

)
,

and µi ∼ N (0, 1) for i ∈ N and ηs ∼ N (0, 1) for s ∈ P . We consider the normal and inverse

gamma (IG) conjugate priors, which are widely used in the Bayesian literature (Koop et al.

2007). The hyperparameters are chosen to make the prior distributions relatively flat and

cover a wide range of the parameter space, i.e., we set σ2
λ = σ2

ϕ = 10, Σβ = 10I, σ2
ζ = σ2

ς = 10,

Σγ = 1000I, σ2
ξ = σ2

ψ = σ2
κ = 1000, τ0 = 2.2, and ν0 = 0.1.

The MCMC sampling procedure combines the Gibbs sampling and the Metropolis-

Hastings (M-H) algorithm. It consists of the following steps:
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1. Draw the latent variable µi using the M-H algorithm based on f(µi|y, d, θ, µ−i, η), for

i = 1, . . . , n.

2. Draw the latent variable ηs using the M-H algorithm based on f(ηs|y, d, θ, µ, η−s), for

s = 1, . . . , p.

3. Draw γ using the M-H algorithm based on f(γ|y, d, θ\{γ}, µ, η).

4. Draw ξ using the M-H algorithm based on f(ξ|y, d, θ\{ξ}, µ, η).

5. Draw ψ using the M-H algorithm based on f(ψ|y, d, θ\{ψ}, µ, η).

6. Draw κ using the M-H algorithm based on f(κ|y, d, θ\{κ}, µ, η).

7. Draw λ using the M-H algorithm based on f(λ|y, d, θ\{λ}, µ, η).

8. Draw ϕ using the M-H algorithm based on f(ϕ|y, d, θ\{ϕ}, µ, η).

9. Draw β using the M-H algorithm based on f(β|y, d, θ\{β}, µ, η).

10. Draw ζ using the M-H algorithm based on f(ζ|y, d, θ\{ζ}, µ, η).

11. Draw ς using the M-H algorithm based on f(ς|y, d, θ\{ς}, µ, η).

12. Draw σ2
u using the conjugate inverse gamma conditional posterior distribution.

We collect the draws from iterating the above steps and compute the posterior mean and

the posterior standard deviation as our estimation results.

C Citations and Patent Value

In this section, we relate the total number of forward citations that a patent receives to

the estimated value of the patent. We use the data of patent forward citations and market

values from Kogan et al. (2017). The regression results of the patent market value measured

in million dollars in 1982 prices on the log number of forward citations (plus one), which is
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Table C.1: Regression of patent market value
on patent forward citations.

(A) (B) (C)

log(1+citation) 2.5358*** 2.5357*** 0.9926***
(0.6846) (0.6820) (0.3064)

Controls
Employment No Yes Yes
Fixed effects C-T C-T C-T, F

N 788,853 760,885 760,885
R̄2 0.086 0.090 0.269

Notes: The dependent variable is the patent market value
measured in million dollars in 1982 prices. In the con-
trols, C-T denotes technology classification interacted with
grant year fixed effects. F denotes firm fixed effects. Val-
ues in parentheses denote standard errors. Samples include
granted patents between 1973 and 2013.

our measure of patent output used in Section 4.2, can be seen in Table C.1. Column (C) in

Table C.1 suggests that a unit increase in patent output is associated with an additional $1

million dollars of patent value.

D MCMC Convergence Diagnostics

Figure D.1 shows MCMC trace plots and Geweke convergence diagnostics for the estimates

of λ and ϕ in Columns (B) and (D) of Table 3. The Geweke convergence diagnostic tests for

an equal mean of the first 10% versus the last 50% of the draws. The test results suggest

that the Markov chains have converged. We also tried different proportions (e.g., 30% versus

70%), and the results are similar. The results can be obtained from the authors upon request.
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Figure D.1: MCMC trace plots and Geweke convergence diagnostics for estimates of λ and ϕ in Columns (B) and (D) of Table 3.
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E Robustness Checks

In this section, we conduct three distinct robustness checks to assess the sensitivity of the

estimation results.

E.1 Sample Period

For the first robustness check, we change the sample year from 2003 to 2001. As explained

in Section 4.1, we select 2003 as the sample year for the main analysis due to the highest

number of patent applications in the semiconductor industry during that year. Now we

consider 2001 as an alternative sample year because it records the highest number of patent

applications in the pharmaceutical industry compared to all other years. For the year 2001,

our sample comprises 5,532 patents and 7,114 inventors in semiconductors, and 1,117 patents

and 2,930 inventors in pharmaceuticals. The estimation results based on the sample in

2001 are presented in Table E.1. Although there are slight variations in the magnitude of

estimates, the overall results align closely with those presented in Table 3.
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Table E.1: Estimation results for semiconductors and pharmaceuticals:
Year 2001 (for robustness check).

Semiconductors Pharmaceuticals

(A) (B) (C) (D)
Exogenous Endogenous Exogenous Endogenous

Participation Participation Participation Participation

Production

Complementarity (λ) 0.1843*** 0.2063*** 0.1749*** 0.2216***
(0.0222) (0.0215) (0.0520) (0.0473)

Substitutability (ϕ) 0.0377*** 0.0375*** 0.0907*** 0.0946***
(0.0059) (0.0062) (0.0419) (0.0138)

Constant (β0) -0.0811*** -0.0961*** -0.2156*** -0.2483***
(0.0202) (0.0217) (0.0444) (0.0463)

Foreigner (β1) -0.0274** -0.0257** 0.0137 0.0162
(0.0120) (0.0125) (0.0244) (0.0254)

Log accu. citations (β2) 0.1242*** 0.1224*** 0.1740*** -0.1733***
(0.0051 (0.0055) (0.0067) (0.0070)

Seniority (β3) -0.1640*** -0.1869*** -0.3679*** -0.3487***
(0.0215) (0.0226) (0.0547) (0.0516)

Inventor effect (ζ) – 0.0165** – 0.0415***
(0.0070) (0.0134)

Patent effect (ς) – 0.0166** – 0.0198**
(0.0060) (0.0096)

Error term variance (σ2
ϵ ) 1.0052*** – 0.8560*** –

(0.0191) (0.0367)
Error term variance (σ2

u) – 1.0016*** – 0.8367***
(0.0193) (0.0360)

Participation

Constant (γ0) – -4.0168*** – -1.9646***
(0.0491) (0.0568)

Location (γ1) – 1.0446*** – 2.9024***
(0.0624) (0.1712)

Past coauthors (γ2) – 7.5523*** – 8.4082***
(0.1810) (0.5784)

Common co-authors (γ3) – 14.9260*** – 21.6027***
(0.2411) (0.6653)

Inventor effect (ξ) – 1.6989*** – 1.2851***
(0.0701) (0.1475)

Patent effect (ψ) – -1.6971*** – -1.8941***
(0.0668) (0.1275)

Homophily effect (κ) – -5.0086*** – -5.8276***
(0.0772) (0.1906)

Sample size
Patents 5,532 1,117
Inventors 7,114 2,930

Notes: Columns (A) and (B) show estimates for firms in the semiconductor and related device
manufacturing industry. Columns (C) and (D) show estimates for firms in the pharmaceutical
preparation manufacturing industry. The output of the production function is measured by the
logarithm of patent citations. In Columns (A) and (C) we estimate the production function
ignoring endogenous project participation. In Columns (B) and (D) we jointly estimate the
production and participation functions with both inventor and patent random effects. We
implement MCMC sampling for 25,000 iterations, leaving the first 5,000 draws for burn-in and
using the rest of the draws for computing the posterior mean (as the point estimate) and the
posterior standard deviation (in the parenthesis). The asterisks ***(**,*) indicate that the 99%
(95%, 90%) highest posterior density range does not cover zero.
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E.2 Skill Complementarity

For the second robustness check, we replace gij = 1 with the similarity between inventors’

research skills to measure their compatibility. Each patent has an International Patent

Classification (IPC) number, which is used to classify the content of patents in a uniform

manner. We compute the Jaffe (1986) technology similarity fij between inventors based on

the IPC of their granted patents prior to 2003.24 On average, the resulting Jaffe similarity in

semiconductors is lower than that in pharmaceuticals. The estimation results based on het-

erogenous compatibility are presented in Table E.2. In general, the results exhibit qualitative

similarities to those presented in Table 3. However, a notable difference is observed: the

estimate of the complementarity effect in semiconductors is larger than in pharmaceuticals,

as shown in Table E.2. This suggests that inventors in semiconductors require a stronger

complementarity effect to compensate for the lower levels of compatibility between them.

24We computed the research skill proximity between inventors following Jaffe (1986) as

fij =
P⊤

i Pj√
P⊤

i Pi

√
P⊤

j Pj

,

where Pi represents the IPC classes of inventor i and is a vector whose k-th component Pik counts the
number of patents inventor i has in IPC class k divided by the total number of patents of that inventor.
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Table E.2: Estimation results for semiconductors and pharmaceuticals:
Heterogeneous compatibility (for robustness check).

Semiconductors Pharmaceuticals

(A) (B) (C) (D)
Exogenous Endogenous Exogenous Endogenous

Participation Participation Participation Participation

Production

Complementarity (λ) 0.2791*** 0.2921*** 0.2374*** 0.2539***
(0.0453) (0.0437) (0.0884) (0.0869)

Substitutability (ϕ) 0.0530*** 0.0550*** 0.2641*** 0.2860***
(0.0066) (0.0072) (0.0387) (0.0423)

Constant (β0) -0.1772*** -0.1778*** -0.2878*** -0.2875***
(0.0211) (0.0213) (0.0488) (0.0490)

Foreigner (β1) -0.0507*** -0.0523*** -0.0664* -0.0682*
(0.0136) (0.0141) (0.0364) (0.0375)

Log accu. citations (β2) 0.1540*** 0.1544*** -0.7706*** -0.7989***
(0.0059) (0.0061) (0.1165) (0.1205)

Seniority (β3) -0.3753*** -0.3772*** 0.2269*** 0.2281***
(0.0327) (0.0329) (0.0110) (0.0113)

Inventor effect (ζ) – 0.0097 – 0.0230*
(0.0069) (0.0145)

Patent effect (ς) – 0.0122*** – 0.0196**
(0.0022) (0.0092)

Error term variance (σ2
ϵ ) 0.8883*** – 0.7231*** –

(0.0162) (0.0340)
Error term variance (σ2

u) – 0.8806*** – 0.7160***
(0.0161) (0.0344)

Participation

Constant (γ0) – -5.3524*** – -4.9922***
(0.0533) (0.0948)

Location (γ1) – 1.5428*** – 5.0767***
(0.0630) (0.2669)

Past coauthors (γ2) – 8.3868*** – 7.2488***
(0.1730) (0.3652)

Common co-authors (γ3) – 14.7761*** – 12.7899***
(0.1554) (0.3774)

Inventor effect (ξ) – 1.6495*** – 1.0405***
(0.0701) (0.0991)

Patent effect (ψ) – -2.9155*** – -2.6083***
(0.0469) (0.1093)

Homophily effect (κ) – -3.4693*** – -1.5777***
(0.0700) (0.1054)

Sample size
Patents 6,017 927
Inventors 8,472 2,888

Notes: Columns (A) and (B) show estimates for firms in the semiconductor and related device
manufacturing industry. Columns (C) and (D) show estimates for firms in the pharmaceutical
preparation manufacturing industry. The output of the production function is measured by the
logarithm of patent citations. In Columns (A) and (C) we estimate the production function
ignoring endogenous project participation. In Columns (B) and (D) we jointly estimate the
production and participation functions with both inventor and patent random effects. We
implement MCMC sampling for 25,000 iterations, leaving the first 5,000 draws for burn-in and
using the rest of the draws for computing the posterior mean (as the point estimate) and the
posterior standard deviation (in the parenthesis). The asterisks ***(**,*) indicate that the 99%
(95%, 90%) highest posterior density range does not cover zero.
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E.3 Patent Output

For the third robustness check, we substitute patent forward citations with patent values (Ko-

gan et al. 2017) as the measure of patent output. The summary statistics of patent value are

available in Tables 1 and 2. On average, the patent value is 7.50 (millions) in semiconduc-

tors and 51.28 (millions) in pharmaceuticals. The estimation results for patent values are in

Table E.3. The results show that, after correcting the endogeneity bias, both the comple-

mentarity effect and the substitutability effect are positive and significant. These findings

align with the results obtained using patent citations, as shown in Table 3. Notably, the

estimated complementarity and substitutability effects remain higher in the pharmaceuticals

compared to the semiconductors.
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Table E.3: Estimation results for semiconductors and pharmaceuticals:
Patent values (for robustness check).

Semiconductors Pharmaceuticals

(A) (B) (C) (D)
Exogenous Endogenous Exogenous Endogenous

Participation Participation Participation Participation

Production

Complementarity (λ) 0.0235 0.2575*** 0.1614** 0.3731***
(0.0317) (0.0334) (0.0689) (0.0392)

Substitutability (ϕ) -0.0053*** 0.0052*** -0.0120 0.0418***
(0.0016) (0.0021) (0.0121) (0.0134)

Constant (β0) -0.0395 -0.2776*** 0.0213 -0.5337***
(0.0309) (0.0317) (0.0967) (0.0856)

Foreigner (β1) -0.0432** -0.0278 0.0563* 0.0204
(0.0209) (0.0194) (0.0313) (0.0291)

Log accu. citations (β2) 0.5323*** 0.5509*** 0.4801*** 0.5461***
(0.0086) (0.0094) (0.0167) (0.0160)

Seniority (β3) -1.1070*** -0.9047*** -0.2171*** -0.0855**
(0.0430) (0.0490) (0.0681) (0.0346)

Inventor effect (ζ) – 0.3405*** – 0.3126***
(0.0185) (0.0155)

Patent effect (ς) – 0.0431 – 0.6024*
(0.0314) (0.3598)

Error term variance (σ2
ϵ ) 42.7614*** – 1054.4000*** –

(0.7788) (49.7417)
Error term variance (σ2

u) – 32.3299*** – 384.4710***
(0.8089) (22.2929)

Participation

Constant (γ0) – -5.4096*** – -5.2700***
(0.0450) (0.0946)

Location (γ1) – 1.4750*** – 4.5117***
(0.0623) (0.2399)

Past coauthors (γ2) – 8.2576*** – 7.1266***
(0.1657) (0.3479)

Common co-authors (γ3) – 14.2455*** – 12.0131***
(0.1472) (0.3482)

Inventor effect (ξ) – 1.3245*** – 0.6691***
(0.0980) (0.0633)

Patent effect (ψ) – -2.7347*** – -2.3974***
(0.0512) (0.0789)

Homophily effect (κ) – -3.2041*** – -0.9441***
(0.0503) (0.0643)

Sample size
Patents 6,017 927
Inventors 8,472 2,888

Notes: Columns (A) and (B) show estimates for firms in the semiconductor and related device
manufacturing industry. Columns (C) and (D) show estimates for firms in the pharmaceutical
preparation manufacturing industry. The output of the production function is measured by the
logarithm of patent citations. In Columns (A) and (C) we estimate the production function
ignoring endogenous project participation. In Columns (B) and (D) we jointly estimate the
production and participation functions with both inventor and patent random effects. We
implement MCMC sampling for 25,000 iterations, leaving the first 5,000 draws for burn-in and
using the rest of the draws for computing the posterior mean (as the point estimate) and the
posterior standard deviation (in the parenthesis). The asterisks ***(**,*) indicate that the 99%
(95%, 90%) highest posterior density range does not cover zero.
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F Monte Carlo Simulation

To show that the proposed Bayesian MCMC estimation approach in Appendix B can ef-

fectively recover the true parameters in Equations (8) and (9), we conduct a Monte Carlo

simulation with 100 repetitions. In each repetition, we generate an artificial bipartite col-

laboration network of 300 agents (n = 300) and 400 projects (p = 400). The data gener-

ating process (DGP) runs as follows: we first simulate dyadic binary exogenous variables

zis ∈ {0, 1} randomly with the probability P (zis = 1) = 0.64; individual exogenous variable

xi from normal distribution N(0, 4); and both agent and project latent variables µi and ηs

from N(0, 1). Then, we generate the artificial collaboration network and project output

based on the participation function of Equation (9) and the production function of Equation

(8).

In the Monte Carlo simulations, we consider three sets of parameters to see how the signs

of the coefficients of agent and project latent variables affect the direction of the selection

bias. In the first parameter specification, we set ζ > 0 and ξ > 0 (i.e., an agent with higher

ability µi tends to participate in more projects), ς > 0 and ψ < 0 (i.e., a project with higher

potential ηs has a higher threshold for researchers to participate in), and κ < 0 (i.e., agents

are sorted into projects based on homophily of unobserved characteristics). The simulation

results reported in Table F.1 confirm that all true model parameters can be effectively

recovered by the employed Bayesian MCMC approach when endogenous project participation

is controlled for through agent and project latent variables, and both the complementarity

and substitutability effects are downward biased when endogenous project participation is

ignored. The direction of the bias is the same as what we observe in the empirical study.

In the second parameter specification, we set ζ > 0 and ξ < 0 (i.e., an agent with

higher ability tends to participate in fewer projects), while holding the other parameters the

same as the first specification. In this case, all true model parameters can still be effectively

recovered by the employed Bayesian MCMC approach when endogenous project participation

is controlled for. When endogenous project participation is ignored, the substitutability effect
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Table F.1: Simulation results: Downward biases on λ and ϕ.

Exogenous Participation Endogenous Participation

DGP Est. S.D. Est. S.D.

Production
Complementarity (λ) 0.10 0.0315 0.0609 0.0997 0.0024
Substitutability (ϕ) 0.10 -0.1051 0.1171 0.1007 0.0146
Constant (β0) -1.00 -0.0584 0.6452 -0.9965 0.0620
xi (β1) 0.50 0.3877 0.1754 0.4974 0.0131
Agent effect (ζ) 1.00 1.0014 0.0262
Project effect (ς) 0.50 0.5251 0.0459
Error variance (σ2

u) 0.50 236.3430 176.4898 0.4625 0.0438

Participation
Constant (γ0) -5.75 -5.7298 0.1008
zij (γ1) 0.50 0.4882 0.1041
Agent effect (ξ) 1.00 1.2646 0.2290
Project effect (ψ) -1.00 -1.2657 0.2538
Homophily effect (κ) -0.50 -0.7721 0.2373

Notes: We perform Monte Carlo simulations with 100 repetitions. The reported values are
the mean and the standard deviation of point estimates calculated across repetitions.

is overestimated because it is low-ability agents who are more likely to work on multiple

concurrent projects.

In the third parameter specification, we set ς > 0 and ψ > 0 (i.e., high-potential projects

are easier to join than low-potential ones), while holding the other parameters the same as

the first specification. In this case, all true model parameters can still be effectively recovered

by the employed Bayesian MCMC approach when endogenous project participation is con-

trolled for. When endogenous project participation is ignored, the complementarity effect is

overestimated because agents are more likely to collaborate on high-potential projects.

From the simulation results, we can conclude (i) all true model parameters can be ef-

fectively recovered by the employed Bayesian MCMC approach when endogenous project

participation is controlled for, and (ii) the pattern of bias is consistent with our intuition.
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Table F.2: Simulation result: Upward bias on ϕ.

Exogenous Participation Endogenous Participation

DGP Est. S.D. Est. S.D.

Production
Complementarity (λ) 0.10 0.0539 0.0509 0.0934 0.0271
Substitutability (ϕ) 0.10 0.8949 1.1015 0.0997 0.0342
Constant (β0) -1.00 -0.6415 0.9804 -0.9829 0.0967
xi (β1) 0.50 0.4004 0.3622 0.4913 0.0250
Agent effect (ζ) 1.00 1.0042 0.0507
Project effect (ς) 0.50 0.5259 0.0360
Error variance (σ2

u) 0.50 77.3531 76.722 0.4753 0.0354

Participation
Constant (γ0) -5.75 -5.7416 0.1063
zij (γ1) 0.50 0.4964 0.0971
Agent effect (ξ) -1.00 -1.2362 0.2490
Project effect (ψ) -1.00 -1.2485 0.2418
Homophily effect (κ) -0.50 -0.7283 0.2754

Notes: We perform Monte Carlo simulations with 100 repetitions. The reported values are
the mean and the standard deviation of point estimates calculated across repetitions.

Table F.3: Simulation result: Upward bias on λ.

Exogenous Participation Endogenous Participation

DGP Est. S.D. Est. S.D.

Production
Complementarity (λ) 0.10 0.1277 0.0096 0.1005 0.0015
Substitutability (ϕ) 0.10 -0.0197 0.0720 0.0968 0.0039
Constant (β0) -1.00 -1.4053 1.2002 -1.0625 0.0338
xi (β1) 0.50 0.5845 0.3356 0.5077 0.0124
Agent effect (ζ) 1.00 0.9957 0.0221
Project effect (ς) 0.50 0.4992 0.0460
Error variance (σ2

u) 0.50 904.6899 752.5478 0.5111 0.0412

Participation
Constant (γ0) -5.75 -5.7572 0.0894
zij (γ1) 0.50 0.4839 0.0938
Agent effect (ξ) 1.00 0.9867 0.0488
Project effect (ψ) 1.00 0.9734 0.0540
Homophily effect (κ) -0.50 -0.5036 0.0656

Notes: We perform Monte Carlo simulations with 100 repetitions. The reported values are
the mean and the standard deviation of point estimates calculated across repetitions.
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